1
|
Qin C, Huang L, Zhong X, Xia Z, Li G, Cheng G, Huang L, Wu Y. Self-Accelerated Controllable Phase Transformation for Practical Liquid Metal Electrode. Angew Chem Int Ed Engl 2025; 64:e202421020. [PMID: 39932212 DOI: 10.1002/anie.202421020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Despite the high theoretical capacity, the deposition of solid alkali metals can trigger dendrites growth, causing safety risk, capacity and life decay. While liquid NaK alloy is dendrite-free, their fluidity may cause leakage or even short circuit. In this work, a novel controllable phase transformation strategy was proposed enabled NaK anode to be processed in near-solid and work in liquid, effectively overcoming the challenges of dendrite formation and leakage. Specifically, a near-solid anode was fabricated by liquid metal (LM)-assisted mechanochemistry reaction, which can be easily shaped and integrated into batteries without leakage risk. Then self-accelerated phase transformation continues within the battery, driven by an LM-mediated in situ replacement reaction, converts the near-solid electrode into liquid state and enabling dendrite-free operation. For the first time, a cylindrical cell with liquid NaK alloy anode was successfully matched and demonstrated excellent electrochemical performances. This innovation not only enhances safety but also advancing the practical application of liquid metal electrodes in energy storage systems.
Collapse
Affiliation(s)
- Chichu Qin
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Li Huang
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Xuan Zhong
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Zhiyong Xia
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Guanwu Li
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Guanqing Cheng
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Lu Huang
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Yingpeng Wu
- Department State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Zhong K, Xue J, Ji Y, Jiang Q, Zheng T, Xia C. Strategies for Enhancing Stability in Electrochemical CO 2 Reduction. Chem Asian J 2025:e202500174. [PMID: 40200798 DOI: 10.1002/asia.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a sustainable approach to address global energy challenges and reduce carbon emissions. However, achieving long-term stability in terms of catalytic performance remains a critical hurdle for large-scale commercial deployment. This mini-review provides a comprehensive exploration of the key factors influencing CO2RR stability, encompassing catalyst design, electrode architecture, electrolyzer optimization, and operational conditions. We examine how catalyst degradation occurs through mechanisms such as valence changes, elemental dissolution, structural reconfiguration, and active site poisoning and propose targeted strategies for improvement, including doping, alloying, and substrate engineering. Additionally, advancements in electrode design, such as structural modifications and membrane enhancements, are highlighted for their role in improving stability. Operational parameters such as temperature, pressure, and electrolyte composition also play crucial roles in extending the lifespan of the reaction. By addressing these diverse factors, this review aims to offer a deeper understanding of the determinants of long-term stability in the CO2RR, laying the groundwork for the development of robust, scalable technologies for efficient carbon dioxide conversion.
Collapse
Affiliation(s)
- Kexin Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
3
|
Wang J, Tang W, Zhu Z, Lin Y, Zhao L, Chen H, Qi X, Niu X, Chen JS, Wu R. Stabilizing Lattice Oxygen of Bi 2O 3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202423658. [PMID: 39803713 DOI: 10.1002/anie.202423658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen. The optimized In-Bi2O3-100 catalyst achieves over 90 % Faradaic efficiency for HCOOH production across a wide potential range, in both H-cells and flow cells, maintaining robust stability after 100 hours of continuous operation. In situ surface-enhanced infrared absorption spectroscopy and theoretical calculations reveal that the interstitial In doping precisely tunes the adsorption of CO2* and OCHO* intermediate, facilitating rapid conversion. Further in situ Raman spectroscopy confirms the role of In bolstering the oxidized structure's stability within Bi2O3, critical for sustaining lattice oxygen during electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Junjie Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wu Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhaozhao Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yingxi Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lei Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiyuan Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Rui Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
4
|
Johnston L, Baharfar M, Chi Y, Bardet L, Mousavi M, Deng F, Lin J, Yong J, Liu L, Kalantar-Zadeh K, Tang J. Liquid-Metal-Driven Synthesis of Mesoporous Noble Metal Thin Films and Micropatterns for Biosensing. ACS NANO 2025; 19:8727-8738. [PMID: 39993172 DOI: 10.1021/acsnano.4c15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Nanoporous thin films (NPTFs) of noble metals are known for their exceptional durability, biocompatibility, and enlarged yet modifiable surface in broad biosensing applications. However, it remains challenging to devise a viable NPTF fabrication method that is generally applicable to different types of noble metals and for generating micro/nanopatterns. Here, we present a liquid-metal-based approach for transforming noble metal thin films and their lithographically formed patterns into NPTFs with mesoscale pores. For this purpose, a gallium (Ga)-based process in the liquid state of the metal is implemented. During fabrication, the noble metal thin films are first converted into compact layers of Ga-containing intermetallic crystals, followed by selective removal of the less noble Ga to create mesoporous networks. Compared to their nonporous counterparts, the noble metal NPTFs exhibit increased electroactive surface area, enhanced current density, and improved antifouling performance, all to a substantial degree, in different biosensing settings. Notably, gold NPTFs demonstrate excellent sensitivity and selectivity toward dopamine in a human serum environment. Given that the fabrication can be carried out at near room temperature and avoids harsh conditions, we expect our method to expedite the use of noble metal NPTFs and patterns in developing high-performance biosensors and other noble metal surface-enabled applications.
Collapse
Affiliation(s)
- Lucy Johnston
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Laetitia Bardet
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Joel Yong
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Li Liu
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, New South Wales 2008, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, New South Wales 2008, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Engineering and Research Centre for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
5
|
Tang J, Meftahi N, Christofferson AJ, Sun J, Yu R, Rahim MA, Tang J, Mao G, Daeneke T, Kaner RB, Russo SP, Kalantar-Zadeh K. Molten Sn solvent expands liquid metal catalysis. Nat Commun 2025; 16:907. [PMID: 39837876 PMCID: PMC11751482 DOI: 10.1038/s41467-025-56222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Regulating favorable assemblies of metallic atoms in the liquid state provides promise for catalyzing various chemical reactions. Expanding the selection of metallic solvents, especially those with unique properties and low cost, enables access to distinctive fluidic atomic structures on the surface of liquid alloys and offers economic feasibility. Here, Sn solvent, as a low-cost commodity, supports unique atomic assemblies at the interface of molten SnIn0.1034Cu0.0094, which are highly selective for H2 synthesis from hydrocarbons. Atomistic simulations reveal that distinctive adsorption patterns with hexadecane can be established with Cu transiently reaching the interfacial layer, ensuring an energy-favorable route for H2 generation. Experiments with a natural oil as feedstock underscore this approach's performance, producing 1.2 × 10-4 mol/min of H2 with 5.0 g of catalyst at ~93.0% selectivity while offering reliable scalability and durability at 260 °C. This work presents an alternative avenue of tuning fluidic atomic structures, broadening the applications of liquid metals.
Collapse
Affiliation(s)
- Junma Tang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, Australia.
- School of Chemistry, Xi'an Jiaotong University, Xi'an, China.
| | - Nastaran Meftahi
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Australia
| | - Jing Sun
- Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Yu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, Australia
| | - Md Arifur Rahim
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, Australia
- School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, Australia
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Australia
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, USA
| | - Salvy P Russo
- School of Science, STEM College, RMIT University, Melbourne, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
6
|
Zhong W, Chi Y, Yu R, Kong C, Zhou S, Han C, Vongsvivut J, Mao G, Kalantar‐Zadeh K, Amal R, Tang J, Lu X. Liquid Metal-Enabled Tunable Synthesis of Nanoporous Polycrystalline Copper for Selective CO 2-to-Formate Electrochemical Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403939. [PMID: 39078016 PMCID: PMC11618703 DOI: 10.1002/smll.202403939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Copper-based catalysts exhibit high activity in electrochemical CO2 conversion to value-added chemicals. However, achieving precise control over catalysts design to generate narrowly distributed products remains challenging. Herein, a gallium (Ga) liquid metal-based approach is employed to synthesize hierarchical nanoporous copper (HNP Cu) catalysts with tailored ligament/pore and crystallite sizes. The nanoporosity and polycrystallinity are generated by dealloying intermetallic CuGa2 formed after immersing pristine Cu foil in liquid Ga in a basic or acidic solution. The liquid metal-based approach allows for the transformation of monocrystalline Cu to the polycrystalline HNP Cu with enhanced CO2 reduction reaction (CO2RR) performance. The dealloyed HNP Cu catalyst with suitable crystallite size (22.8 nm) and nanoporous structure (ligament/pore size of 45 nm) exhibits a high Faradaic efficiency of 91% toward formate production under an applied potential as low as -0.3 VRHE. The superior CO2RR performance can be ascribed to the enlarged electrochemical catalytic surface area, the generation of preferred Cu facets, and the rich grain boundaries by polycrystallinity. This work demonstrates the potential of liquid metal-based synthesis for improving catalysts performance based on structural design, without increasing compositional complexity.
Collapse
Affiliation(s)
- Wenyu Zhong
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Yuan Chi
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Ruohan Yu
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Charlie Kong
- Electron Microscope UnitUniversity of New South WalesSydneyNSW2052Australia
| | - Shujie Zhou
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Chen Han
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) BeamlineANSTO‐Australian SynchrotronClaytonVIC3168Australia
| | - Guangzhao Mao
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kourosh Kalantar‐Zadeh
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- School of Chemical and Biomolecular EngineeringUniversity of SydneyDarlingtonNSW2008Australia
| | - Rose Amal
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jianbo Tang
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Xunyu Lu
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
7
|
Feng J, Wang X, Pan H. In-situ Reconstruction of Catalyst in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411688. [PMID: 39436113 PMCID: PMC11635912 DOI: 10.1002/adma.202411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Reconstruction of catalysts is now well recognized as a common phenomenon in electrocatalysis. As the reconstructed structure may promote or hamper the electrochemical performance, how to achieve the designed active surface for highly enhanced catalytic activity through the reconstruction needs to be carefully investigated. In this review, the genesis and electrochemical effects of reconstruction in various electrochemical catalytic processes, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), and nitrate reduction reaction (NO3RR) are first described. Then, the strategies for optimizing the reconstruction, such as valence states control, active phase retention, phase evolution engineering, and surface poisoning prevention are comprehensively discussed. Finally, the general rules of reconstruction optimization are summarized and give perspectives for future study. It is believed that the review shall provide deep insights into electrocatalytic mechanisms and guide the design of pre-catalysts with highly improved activity.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacao SAR999078China
| | - Xuesen Wang
- Department of PhysicsNational University of SingaporeSingapore119077Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacao SAR999078China
- Department of Physics and ChemistryFaculty of Science and TechnologyUniversity of MacauTaipaMacao SAR999078China
| |
Collapse
|
8
|
Patil D, Liu S, Ravichandran D, Thummalapalli SV, Zhu Y, Tang T, Golan Y, Miquelard-Garnier G, Asadi A, Li X, Chen X, Song K. Versatile Patterning of Liquid Metal via Multiphase 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402432. [PMID: 38850181 DOI: 10.1002/smll.202402432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Indexed: 06/10/2024]
Abstract
This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self-passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost-effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.
Collapse
Affiliation(s)
- Dhanush Patil
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Siying Liu
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | | | - Yuxiang Zhu
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Tengteng Tang
- The School for Engineering of Matter, Transport and Energy (SEMTE), Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Yuval Golan
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts at Métiers Institute of Technology, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, 77843-3367, USA
| | - Xiangjia Li
- The School for Engineering of Matter, Transport and Energy (SEMTE), Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Xiangfan Chen
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Kenan Song
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural and Mechanical (ECAM), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Guo J, Zhi X, Wang D, Qu L, Zavabeti A, Fan Q, Zhang Y, Butson JD, Yang J, Wu C, Liu JZ, Hu G, Fan X, Li GK. Surface-Enriched Room-Temperature Liquid Bismuth for Catalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401777. [PMID: 38747025 DOI: 10.1002/smll.202401777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Indexed: 10/01/2024]
Abstract
Bismuth-based electrocatalysts are effective for carbon dioxide (CO2) reduction to formate. However, at room temperature, these materials are only available in solid state, which inevitably suffers from surface deactivation, declining current densities, and Faradaic efficiencies. Here, the formation of a liquid bismuth catalyst on the liquid gallium surface at ambient conditions is shown as its exceptional performance in the electrochemical reduction of CO2 (i.e., CO2RR). By doping a trace amount of bismuth (740 ppm atomic) in gallium liquid metal, a surface enrichment of bismuth by over 400 times (30 at%) in liquid state is obtained without atomic aggregation, achieving 98% Faradic efficiency for CO2 conversion to formate over 80 h. Ab initio molecular simulations and density functional theory calculations reveal that bismuth atoms in the liquid state are the most energetically favorable sites for the CO2RR intermediates, superior to solid Bi-sites, as well as joint GaBi-sites. This study opens an avenue for fabricating high-performing liquid-state metallic catalysts that cannot be reached by elementary metals under electrocatalytic conditions.
Collapse
Affiliation(s)
- Jining Guo
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Xing Zhi
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dingqi Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qining Fan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuecheng Zhang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua D Butson
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianing Yang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chao Wu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Guoping Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341119, China
| | - Xiaolei Fan
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315100, China
- Institute of Wenzhou, Zhejiang University, Fengnan Road, Wenzhou, 325006, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
10
|
Chen Y, Zhang Y, Li Z, Liu M, Wu Q, Lo TWB, Hu Z, Lee LYS. Amphipathic Surfactant on Reconstructed Bismuth Enables Industrial-Level Electroreduction of CO 2 to Formate. ACS NANO 2024; 18:19345-19353. [PMID: 38991112 DOI: 10.1021/acsnano.4c06019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developing efficient electrocatalysts for selective formate production via the electrochemical CO2 reduction reaction (CO2RR) is challenged by high overpotential, a narrow potential window of high Faradaic efficiency (FEformate), and limited current density (Jformate). Herein, we report a hierarchical BiOBr (CT/h-BiOBr) with surface-anchored cetyltrimethylammonium bromide (CTAB) for formate-selective large-scale CO2RR electrocatalysis. CT/h-BiOBr achieves over 90% FEformate across a wide potential range (-0.5 to -1.1 V) and an industrial-level Jformate surpassing 100 mA·cm-2 at -0.7 V. In situ investigations uncover the reconstructed Bi(110) surface as the active phase, with CTAB playing a dual role: its hydrophobic alkyl chains create a CO2-enriching microenvironment, while its polar head groups fine-tune the electronic structure, fostering a highly active phase. This work provides valuable insights into the role of surfactants in electrocatalysis and guides the design of electrocatalysts for the large-scale CO2RR.
Collapse
Affiliation(s)
- Yiqun Chen
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mengjie Liu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Yuan X, Kong W, Xia P, Wang Z, Gao Q, Xu J, Shan D, Yao Q, Guo B, He Y. In Situ Synthesis of Liquid Metal Conductive Fibers toward Smart Cloth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27850-27865. [PMID: 38760320 PMCID: PMC11145595 DOI: 10.1021/acsami.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
To meet the diverse needs of humans, smart cloth has become a potential research hotspot to replace traditional cloth. However, it is challenging to manufacture a flexible fabric with multiple functions. Here, we introduce a smart cloth based on liquid metal (LM) conductive fibers. Ga2O3 nanoparticles are obtained through ultrasonic pretreatment. Furthermore, a coordination bond is formed between thiol groups on the surface of protein fibers and Ga2O3 through a scraping method, allowing Ga2O3 particles to be grafted onto the surface of protein fibers in situ. Finally, LM conductive fibers are encapsulated using a photocuring adhesive. In addition, a wearable smart cloth integrated with multiple sensors has been developed based on LM conductive fibers. Users can not only monitor their movement trajectory and the surrounding environment in real time but also have their data supervised by family members through a client, achieving remote and continuous monitoring. The development of this wearable smart cloth provides strong support for future wearable, flexible electronic devices.
Collapse
Affiliation(s)
- Ximin Yuan
- State
Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- National
Innovation Center for Advanced Medical Devices, Shenzhen 457001, China
| | - Weicheng Kong
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengcheng Xia
- Department
of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First
Hospital, Nanjing Medical University, Nanjing210006 ,China
| | - Zhenjia Wang
- State
Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- National
Innovation Center for Advanced Medical Devices, Shenzhen 457001, China
| | - Qing Gao
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Xu
- State
Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- National
Innovation Center for Advanced Medical Devices, Shenzhen 457001, China
| | - Debin Shan
- State
Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- National
Innovation Center for Advanced Medical Devices, Shenzhen 457001, China
| | - Qingqiang Yao
- Department
of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First
Hospital, Nanjing Medical University, Nanjing210006 ,China
| | - Bin Guo
- State
Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- National
Innovation Center for Advanced Medical Devices, Shenzhen 457001, China
| | - Yong He
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of 3D Printing Process and Equipment of Zhejiang Province,
College of Mechanical Engineering, Zhejiang
University, Hangzhou 310027, China
| |
Collapse
|
12
|
Yu Y, Lv Z, Liu Z, Sun Y, Wei Y, Ji X, Li Y, Li H, Wang L, Lai J. Activation of Ga Liquid Catalyst with Continuously Exposed Active Sites for Electrocatalytic C-N Coupling. Angew Chem Int Ed Engl 2024; 63:e202402236. [PMID: 38357746 DOI: 10.1002/anie.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Environmentally friendly electrocatalytic coupling of CO2 and N2 for urea synthesis is a promising strategy. However, it is still facing problems such as low yield as well as low stability. Here, a new carbon-coated liquid alloy catalyst, Ga79Cu11Mo10@C is designed for efficient electrochemical urea synthesis by activating Ga active sites. During the N2 and CO2 co-reduction process, the yield of urea reaches 28.25 mmol h-1 g-1, which is the highest yield reported so far under the same conditions, the Faraday efficiency (FE) is also as high as 60.6 % at -0.4 V vs. RHE. In addition, the catalyst shows excellent stability under 100 h of testing. Comprehensive analyses showed that sequential exposure of a high density of active sites promoted the adsorption and activation of N2 and CO2 for efficient coupling reactions. This coupling reaction occurs through a thermodynamic spontaneous reaction between *N=N* and CO to form a C-N bond. The deformability of the liquid state facilitates catalyst recovery and enhances stability and resistance to poisoning. Moreover, the introduction of Cu and Mo stimulates the Ga active sites, which successfully synthesises the *NCON* intermediate. The reaction energy barrier of the third proton-coupled electron transfer process rate-determining step (RDS) *NHCONH→*NHCONH2 was lowered, ensuring the efficient synthesis of urea.
Collapse
Affiliation(s)
- Yaodong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zheng Lv
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ziyi Liu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuyao Sun
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingying Wei
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiang Ji
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanyan Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
13
|
Huang Z, Guan M, Bao Z, Dong F, Cui X, Liu G. Ligand Mediation for Tunable and Oxide Suppressed Surface Gold-Decorated Liquid Metal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306652. [PMID: 37806762 DOI: 10.1002/smll.202306652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2003] [Indexed: 10/10/2023]
Abstract
Gallium-based liquid metal systems hold vast potential in materials science. However, maximizing their possibilities is hindered by gallium's native oxide and interfacial functionalization. In this study, small-molecule ligands are adopted as surfactants to modify the surface of eutectic gallium indium (EGaIn) nanoparticles and suppress oxidation. Different p-aniline derivatives are explored. Next, the reduction of chloroanric acid (HAuCl4 ) onto these p-aniline ligand modified EGaIn nanoparticles is investigated to produce gold-decorated EGaIn nanosystems. It is found that by altering the concentrations of HAuCl4 or the p-aniline ligand, the formation of gold nanoparticles (AuNPs) on EGaIn can be manipulated. The reduction of interfacial oxidation and presence of AuNPs enhances electrical conductivity, plasmonic performance, wettability, stability, and photothermal performance of all the p-aniline derivative modified EGaIn. Of these, EGaIn nanoparticles covered with the ligand of p-aminobenzoic acid offer the most evenly distributed AuNPs decoration and perfect elimination of gallium oxides, resulting in the augmented electrical conductivity, and highest wettability suitable for patterning, enhanced aqueous stability, and favorable photothermal properties. The proof-of-concept application in photothermal therapy of cancer cells demonstrates significantly enhanced photothermal conversion performance along with good biocompatibility. Due to such unique characteristics, the developed gold-decorated EGaIn nanodroplets are expected to offer significant potential in precise medicine.
Collapse
Affiliation(s)
- Ziyang Huang
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Mingyang Guan
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Ziting Bao
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Fengyi Dong
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Xiaolin Cui
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| |
Collapse
|
14
|
Okatenko V, Boulanger C, Chen AN, Kumar K, Schouwink P, Loiudice A, Buonsanti R. Voltage-Driven Chemical Reactions Enable the Synthesis of Tunable Liquid Ga-Metal Nanoparticles. J Am Chem Soc 2023; 145:25401-25410. [PMID: 37948677 DOI: 10.1021/jacs.3c09828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Coline Boulanger
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Krishna Kumar
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pascal Schouwink
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
15
|
Hossain KZ, Kamran SA, Tavakkoli A, Khan MR. Machine learning (ML)-assisted surface tension and oscillation-induced elastic modulus studies of oxide-coated liquid metal (LM) alloys. JPHYS MATERIALS 2023; 6:045009. [PMID: 37881171 PMCID: PMC10594230 DOI: 10.1088/2515-7639/acf78c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
Pendant drops of oxide-coated high-surface tension fluids frequently produce perturbed shapes that impede interfacial studies. Eutectic gallium indium or Galinstan are high-surface tension fluids coated with a ∼5 nm gallium oxide (Ga2O3) film and falls under this fluid classification, also known as liquid metals (LMs). The recent emergence of LM-based applications often cannot proceed without analyzing interfacial energetics in different environments. While numerous techniques are available in the literature for interfacial studies- pendant droplet-based analyses are the simplest. However, the perturbed shape of the pendant drops due to the presence of surface oxide has been ignored frequently as a source of error. Also, exploratory investigations of surface oxide leveraging oscillatory pendant droplets have remained untapped. We address both challenges and present two contributing novelties- (a) by utilizing the machine learning (ML) technique, we predict the approximate surface tension value of perturbed pendant droplets, (ii) by leveraging the oscillation-induced bubble tensiometry method, we study the dynamic elastic modulus of the oxide-coated LM droplets. We have created our dataset from LM's pendant drop shape parameters and trained different models for comparison. We have achieved >99% accuracy with all models and added versatility to work with other fluids. The best-performing model was leveraged further to predict the approximate values of the nonaxisymmetric LM droplets. Then, we analyzed LM's elastic and viscous moduli in air, harnessing oscillation-induced pendant droplets, which provides complementary opportunities for interfacial studies alternative to expensive rheometers. We believe it will enable more fundamental studies of the oxide layer on LM, leveraging both symmetric and perturbed droplets. Our study broadens the materials science horizon, where researchers from ML and artificial intelligence domains can work synergistically to solve more complex problems related to surface science, interfacial studies, and other studies relevant to LM-based systems.
Collapse
Affiliation(s)
- Kazi Zihan Hossain
- Department of Chemical & Materials Engineering, University of Nevada, Reno, NV, United States of America
| | - Sharif Amit Kamran
- Department of Computer Science & Engineering, University of Nevada, Reno, NV, United States of America
| | - Alireza Tavakkoli
- Department of Computer Science & Engineering, University of Nevada, Reno, NV, United States of America
| | - M Rashed Khan
- Department of Chemical & Materials Engineering, University of Nevada, Reno, NV, United States of America
| |
Collapse
|
16
|
Chi Y, Kumar PV, Zheng J, Kong C, Yu R, Johnston L, Ghasemian MB, Rahim MA, Kumeria T, Chu D, Lu X, Mao G, Kalantar-Zadeh K, Tang J. Liquid-Metal Solvents for Designing Hierarchical Nanoporous Metals at Low Temperatures. ACS NANO 2023; 17:17070-17081. [PMID: 37590207 DOI: 10.1021/acsnano.3c04585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Metallic nanoarchitectures hold immense value as functional materials across diverse applications. However, major challenges lie in effectively engineering their hierarchical porosity while achieving scalable fabrication at low processing temperatures. Here we present a liquid-metal solvent-based method for the nanoarchitecting and transformation of solid metals. This was achieved by reacting liquid gallium with solid metals to form crystalline entities. Nanoporous features were then created by selectively removing the less noble and comparatively softer gallium from the intermetallic crystals. By controlling the crystal growth and dealloying conditions, we realized the effective tuning of the micro-/nanoscale porosities. Proof-of-concept examples were shown by applying liquid gallium to solid copper, silver, gold, palladium, and platinum, while the strategy can be extended to a wider range of metals. This metallic-solvent-based route enables low-temperature fabrication of metallic nanoarchitectures with tailored porosity. By demonstrating large-surface-area and scalable hierarchical nanoporous metals, our work addresses the pressing demand for these materials in various sectors.
Collapse
Affiliation(s)
- Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Jiewei Zheng
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Charlie Kong
- Electron Microscope Unit, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Ruohan Yu
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Lucy Johnston
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Xunyu Lu
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| |
Collapse
|
17
|
Amon A, Chater PA, Vaughan G, Smith R, Salzmann CG. Local Order in Liquid Gallium-Indium Alloys. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16687-16694. [PMID: 37646006 PMCID: PMC10461300 DOI: 10.1021/acs.jpcc.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Indexed: 09/01/2023]
Abstract
Liquid metals such as eutectic Ga-In alloys have low melting points and low toxicity and are used in catalysis and micro-robotics. This study investigates the local atomic structure of liquid gallium-indium alloys by a combination of density measurements, diffraction data, and Monte-Carlo simulation via the empirical potential structure refinement approach. A high-Q shoulder observed in liquid Ga is related to structural rearrangements in the second coordination shell. Structure analysis found coordination environments close to a random distribution for eutectic Ga-In alloy, while electronic effects appear to dominate the mixing enthalpy.
Collapse
Affiliation(s)
- Alfred Amon
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Material
Science Division, Lawrence Livermore National
Laboratory, Livermore California, 94550, United States
| | - Philip A. Chater
- Diamond
Light Source Ltd., Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Gavin Vaughan
- European
Synchrotron Radiation Facility, BP-220, Grenoble Cedex 9 F-38043, France
| | - Rachael Smith
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Christoph G. Salzmann
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|