1
|
Jarosz ŁS, Socała K, Michalak K, Bulak K, Ciszewski A, Marek A, Grądzki Z, Wlaź P, Kowalczuk-Vasilev E, Rysiak A. Subacute exposure to apigenin induces changes in protein synthesis in the liver of Swiss mice. Front Physiol 2025; 16:1576310. [PMID: 40415790 PMCID: PMC12100293 DOI: 10.3389/fphys.2025.1576310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
Apigenin is a natural flavonoid with various pharmacological properties. Available data indicate that it affects the metabolic processes and protein profile of cells, including hepatocytes. However, there is speculation that the use of apigenin may have a hepatotoxic effect. The aim of the experiment was to assess the effect of apigenin administered intraperitoneally to mice on the concentrations of pro- and anti-inflammatory cytokines in the liver tissue and to analyse liver weight and morphological changes in the liver parenchyma. A proteomic analysis was also performed to examine differences in genes expression for specific proteins in liver cells. Adult male albino Swiss mice were divided into two groups and treated with either apigenin (50 mg/kg BW) - APG, or a vehicle (1% DMSO) - CONT, every 24 h for 14 days. The material for the study consisted of liver samples. Slight hepatocyte degeneration microscopically were demonstrated in most mice exposed to apigenin. No significant differences were observed in the absolute and relative weight of the liver or the concentrations of pro- and anti-inflammatory cytokines between the control and experimental group. The mass spectrometry results indicate significantly higher synthesis of the proteins MAP2K19, CEP69, GNMT, BPIFA3, SYT17, ANKRD1, GRHPR, CLEC1A and EF2 in the livers of mice from the APG group in comparison to CONT group. Exposure of mice to apigenin induces functional changes in the liver. In conjunction with the microscopical and proteomic analyses, this study may indicate that inflammatory changes developing in the liver could be self-limiting and subject to regenerative processes.
Collapse
Affiliation(s)
- Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Kamila Bulak
- Department of Pathomorphology and Forensic Veterinary Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, Lublin, Poland
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Science and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
3
|
Song B, Qiu Y, Wang Z, Tao Y, Wang M, Duan A, Xie M, Yin Z, Chen Z, Ma C, Wang Z. The Causal Relationship Between Gut Microbiomes, Inflammatory Mediators, and Traumatic Brain Injury in Europeans: Evidence from Genetic Correlation and Functional Mapping Annotation Analyses. Biomedicines 2025; 13:753. [PMID: 40149729 PMCID: PMC11939942 DOI: 10.3390/biomedicines13030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The gut microbiome (GM) has been reported to play a role in traumatic brain injury (TBI). To investigate the causal relationship between GMs, inflammatory mediators, and TBI, a comprehensive Mendelian randomization (MR) analysis was conducted. Methods: We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM and TBI. To assess the potential causal associations between GM and TBI, we employed the inverse-variance-weighted, MR-Egger, and weighted median methods. Mediation analysis was used to assess the possible mediating factors. Several sensitivity analyses methods were implemented to verify the stability of the results. Additionally, we utilized FUMA GWAS to map single-nucleotide polymorphisms to genes and conduct transcriptomic MR analysis. Results: We identified potential causal relationships between nine bacterial taxa and TBI. Notably, class Methanobacteria, family Methanobacteriaceae, and order Methanobacteriales (p = 0.0003) maintained a robust positive correlation with TBI. This causal association passed false discovery rate (FDR) correction (FDR < 0.05). Genetically determined 1 inflammatory protein, 30 immune cells and 3 inflammatory factors were significantly causally related to TBI. None of them mediated the relationship between GMs and TBI. The outcome of the sensitivity analysis corroborated the findings. Regarding the mapped genes of significant GMs, genes such as CLK4, MTRF1, NAA16, SH3BP5, and ZNF354A in class Methanobacteria showed a significant causal correlation with TBI. Conclusions: Our study reveals the potential causal effects of nine GMs, especially Methanogens on TBI, and there was no link between TBI and GM through inflammatory protein, immune cells, and inflammatory factors, which may offer fresh insights into TBI biomarkers and therapeutic targets through specific GMs.
Collapse
Affiliation(s)
- Bingyi Song
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Youjia Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Zilan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Yuchen Tao
- Suzhou Medical College, Soochow University, Suzhou 215002, China
| | - Menghan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Aojie Duan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Minjia Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Ziqian Yin
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Chao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (B.S.); (Y.Q.); (Z.W.); (Z.C.)
| |
Collapse
|
4
|
Yen K, Miller B, Kumagai H, Silverstein A, Cohen P. Mitochondrial-derived microproteins: from discovery to function. Trends Genet 2025; 41:132-145. [PMID: 39690001 PMCID: PMC11794013 DOI: 10.1016/j.tig.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Given the uniqueness of the mitochondria, and the fact that they have their own genome, mitochondrial-derived microproteins (MDPs) are similar to, but different from, nuclear-encoded microproteins. The discovery of an increasing number of microproteins from this organelle and the importance of mitochondria to cellular and organismal health make it a priority to study this novel class of proteins in search of possible therapeutic targets and cures. In this review, we discuss the history of MDP discovery, describe the function of each MDP, and conclude with future goals and techniques to help discover more MDPs.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Brendan Miller
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ana Silverstein
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Anikin M, Henry MF, Hodorova V, Houbaviy HB, Nosek J, Pestov DG, Markov DA. Mitochondrial mRNA and the small subunit rRNA in budding yeasts undergo 3'-end processing at conserved species-specific elements. RNA (NEW YORK, N.Y.) 2025; 31:208-223. [PMID: 39572231 PMCID: PMC11789488 DOI: 10.1261/rna.080254.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/09/2024] [Indexed: 01/24/2025]
Abstract
Respiration in eukaryotes depends on mitochondrial protein synthesis, which is performed by organelle-specific ribosomes translating organelle-encoded mRNAs. Although RNA maturation and stability are central events controlling mitochondrial gene expression, many of the molecular details in this pathway remain elusive. These include cis- and trans-regulatory factors that generate and protect the 3' ends. Here, we mapped the 3' ends of mitochondrial mRNAs of yeasts classified into multiple families of the subphylum Saccharomycotina. We found that the processing of mitochondrial 15S rRNA and mRNAs involves species-specific sequence elements, which we term 3'-end RNA processing elements (3'-RPEs). In Saccharomyces cerevisiae, the 3'-RPE has long been recognized as a conserved dodecamer sequence, which recent studies have shown specifically interacts with the nuclear genome-encoded pentatricopeptide repeat protein Rmd9. We also demonstrate that, analogous to Rmd9 in S. cerevisiae, two Rmd9 orthologs from the Debaryomycetaceae family interact with their respective 3'-RPEs found in mRNAs and 15S rRNA. Thus, Rmd9-dependent processing of mitochondrial RNA precursors may be a common mechanism among the families of the Saccharomycotina subphylum. Surprisingly, we observed that 3'-RPEs often occur upstream of stop codons in complex I subunit mRNAs from yeasts of the CUG-Ser1 clade. We examined two of these mature mRNAs and found that their stop codons are indeed removed. Thus, translation of these stop-codon-less transcripts would require a noncanonical termination mechanism. Our findings highlight Rmd9 as a key evolutionarily conserved factor in both mitochondrial mRNA metabolism and mitoribosome biogenesis in a variety of yeasts.
Collapse
Affiliation(s)
- Michael Anikin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Michael F Henry
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Viktoria Hodorova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava 84215, Slovakia
| | - Hristo B Houbaviy
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava 84215, Slovakia
| | - Dimitri G Pestov
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Dmitriy A Markov
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| |
Collapse
|
6
|
Rackham O, Saurer M, Ban N, Filipovska A. Unique architectural features of mammalian mitochondrial protein synthesis. Trends Cell Biol 2025; 35:11-23. [PMID: 38853081 DOI: 10.1016/j.tcb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Mitochondria rely on coordinated expression of their own mitochondrial DNA (mtDNA) with that of the nuclear genome for their biogenesis. The bacterial ancestry of mitochondria has given rise to unique and idiosyncratic features of the mtDNA and its expression machinery that can be specific to different organisms. In animals, the mitochondrial protein synthesis machinery has acquired many new components and mechanisms over evolution. These include several new ribosomal proteins, new stop codons and ways to recognise them, and new mechanisms to deliver nascent proteins into the mitochondrial inner membrane. Here we describe the mitochondrial protein synthesis machinery in mammals and its unique mechanisms of action elucidated to date and highlight the technologies poised to reveal the next generation of discoveries in mitochondrial translation.
Collapse
Affiliation(s)
- Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia; Curtin Medical School Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Martin Saurer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
7
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
8
|
Moran JC, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. Science 2024; 385:eadm9238. [PMID: 39024447 PMCID: PMC11510358 DOI: 10.1126/science.adm9238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- J. Conor Moran
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Amir Brivanlou
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Michele Brischigliaro
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
| | - Silvi Rouskin
- Department of Microbiology. Harvard Medical School. 77 Ave. Louis Pasteur. Boston, MA-02115 (USA)
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- Department of Neurology. University of Miami Miller School of Medicine. 1600 NW 10 Ave. Miami, FL-33136 (USA)
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16 St, Miami, FL-33125 (USA)
| |
Collapse
|
9
|
Cipullo M, Valentín Gesé G, Gopalakrishna S, Krueger A, Lobo V, Pirozhkova MA, Marks J, Páleníková P, Shiriaev D, Liu Y, Misic J, Cai Y, Nguyen MD, Abdelbagi A, Li X, Minczuk M, Hafner M, Benhalevy D, Sarshad AA, Atanassov I, Hällberg BM, Rorbach J. GTPBP8 plays a role in mitoribosome formation in human mitochondria. Nat Commun 2024; 15:5664. [PMID: 38969660 PMCID: PMC11229512 DOI: 10.1038/s41467-024-50011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation.
Collapse
Affiliation(s)
- Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Genís Valentín Gesé
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, 17165, Sweden
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Annika Krueger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Vivian Lobo
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Maria A Pirozhkova
- Lab for Cellular RNA Biology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - James Marks
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Petra Páleníková
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Dmitrii Shiriaev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yu Cai
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Minh Duc Nguyen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Abubakar Abdelbagi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Xinping Li
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Benhalevy
- Lab for Cellular RNA Biology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, 17165, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
10
|
Dinh N, Bonnefoy N. Schizosaccharomyces pombe as a fundamental model for research on mitochondrial gene expression: Progress, achievements and outlooks. IUBMB Life 2024; 76:397-419. [PMID: 38117001 DOI: 10.1002/iub.2801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.
Collapse
Affiliation(s)
- Nhu Dinh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
11
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
Santonoceto G, Jurkiewicz A, Szczesny RJ. RNA degradation in human mitochondria: the journey is not finished. Hum Mol Genet 2024; 33:R26-R33. [PMID: 38779774 PMCID: PMC11497605 DOI: 10.1093/hmg/ddae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are vital organelles present in almost all eukaryotic cells. Although most of the mitochondrial proteins are nuclear-encoded, mitochondria contain their own genome, whose proper expression is necessary for mitochondrial function. Transcription of the human mitochondrial genome results in the synthesis of long polycistronic transcripts that are subsequently processed by endonucleases to release individual RNA molecules, including precursors of sense protein-encoding mRNA (mt-mRNA) and a vast amount of antisense noncoding RNAs. Because of mitochondrial DNA (mtDNA) organization, the regulation of individual gene expression at the transcriptional level is limited. Although transcription of most protein-coding mitochondrial genes occurs with the same frequency, steady-state levels of mature transcripts are different. Therefore, post-transcriptional processes are important for regulating mt-mRNA levels. The mitochondrial degradosome is a complex composed of the RNA helicase SUV3 (also known as SUPV3L1) and polynucleotide phosphorylase (PNPase, PNPT1). It is the best-characterized RNA-degrading machinery in human mitochondria, which is primarily responsible for the decay of mitochondrial antisense RNA. The mechanism of mitochondrial sense RNA decay is less understood. This review aims to provide a general picture of mitochondrial genome expression, with a particular focus on mitochondrial RNA (mtRNA) degradation.
Collapse
Affiliation(s)
- Giulia Santonoceto
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw 02-106, Poland
| |
Collapse
|
14
|
Krüger A, Kovalchuk D, Shiriaev D, Rorbach J. Decoding the Enigma: Translation Termination in Human Mitochondria. Hum Mol Genet 2024; 33:R42-R46. [PMID: 38779770 PMCID: PMC11112381 DOI: 10.1093/hmg/ddae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondrial translation is a complex process responsible for the synthesis of essential proteins involved in oxidative phosphorylation, a fundamental pathway for cellular energy production. Central to this process is the termination phase, where dedicated factors play a pivotal role in ensuring accurate and timely protein production. This review provides a comprehensive overview of the current understanding of translation termination in human mitochondria, emphasizing structural features and molecular functions of two mitochondrial termination factors mtRF1 and mtRF1a.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Daria Kovalchuk
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Dmitrii Shiriaev
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| |
Collapse
|
15
|
Zhou S, Wang X, Wang L, Gao X, Lyu T, Xia T, Shi L, Dong Y, Mei X, Zhang Z, Zhang H. Different Evolutionary Trends of Galloanseres: Mitogenomics Analysis. Animals (Basel) 2024; 14:1437. [PMID: 38791655 PMCID: PMC11117303 DOI: 10.3390/ani14101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The two existing clades of Galloanseres, orders Galliformes (landfowl) and Anseriformes (waterfowl), exhibit dramatically different evolutionary trends. Mitochondria serve as primary sites for energy production in organisms, and numerous studies have revealed their role in biological evolution and ecological adaptation. We assembled the complete mitogenome sequences of two species of the genus Aythya within Anseriformes: Aythya baeri and Aythya marila. A phylogenetic tree was constructed for 142 species within Galloanseres, and their divergence times were inferred. The divergence between Galliformes and Anseriformes occurred ~79.62 million years ago (Mya), followed by rapid evolution and diversification after the Middle Miocene (~13.82 Mya). The analysis of selective pressure indicated that the mitochondrial protein-coding genes (PCGs) of Galloanseres species have predominantly undergone purifying selection. The free-ratio model revealed that the evolutionary rates of COX1 and COX3 were lower than those of the other PCGs, whereas ND2 and ND6 had faster evolutionary rates. The CmC model also indicated that most PCGs in Anseriformes exhibited stronger selective constraints. Our study suggests that the distinct evolutionary trends and energy requirements of Galliformes and Anseriformes drive different evolutionary patterns in the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Jingxuan West Street No. 57, Qufu 273165, China; (S.Z.); (X.W.); (L.W.); (X.G.); (T.L.); (T.X.); (L.S.); (Y.D.); (X.M.); (Z.Z.)
| |
Collapse
|
16
|
Jung SJ, Sridhara S, Ott M. Early steps in the biogenesis of mitochondrially encoded oxidative phosphorylation subunits. IUBMB Life 2024; 76:125-139. [PMID: 37712772 DOI: 10.1002/iub.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.
Collapse
Affiliation(s)
- Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Nguyen TG, Ritter C, Kummer E. Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome. Nat Commun 2023; 14:7991. [PMID: 38042949 PMCID: PMC10693566 DOI: 10.1038/s41467-023-43599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Mitochondria contain their own genetic information and a dedicated translation system to express it. The mitochondrial ribosome is assembled from mitochondrial-encoded RNA and nuclear-encoded ribosomal proteins. Assembly is coordinated in the mitochondrial matrix by biogenesis factors that transiently associate with the maturing particle. Here, we present a structural snapshot of a large mitoribosomal subunit assembly intermediate containing 7 biogenesis factors including the GTPases GTPBP7 and GTPBP10. Our structure illustrates how GTPBP10 aids the folding of the ribosomal RNA during the biogenesis process, how this process is related to bacterial ribosome biogenesis, and why mitochondria require two biogenesis factors in contrast to only one in bacteria.
Collapse
Affiliation(s)
- Thu Giang Nguyen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Christina Ritter
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
18
|
Conor Moran J, Brivanlou A, Brischigliaro M, Fontanesi F, Rouskin S, Barrientos A. The human mitochondrial mRNA structurome reveals mechanisms of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564750. [PMID: 37961485 PMCID: PMC10635011 DOI: 10.1101/2023.10.31.564750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian mitochondrial genome encodes thirteen oxidative phosphorylation system proteins, crucial in aerobic energy transduction. These proteins are translated from 9 monocistronic and 2 bicistronic transcripts, whose native structures remain unexplored, leaving fundamental molecular determinants of mitochondrial gene expression unknown. To address this gap, we developed a mitoDMS-MaPseq approach and used DREEM clustering to resolve the native human mitochondrial mt-mRNA structurome. We gained insights into mt-mRNA biology and translation regulatory mechanisms, including a unique programmed ribosomal frameshifting for the ATP8/ATP6 transcript. Furthermore, absence of the mt-mRNA maintenance factor LRPPRC led to a mitochondrial transcriptome structured differently, with specific mRNA regions exhibiting increased or decreased structuredness. This highlights the role of LRPPRC in maintaining mRNA folding to promote mt-mRNA stabilization and efficient translation. In conclusion, our mt-mRNA folding maps reveal novel mitochondrial gene expression mechanisms, serving as a detailed reference and tool for studying them in different physiological and pathological contexts.
Collapse
|
19
|
Nadler F, Richter-Dennerlein R. Translation termination in human mitochondria - substrate specificity of mitochondrial release factors. Biol Chem 2023; 404:769-779. [PMID: 37377370 DOI: 10.1515/hsz-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are the essential players in eukaryotic ATP production by oxidative phosphorylation, which relies on the maintenance and accurate expression of the mitochondrial genome. Even though the basic principles of translation are conserved due to the descendance from a bacterial ancestor, some deviations regarding translation factors as well as mRNA characteristics and the applied genetic code are present in human mitochondria. Together, these features are certain challenges during translation the mitochondrion has to handle. Here, we discuss the current knowledge regarding mitochondrial translation focusing on the termination process and the associated quality control mechanisms. We describe how mtRF1a resembles bacterial RF1 mechanistically and summarize in vitro and recent in vivo data leading to the conclusion of mtRF1a being the major mitochondrial release factor. On the other hand, we discuss the ongoing debate about the function of the second codon-dependent mitochondrial release factor mtRF1 regarding its role as a specialized termination factor. Finally, we link defects in mitochondrial translation termination to the activation of mitochondrial rescue mechanisms highlighting the importance of ribosome-associated quality control for sufficient respiratory function and therefore for human health.
Collapse
Affiliation(s)
- Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, D-37075 Göttingen, Germany
- Goettingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
20
|
Saurer M, Leibundgut M, Nadimpalli HP, Scaiola A, Schönhut T, Lee RG, Siira SJ, Rackham O, Dreos R, Lenarčič T, Kummer E, Gatfield D, Filipovska A, Ban N. Molecular basis of translation termination at noncanonical stop codons in human mitochondria. Science 2023; 380:531-536. [PMID: 37141370 DOI: 10.1126/science.adf9890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.
Collapse
Affiliation(s)
- Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Program, Blegdamsvej 3B, 2200 København N, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|