1
|
E S, Huang K, Gong W, Wang Y, Yang J, Ma J, Lu Z, Wang L. Polymer-Guided Exfoliation, Microstructure, Thermal Conduction, and Mechanical Behaviors of Boron Nitride Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11574-11583. [PMID: 40301002 DOI: 10.1021/acs.langmuir.5c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The size and surface properties of individual nanomaterials significantly influence the microstructures and the performance of their assemblies. Herein, we demonstrated that when using polymeric solutions as ball-milling media of hexagonal boron nitride (h-BN), the molecular structures of the employed polymers would have significant influences on the lateral sizes, surface charges, and attached polymer kinds and contents of the exfoliated boron nitride nanosheets (BNNSs), which in turn determine the microstructures and thermal conductivities (TCs) of the BNNS-based films. The polymers that have high binding energies and dipole-dipole interactions with h-BN are conducive to peeling off large-area BNNSs, but those having strong hydrogen bonding interactions with h-BN can attach more molecular chains on the exfoliated BNNSs and form dense and highly horizontally oriented structures in assembled BNNS films, of which the TCs are balanced by the lateral sizes, compactness, horizontal orientation, and interfacial interactions of the nanosheets. Density functional theory simulations confirmed that the exfoliation ability of the polymers is mainly determined by their binding energies with h-BN.
Collapse
Affiliation(s)
- Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Kaiyue Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Yuanming Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiaming Yang
- Shanghai Boron Matrix Advanced Material Technology Co., Ltd., 3938 Wenchuan Road, Shanghai 201906, China
| | - Junli Ma
- Shanghai Boron Matrix Advanced Material Technology Co., Ltd., 3938 Wenchuan Road, Shanghai 201906, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lejia Wang
- Shanghai Boron Matrix Advanced Material Technology Co., Ltd., 3938 Wenchuan Road, Shanghai 201906, China
- School of Materials and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
2
|
Borrego-Marin E, Garrido-Barros P, Peterson GW, Vismara R, Carmona FJ, Barea E, Navarro JAR. Reactive ZIF-L Crystal Surface for Organophosphorous Degradation and Acetylcholinesterase Reactivation. J Am Chem Soc 2025; 147:10834-10839. [PMID: 40064546 DOI: 10.1021/jacs.5c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The importance of crystal surface reactivity of reticular materials is exemplified by exfoliation of nonporous layered zeolitic imidazolate framework Zn(mIm)2·0.5mImH (ZIF-L, mImH = 2-methylimidazole). Sonication of ZIF-L ethanolic suspensions leads to exfoliation of microcrystals along the 2 0 0 planes, giving rise to 1.5 μm wide × 25 nm thick flakes, which we term ZIF-L_exf. ZIF-L_exf exhibits a high reactivity toward hydrolytic degradation of extremely toxic G-type nerve agents, Soman (GD), and simulant diisopropylfluorophosphate (DIFP). The reactivity of the crystal surface of ZIF-L_exf toward P-F bond breakdown gives rise to framework structural degradation, releasing nucleophilic mImH molecules that reactivate organophosphate-inhibited acetylcholinesterase within 10 min. This detoxification process can be taken as a proof of concept for reversing organophosphorous poisoning. More generally, this approach underscores the importance of the crystal surface nature and composition to control the reactivity of reticular materials.
Collapse
Affiliation(s)
- Emilio Borrego-Marin
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Pablo Garrido-Barros
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Rebecca Vismara
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Francisco J Carmona
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Elisa Barea
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Jorge A R Navarro
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| |
Collapse
|
3
|
Chen C, Wang Q, Zhang Z, Liu Z, Xu C, Ren W. Facile Growth of h-BN Films by Using Surface-Activated h-BN Powders as Precursors. SMALL METHODS 2025; 9:e2401422. [PMID: 39950512 DOI: 10.1002/smtd.202401422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Indexed: 04/25/2025]
Abstract
Atomically thick hexagonal boron nitride (h-BN) films have gained increasing interest, such as nanoelectronics and protection coatings. Chemical vapor deposition (CVD) has been proven to be an efficient method for synthesizing h-BN thin films, but its precursors are still limited. Here, it is reported that a novel and easily available precursor, surface-activated h-BN (As-hBN), with NH3/N2 as an additional nitrogen source is used for CVD growth of monolayer h-BN films on the Cu foils. The as-grown h-BN films can significantly enhance the anti-oxidation ability of copper. Molecular dynamics simulations reveal that the reactivity of the As-hBN precursors is attributed to the decomposition of unstable BO3 and O-terminal edges on the surface under H2 atmosphere. This method provides a more reliable approach for fabricating h-BN films.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Qiang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Zongyuan Zhang
- Center of High Magnetic Fields and Free Electron Lasers, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhibo Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Chuan Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| |
Collapse
|
4
|
Kong L, Wang S, Su Q, Liu Z, Liao G, Sun B, Shi T. Printed Two-Dimensional Materials for Flexible Photodetectors: Materials, Processes, and Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1042. [PMID: 40006272 PMCID: PMC11860032 DOI: 10.3390/s25041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
With the rapid development of micro-nano technology and wearable devices, flexible photodetectors (PDs) have drawn widespread interest in areas such as healthcare, consumer electronics, and intelligence interfaces. Two-dimensional (2D) materials with layered structures have excellent optoelectronic properties and mechanical flexibility, which attract a great deal of attention in flexible applications. Although photodetectors based on mechanically exfoliated 2D materials have demonstrated superior performance compared to traditional Si-based PDs, large-scale manufacturing and flexible integration remain significant challenges for achieving industrial production. The emerging various printing technology provides a low-cost and highly effective method for integrated manufacturing. In this review, we comprehensively introduce the most recent progress on printed flexible 2D material PDs. We first reviewed the most recent research on flexible photodetectors, in which the discussion is focused on substrate materials, functional materials, and performance figures of merits. Furthermore, the solution processing for 2D materials coupled with printing functional film strategies to produce PDs are summarized. Subsequently, the various applications of flexible PDs, such as image sensors, healthcare, and wearable electronics, are also summarized. Finally, we point out the potential challenges of the printed flexible 2D material PDs and expect this work to inspire the development of flexible PDs and promote the mass manufacturing process.
Collapse
Affiliation(s)
- Lingxian Kong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Shijie Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Qi Su
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Zhiyong Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Guanglan Liao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Bo Sun
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518057, China
| | - Tielin Shi
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| |
Collapse
|
5
|
Kang DG, Kook YB, Kim IS, Rim M, Ko H, Hsu CH, Wang CL, Ryu KH, Kim DY, Jeong KU. Hierarchical Nanostructures Constructed by Soft Epitaxial Self-Assembly of Organic-Inorganic Hybrid Giant Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404782. [PMID: 39162100 DOI: 10.1002/smll.202404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Indexed: 08/21/2024]
Abstract
2D nanomaterials with ångström-scale thicknesses offer a unique platform for confining molecules at an unprecedentedly small scale, presenting novel opportunities for modulating material properties and probing microscopic phenomena. In this study, mesogen-tethered polyhedral oligomeric silsesquioxane (POSS) amphiphiles with varying numbers of mesogenic tails to systematically influence molecular self-assembly and the architecture of the ensuing supramolecular structures, are synthesized. These organic-inorganic hybrid amphiphiles facilitate precise spatial arrangement and directional alignment of the primary molecular units within highly ordered supramolecular structures. The correlation between molecular design and the formation of superlattices through comprehensive structural analyses, incorporating molecular thermodynamics and kinetics, is explored. The distinct intermolecular interactions of the POSS core and the mesogenic tails drive the preferential formation of a 2D inorganic sublattice while simultaneously guiding the hierarchical assembly of organic lamellae via soft epitaxy. The findings reveal the intricate balance between shape, size, and interaction strengths of the inorganic and organic components, and how these factors collectively influence the structural hierarchy of the superstructures, which consist of multiple sublattices. By controlling this unique molecular behavior, it is possible to modulate or maximize the anisotropy of optical, mechanical, and electrical properties at the sub-nanometer scale for nanotechnology applications.
Collapse
Affiliation(s)
- Dong-Gue Kang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yun-Bae Kook
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - In-Soo Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Chih-Hao Hsu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chien-Lung Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ki-Hyun Ryu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bongdong, 55324, Republic of Korea
| | - Dae-Yoon Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bongdong, 55324, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
6
|
Li X, Jamali M, Fielding LA. Pyrene-functionalized poly(methacrylic acid) acts as an efficient stabilizer for graphene nanoplatelets and facilitates their use in waterborne latex formulations. J Colloid Interface Sci 2024; 676:396-407. [PMID: 39033674 DOI: 10.1016/j.jcis.2024.07.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
HYPOTHESIS Pyrene derivatives are effective motifs when designing graphene-philic surfactants, enabling the use of hydrophobic graphene-based nanomaterials in waterborne formulations. Hence, novel pyrene end-functionalized polymeric stabilizers show promise for stabilizing aqueous graphene nanomaterial dispersions, and offer benefits over traditional small molecule surfactants. EXPERIMENTS Pyrene end-functionalized poly(methacrylic acid) (Py-PMAAn, where n = 68 to 128) was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization of MAA using a pyrene-containing RAFT chain-transfer agent. These polymers were evaluated as aqueous graphene nanoplatelet (GNP) stabilizers. Subsequently, polymer-stabilized GNPs were formulated into film-forming polymer latex dispersions and the properties of the resulting GNP-containing films measured. FINDINGS Py-PMAAn homopolymers with well-defined molecular weights were prepared via RAFT solution polymerization. They served as efficient stabilizers for aqueous GNP dispersions and performed better than a traditional small molecule surfactant and non-functionalized PMAA, especially at higher pH and with higher molecular weight polymers. The use of Py-PMAAn allowed GNPs to be readily formulated into waterborne latex coatings. When compared to controls, the resulting films were significantly reinforced due to the improved homogeneity of dried nanocomposite films and chain entanglement between the polymer matrix and stabilizers. Thus, the ability to readily incorporate GNPs into aqueous formulations and enhance GNP/polymer matrix interfaces was demonstrated for these novel amphiphilic stabilizers.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mohammed Jamali
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
7
|
Song S, Liu Q, Swathilakshmi S, Chi HY, Zhou Z, Goswami R, Chernyshov D, Agrawal KV. High-performance H 2/CO 2 separation from 4-nm-thick oriented Zn 2(benzimidazole) 4 films. SCIENCE ADVANCES 2024; 10:eads6315. [PMID: 39671495 PMCID: PMC11641003 DOI: 10.1126/sciadv.ads6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
High-performance membrane-based H2/CO2 separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H2/CO2 selectivity under pressurized conditions due to defective transport pathways. Here, we introduce a simple, eco-friendly synthesis of ultrathin, intergrown Zn2(benzimidazole)4 films, as thin as 4 nm. These films are prepared at room temperature using water as the solvent, with a synthesis time of just 10 minutes. By using ultradilute precursor solutions, nucleation is delayed, promoting rapid in-plane growth on a smooth graphene substrate and eliminating defects. These membranes exhibit excellent H2 permselectivity under pressurized conditions. The combination of rapid, green synthesis and high-performance separation makes these membranes highly attractive for precombustion applications.
Collapse
Affiliation(s)
- Shuqing Song
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Qi Liu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - S. Swathilakshmi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Zongyao Zhou
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Ranadip Goswami
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Dmitry Chernyshov
- Swiss-Norwegian Beam Lines at European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| |
Collapse
|
8
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
9
|
Wu Q, Liu X, Liu Y, Zhang C, Nie M. Stretching Aligned Hydrogen Bonding Network to Evoke Mechanically Robust and High-Energy-Density P(VDF-HFP) Dielectric Film Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404662. [PMID: 39073247 DOI: 10.1002/smll.202404662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Polymer-based dielectric film capacitors are essential energy storage components in electronic and power systems due to their ultrahigh power density and ultra-fast charge storage/release capability. Nonetheless, their relatively low energy density does not fully meet the requirements of power electronics and pulsed power systems. Herein, a scalable composite dielectric film based on a ferroelectric polymer with edge hydroxylated boron nitride nanosheets (BNNS-OH) is fabricated via the construction of a hydrogen bonding network and stretching orientation strategy. The presence of hydroxyl groups on boron nitride aids in forming a robust hydrogen bonding network within the ferroelectric polymer, leading to a significant increase in Young's modulus and superior dielectric performance. Furthermore, the stretching process aligns the BNNS-OH and the hydrogen bonding network along the drawing direction via covalent and hydrogen bonding interaction, resulting in a remarkable tensile strength (109 MPa), breakdown strength (688 MV m-1), and energy density (28.2 J cm-3), outperforming mostrepresentative polymer-based dielectric films. In combining the advantages of a simple preparation process, extraordinary energy storage performance, and low-cost raw materials, this strategy is viable for large-scale production of polymer-based dielectric films with high mechanical and dielectric performance and opens a new path for the development of next-generation energy storage applications.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yuanbo Liu
- PetroChina Refining, Chemicals & New Materials Company, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
10
|
Zhang H, Xiang Q, Liu Z, Zhang X, Zhao Y, Tan H. Supercritical mechano-exfoliation process. Nat Commun 2024; 15:9329. [PMID: 39472610 PMCID: PMC11522627 DOI: 10.1038/s41467-024-53810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The intricate balance among cost, output, and quality has substantially hindered the practical application of graphene within the downstream industry chain. Here we present a scalable and green supercritical CO2-assisted mechano-exfoliation (SCME) process that omits the use of organic solvents and oxidants throughout the production lifecycle, including exfoliation, separation, and purification. The SCME process achieves graphene powder space-time yields exceeding 40 kg/(m³·day) at laboratory (0.06-0.2 kg) and pilot scales ( > 4 kg), with resultant free-standing films showing conductivities up to 5.26 × 10⁵ S/m. Further kinetic investigations propose general guidelines for grinding-assisted exfoliation: (1) the macroscopic optimizing ability of mechanotechnics for mass transfer frequency and stress distribution and (2) the microscopic multiplication ability of exfoliation medium for shear-delamination. The comprehensive techno-economic analysis also underscores the economic viability of the SCME process for large-scale production.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Qixuan Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Zhiyuan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Xianglong Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China.
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
11
|
Navik R, Tan H, Zhang H, Shi L, Li J, Zhao Y. High-Throughput and Scalable Exfoliation of Large-Sized Ultrathin 2D Materials by Ball-Milling in Supercritical Carbon Dioxide. SMALL METHODS 2024; 8:e2301334. [PMID: 38528378 DOI: 10.1002/smtd.202301334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/09/2024] [Indexed: 03/27/2024]
Abstract
The 2D materials exhibit numerous technological applications, but their scalable production is a core challenge. Herein, ball milling exfoliation in supercritical carbon dioxide (scCO2) and polystyrene (PS) is demonstrated to completely exfoliate hexagonal boron nitride nanosheets (BNNSs), graphene, molybdenum disulfide (MoS2), and tungsten disulfide (WS2). The exfoliation yield of 91%, 93%, 92%, and 92% and average aspect ratios of 743, 565, 564, and 502 for BNNSs, graphene, MoS2, and WS2, respectively, are achieved. Integrating exfoliated BNNSS in the polystyrene matrix, 3768 % thermal conductivity in the axial direction and 316% in the cross-plane direction at 12 wt.% loading is increased. Also, the in-plane and cross-plane electrical conductivity of 6.3 × 10-4 S m-1 and 6.6 × 10-3 S m-1, respectively, and the electromagnetic interference (EMI) of 63.3 dB is achieved by exfoliated graphene nanosheets based composite. High thermal and electrical conductivities and EMI shielding are attributed to the high aspect ratio and ultrathin morphology of the exfoliated nanosheets, which exert high charge mobility and form better the percolation network in the composite films due to their high surface area. The process demonstrate herein can produce substantial quantities of diverse 2D nanosheets for widespread commercial utilization.
Collapse
Affiliation(s)
- Rahul Navik
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha IT Park, No. 2 Huan Shi Da Dao Road Nansha, Guangzhou, 511458, China
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Liyun Shi
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Jia Li
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha IT Park, No. 2 Huan Shi Da Dao Road Nansha, Guangzhou, 511458, China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| |
Collapse
|
12
|
Su W, Kuklin A, Jin LH, Engelgardt D, Zhang H, Ågren H, Zhang Y. Liquid Phase Exfoliation of Few-Layer Non-Van der Waals Chromium Sulfide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402875. [PMID: 38828875 PMCID: PMC11336913 DOI: 10.1002/advs.202402875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Exfoliation of 2D non-Van der Waals (non-vdW) semiconductor nanoplates (NPs) from inorganic analogs presents many challenges ahead for further exploring of their advanced applications on account of the strong bonding energies. In this study, the exfoliation of ultrathin 2D non-vdW chromium sulfide (2D Cr2S3) by means of a combined facile liquid-phase exfoliation (LPE) method is successfully demonstrated. The morphology and structure of the 2D Cr2S3 material are systematically examined. Magnetic studies show an obvious temperature-dependent uncompensated antiferromagnetic behavior of 2D Cr2S3. The material is further loaded on TiO2 nanorod arrays to form an S-scheme heterojunction. Experimental measurements and density functional theory (DFT) calculations confirm that the formed TiO2@Cr2S3 S-scheme heterojunction facilitates the separation and transmission of photo-induced electron/hole pairs, resulting in a significantly enhanced photocatalytic activity in the visible region.
Collapse
Affiliation(s)
- Wenjie Su
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Artem Kuklin
- Department of Physics and Astronomy Uppsala UniversityBox 516UppsalaSE‐751 20Sweden
| | - Ling hua Jin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Dana Engelgardt
- Department of ChemistryCollege of Natural SciencesKyungpook National University80 Daehakro, BukguDaegu41556South Korea
- International Research Center of Spectroscopy and Quantum Chemistry – IRC SQCSiberian Federal University79 Svobodny pr.Krasnoyarsk660041Russia
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Hans Ågren
- Department of Physics and Astronomy Uppsala UniversityBox 516UppsalaSE‐751 20Sweden
| | - Ye Zhang
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| |
Collapse
|
13
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
14
|
Milligan GM, Cordova DLM, Yao ZF, Zhi BY, Scammell LR, Aoki T, Arguilla M. Encapsulation of crystalline and amorphous Sb 2S 3 within carbon and boron nitride nanotubes. Chem Sci 2024; 15:10464-10476. [PMID: 38994401 PMCID: PMC11234864 DOI: 10.1039/d4sc01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
The recent rediscovery of 1D and quasi-1D (q-1D) van der Waals (vdW) crystals has laid foundation for the realization of emergent electronic, optical, and quantum-confined physical phenomena in both bulk and at the nanoscale. Of these, the highly anisotropic q-1D vdW crystal structure and the visible-light optical/optoelectronic properties of antimony trisulfide (Sb2S3) have led to its widespread consideration as a promising building block for photovoltaic and non-volatile phase change devices. However, while these applications will greatly benefit from well-defined and sub-nanometer-thick q-1D structures, little has been known about feasible synthetic routes that can access single covalent chains of Sb2S3. In this work, we explore how encapsulation in single or multi-walled carbon nanotubes (SWCNTs or MWCNTs) and visible-range transparent boron nitride nanotubes (BNNTs) influences the growth and phase of Sb2S3 nanostructures. We demonstrate that nanotubes with smaller diameters had a more pronounced effect in the crystallographic growth direction and orientation of Sb2S3 nanostructures, promoting the crystallization of the guest structures along the long-axis [010]-direction. As such, we were able to reliably access well-ordered few to single covalent chains of Sb2S3 when synthesized within defect-free SWCNTs with sub-2 nm inner diameters. Intriguingly, we found that the degree of crystalline order of Sb2S3 nanostructures was strongly influenced by the presence of defects and discontinuities along the Sb2S3-nanotube interface. We show that amorphous nanowire domains of Sb2S3 form around defect sites in larger, multi-walled nanotubes that manifest inner wall defects and discontinuities, suggesting a means to manipulate the crystallization dynamics of confined sub-10 nm-thick Sb2S3 nanostructures within nanotubes. Lastly, we show that ultranarrow amorphous Sb2S3 can impart functionality onto isolable BNNTs with photocurrent generation in the pA range which, alongside the dispersibility of the Sb2S3@BNNTs, could be leveraged to easily fabricate photoresistors only a few nm in width. Altogether, our results serve to solidify the understanding of how q-1D vdW pnictogen chalcogenides crystallize within confined synthetic platforms and are a step towards realizing functional materials from ensembles of encapsulated heterostructures.
Collapse
Affiliation(s)
- Griffin M Milligan
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| | | | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, University of California Irvine Irvine California 92697 USA
| | - Brian Y Zhi
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| | | | - Toshihiro Aoki
- Irvine Materials Research Institute, University of California Irvine Irvine California 92697 USA
| | - Maxx Arguilla
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| |
Collapse
|
15
|
Wang Z, Hu T, Tebyetekerwa M, Zeng X, Du F, Kang Y, Li X, Zhang H, Wang H, Zhang X. Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation. Nat Commun 2024; 15:2672. [PMID: 38531889 DOI: 10.1038/s41467-024-47040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Selective ion transport underpins fundamental biological processes for efficient energy conversion and signal propagation. Mimicking these 'ionics' in synthetic nanofluidic channels has been increasingly promising for realizing self-sustained systems by harvesting clean energy from diverse environments, such as light, moisture, salinity gradient, etc. Here, we report a spatially nanoconfined ion separation strategy that enables harvesting electricity from CO2 adsorption. This breakthrough relies on the development of Nanosheet-Agarose Hydrogel (NAH) composite-based generators, wherein the oppositely charged ions are released in water-filled hydrogel channels upon adsorbing CO2. By tuning the ion size and ion-channel interactions, the released cations at the hundred-nanometer scale are spatially confined within the hydrogel network, while ångström-scale anions pass through unhindered. This leads to near-perfect anion/cation separation across the generator with a selectivity (D-/D+) of up to 1.8 × 106, allowing conversion into external electricity. With amplification by connecting multiple as-designed generators, the ion separation-induced electricity reaching 5 V is used to power electronic devices. This study introduces an effective spatial nanoconfinement strategy for widely demanded high-precision ion separation, encouraging a carbon-negative technique with simultaneous CO2 adsorption and energy generation.
Collapse
Affiliation(s)
- Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Queensland, St Lucia, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Ting Hu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Mike Tebyetekerwa
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Queensland, St Lucia, Australia
| | - Xiangkang Zeng
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Queensland, St Lucia, Australia
| | - Fan Du
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Xuefeng Li
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Queensland, St Lucia, Australia
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Queensland, St Lucia, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Queensland, St Lucia, Australia.
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia.
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide (GETCO2), Brisbane, Australia.
| |
Collapse
|
16
|
Zhu X, Su Z, Tan R, Guo C, Ai X, Qian J. Scalable Synthesis of Bilayer Graphene at Ambient Temperature. J Am Chem Soc 2024; 146:6388-6396. [PMID: 38408435 DOI: 10.1021/jacs.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this work, we develop for the first time a facile chemical lithiation-assisted exfoliation approach to the controllable and scalable preparation of bilayer graphene. Biphenyl lithium (Bp-Li), a strong reducing reagent, is selected to realize the spontaneous Li-intercalation into graphite at ambient temperature, forming lithium graphite intercalation compounds (Li-GICs). The potential of Bp-Li (0.11 V vs Li/Li+), which is just lower than the potential of stage-2 lithium intercalation (0.125 V), enables the precise lithiation of graphite to stage-2 Li-GICs (LiC12). Intriguingly, the exfoliation of LiC12 leads to the bilayer-favored production of graphene, giving a high selectivity of 78%. Furthermore, the mild intercalation-exfoliation procedure yields high-quality graphene with negligible structural deterioration. The obtained graphene exhibits ultralow defect density (ID/IG ∼ 0.14) and a considerably high C/O ratio (∼29.7), superior to most current state-of-the-art techniques. This simple and scalable strategy promotes the understanding of chemical Li-intercalation methods for preparing high-quality graphene and shows great potential for layer-controlled engineering.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zhikang Su
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ran Tan
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinping Ai
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiangfeng Qian
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
17
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Joung SY, Yim H, Lee D, Shim J, Yoo SY, Kim YH, Kim JS, Kim H, Hyeong SK, Kim J, Noh YY, Bae S, Park MJ, Choi JW, Lee CH. All-Solution-Processed High-Performance MoS 2 Thin-Film Transistors with a Quasi-2D Perovskite Oxide Dielectric. ACS NANO 2024; 18:1958-1968. [PMID: 38181200 DOI: 10.1021/acsnano.3c06972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Assembling solution-processed van der Waals (vdW) materials into thin films holds great promise for constructing large-scale, high-performance thin-film electronics, especially at low temperatures. While transition metal dichalcogenide thin films assembled in solution have shown potential as channel materials, fully solution-processed vdW electronics have not been achieved due to the absence of suitable dielectric materials and high-temperature processing. In this work, we report on all-solution-processedvdW thin-film transistors (TFTs) comprising molybdenum disulfides (MoS2) as the channel and Dion-Jacobson-phase perovskite oxides as the high-permittivity dielectric. The constituent layers are prepared as colloidal solutions through electrochemical exfoliation of bulk crystals, followed by sequential assembly into a semiconductor/dielectric heterostructure for TFT construction. Notably, all fabrication processes are carried out at temperatures below 250 °C. The fabricated MoS2 TFTs exhibit excellent device characteristics, including high mobility (>10 cm2 V-1 s-1) and an on/off ratio exceeding 106. Additionally, the use of a high-k dielectric allows for operation at low voltage (∼5 V) and leakage current (∼10-11 A), enabling low power consumption. Our demonstration of the low-temperature fabrication of high-performance TFTs presents a cost-effective and scalable approach for heterointegrated thin-film electronics.
Collapse
Affiliation(s)
- Su-Yeon Joung
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Haena Yim
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Donghun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaehyung Shim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - So Yeon Yoo
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Seok Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyunjun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Junhee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sukang Bae
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
| | - Myung Jin Park
- National Institute for Nanomaterials Technology, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Ji-Won Choi
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Nanomaterials Science and Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Nguyen Thi BN, Ha CV, Thi Ha Lien N, Guerrero-Sanchez J, Hoat DM. Doping-mediated electronic and magnetic properties of graphene-like ionic NaX (X = F and Cl) monolayers. Phys Chem Chem Phys 2023; 25:32569-32577. [PMID: 37999640 DOI: 10.1039/d3cp02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this work, the stability, and electronic and magnetic properties of pristine and doped graphene-like ionic NaX (X = F and Cl) monolayers are explored using first-principles calculations. The good stability of NaF and NaCl monolayers is confirmed by phonon dispersion curves and ab initio molecular dynamics simulations. Electronic structure calculations show their insulator nature with large indirect band gaps of 5.43 (7.26) and 5.06 (6.32) eV as calculated with the PBE (HSE06) functional, respectively. In addition, their ionic character is also demonstrated. Furthermore, a doping approach is explored to functionalize NaX monolayers for spintronic applications. For such a goal, IIA- and VIA-group atoms are selected as dopants due to their dissimilar valence electronic configuration as compared with the host atoms. The results indicate the emergence of magnetic semiconductor nature with a total magnetic moment of 1μB. Herein, magnetic properties are produced mainly by the dopant atoms, which induce new middle-gap energy states around the Fermi level. Finally, the effects of codoping the NaF monolayer with Ca and O and NaCl with Ba and O are also examined. Adjacent Ca-O and Ba-O pairs preserve the non-magnetic nature. Further separating dopants leads to the emergence of magnetic semiconductor behavior, with lower magnetization than separate doping. This work introduces new ionic 2D materials for optoelectronic and spintronic applications, contributing to the research effort to find out new 2D multifunctional materials.
Collapse
Affiliation(s)
- Bich Ngoc Nguyen Thi
- Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chu Viet Ha
- Faculty of Physics, TNU-University of Education, Thai Nguyen, 250000, Vietnam
| | - Nghiem Thi Ha Lien
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California, Código Postal 22800, Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
20
|
Zhou L, Zhang B, Li F, Yan Y, Wang Y, Li R. Preparation of boron nitride nanosheets by glucose-assisted ultrasonic cavitation exfoliation. NANOSCALE ADVANCES 2023; 5:6582-6593. [PMID: 38024304 PMCID: PMC10662033 DOI: 10.1039/d3na00737e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Boron nitride nanosheets (BNNSs) have been widely used in many fields due to their excellent properties. However, low preparation rates and difficulty in functionalization hinder their further development. This study proposes a novel glucose-assisted ultrasonic cavitation exfoliation (GAUCE) method with glucose as an auxiliary solution to prepare BNNSs. Results show that the method has a high preparation yield of 55.58%, which is higher than the average preparation yield of 33.86%. The mechanism of preparing BNNSs by GAUCE was also investigated. The exfoliation of BNNSs was achieved using the energy of ultrasonic cavitation bubble collapse, which will break the interlayer forces in h-BN. The grafting of hydroxyl groups decomposed by glucose on the edge and surface of BNNSs during cavitation prevented the re-aggregation of the nanosheets, thereby increasing the exfoliation yield of BNNSs. In addition, the contact angle of BNNSs prepared by GAUCE was reduced, and the hydrophilicity was greatly improved.
Collapse
|
21
|
Wang H, Wan X, Wang X, Li M, Tang D. Ultrathin mesoporous BiOCl nanosheets-mediated liposomes for photoelectrochemical immunoassay with in-situ signal amplification. Biosens Bioelectron 2023; 239:115628. [PMID: 37633001 DOI: 10.1016/j.bios.2023.115628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Designing new biochemical sensors and achieving selectivity and high-sensitivity analysis is one of main research directions for immunoassays. Herein, a liposome-amplification photoelectrochemical (PEC) immunoassay was developed using ultrathin mesoporous bismuth chloride oxide nanosheets (BiOCl MSCN) for the highly selective and sensitive detection of carcinoembryonic antigen (CEA). Based on good photocurrent response of BiOCl MSCN toward dopamine, a liposome-conjugated secondary antibody loaded with dopamine was added for specific recognition in the presence of CEA. After the lysis treatment, the liberated dopamine was injected into the three-electrode electrolytic cell to enhance the photocurrent of BiOCl MSCN. Under the optimized conditions, the constructed liposome-mediated PEC immunoassay showed high sensitivity against CEA, with a dynamic response in the linear range of 0.05 ng mL-1 to 100 ng mL-1 and a detection limit of 35 pg mL-1. The present study proposes a new approach to the liposome-mediated PEC immunoassay constructed on ultrathin mesoporous BiOCl nanosheets, which can be used to target further the study of the sensing mechanism.
Collapse
Affiliation(s)
- Haiyang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xinyu Wan
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xin Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|