1
|
Park S, Min CH, Choi E, Choi JS, Park K, Han S, Choi W, Jang HJ, Cho KO, Kim M. Long-term tracking of neural and oligodendroglial development in large-scale human cerebral organoids by noninvasive volumetric imaging. Sci Rep 2025; 15:2536. [PMID: 39833280 PMCID: PMC11747076 DOI: 10.1038/s41598-025-85455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing. This ensemble has empowered us to monitor the intricate dynamics of neuron and oligodendrocyte development within cerebral organoids across a trajectory of approximately two months. Line-shaped illumination mitigates photodamage and, alongside refined spatial gating, maximizes signal collection through integrating with computational processing. The integration of deconvolution and compressive sensing has improved image contrast by 6-fold, elucidating fine features of the neurites. Thus, noninvasive imaging enabled us to perform long-term tracking of neural and oligodendroglial development in the large-scale human cerebral organoid. Furthermore, our sophisticated volumetric segmentation algorithm has yielded a robust four-dimensional quantitative analysis, encapsulating both neuronal and oligodendroglial maturation. Collectively, these advances mark a significant advancement in the field of neurodevelopment, providing a powerful tool for in-depth study of complex brain organoid systems.
Collapse
Affiliation(s)
- Sangjun Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Cheol Hong Min
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eunjin Choi
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jeong-Sun Choi
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyungjin Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Korea
| | - Seokyoung Han
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA
| | - Wonjun Choi
- Park Systems Corp, Suwon, 16229, Gyeonggi-do, Korea
| | - Hyun-Jong Jang
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung-Ok Cho
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Catholic Neuroscience Institute, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, 06591, Korea.
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
2
|
Weinberg G, Sunray E, Katz O. Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix. SCIENCE ADVANCES 2024; 10:eadl5218. [PMID: 39565861 PMCID: PMC11578164 DOI: 10.1126/sciadv.adl5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from <150 acquired frames, without any spatial light modulators or computationally intensive processing.
Collapse
Affiliation(s)
| | | | - Ori Katz
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Yasuhiko O, Takeuchi K. Bidirectional in-silico clearing approach for deep refractive-index tomography using a sparsely sampled transmission matrix. BIOMEDICAL OPTICS EXPRESS 2024; 15:5296-5313. [PMID: 39296398 PMCID: PMC11407245 DOI: 10.1364/boe.524859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 09/21/2024]
Abstract
Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography. This method incorporates both forward and reversed in-silico clearing. For the reversed in-silico clearing, we have integrated an ODT reconstruction framework with a transmission matrix approach, which enables RI reconstruction and wave backpropagation from the illumination side without necessitating modifications to the conventional ODT setup. Furthermore, the framework employs a sparsely sampled transmission matrix, significantly reducing the requisite number of measurements and computational expenses. Employing this proposed technique, we successfully imaged a spheroid with a thickness of 263 µm, corresponding to 11.4 scattering mean free paths. This method was successfully applied to various biological specimens, including liver and colon spheroids, demonstrating consistent imaging performance across samples with varied morphologies.
Collapse
Affiliation(s)
- Osamu Yasuhiko
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamana-ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamana-ku, Hamamatsu, Shizuoka 434-8601, Japan
| |
Collapse
|
4
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
5
|
Najar U, Barolle V, Balondrade P, Fink M, Boccara C, Aubry A. Harnessing forward multiple scattering for optical imaging deep inside an opaque medium. Nat Commun 2024; 15:7349. [PMID: 39187504 PMCID: PMC11347655 DOI: 10.1038/s41467-024-51619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
As light travels through a disordered medium such as biological tissues, it undergoes multiple scattering events. This phenomenon is detrimental to in-depth optical microscopy, as it causes a drastic degradation of contrast, resolution and brightness of the resulting image beyond a few scattering mean free paths. However, the information about the inner reflectivity of the sample is not lost; only scrambled. To recover this information, a matrix approach of optical imaging can be fruitful. Here, we report on a de-scanned measurement of a high-dimension reflection matrix R via low coherence interferometry. Then, we show how a set of independent focusing laws can be extracted for each medium voxel through an iterative multi-scale analysis of wave distortions contained in R. It enables an optimal and local compensation of forward multiple scattering paths and provides a three-dimensional confocal image of the sample as the latter one had become digitally transparent. The proof-of-concept experiment is performed on a human opaque cornea and an extension of the penetration depth by a factor five is demonstrated compared to the state-of-the-art.
Collapse
Affiliation(s)
- Ulysse Najar
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Victor Barolle
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Paul Balondrade
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
6
|
Zhang Y, Zhang Q, Yu H, Zhang Y, Luan H, Gu M. Memory-less scattering imaging with ultrafast convolutional optical neural networks. SCIENCE ADVANCES 2024; 10:eadn2205. [PMID: 38875337 PMCID: PMC11177939 DOI: 10.1126/sciadv.adn2205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.
Collapse
Affiliation(s)
- Yuchao Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiming Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyi Yu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yinan Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haitao Luan
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Shanghai 200093, China
| |
Collapse
|
7
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the Surface: Unmasking the Brain's Complexity Exploiting Optical Scattering. ARXIV 2024:arXiv:2403.14809v1. [PMID: 38562443 PMCID: PMC10984001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
8
|
Gong D, Scherer NF. Tandem aberration correction optics (TACO) in wide-field structured illumination microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:6381-6396. [PMID: 38420301 PMCID: PMC10898552 DOI: 10.1364/boe.503801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 03/02/2024]
Abstract
Structured illumination microscopy (SIM) is a powerful super-resolution imaging technique that uses patterned illumination to down-modulate high spatial-frequency information of samples. However, the presence of spatially-dependent aberrations can severely disrupt the illumination pattern, limiting the quality of SIM imaging. Conventional adaptive optics (AO) techniques that employ wavefront correctors at the pupil plane are not capable of effectively correcting these spatially-dependent aberrations. We introduce the Tandem Aberration Correction Optics (TACO) approach that combines both pupil AO and conjugate AO for aberration correction in SIM. TACO incorporates a deformable mirror (DM) for pupil AO in the detection path to correct for global aberrations, while a spatial light modulator (SLM) is placed at the plane conjugate to the aberration source near the sample plane, termed conjugate AO, to compensate spatially-varying aberrations in the illumination path. Our numerical simulations and experimental results show that the TACO approach can recover the illumination pattern close to an ideal condition, even when severely misshaped by aberrations, resulting in high-quality super-resolution SIM reconstruction. The TACO approach resolves a critical traditional shortcoming of aberration correction for structured illumination. This advance significantly expands the application of SIM imaging in the study of complex, particularly biological, samples and should be effective in other wide-field microscopies.
Collapse
Affiliation(s)
- Daozheng Gong
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Norbert F. Scherer
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Bureau F, Robin J, Le Ber A, Lambert W, Fink M, Aubry A. Three-dimensional ultrasound matrix imaging. Nat Commun 2023; 14:6793. [PMID: 37880210 PMCID: PMC10600255 DOI: 10.1038/s41467-023-42338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.
Collapse
Affiliation(s)
- Flavien Bureau
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Justine Robin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Physics for Medicine, ESPCI Paris, PSL University, INSERM, CNRS, Paris, France
| | - Arthur Le Ber
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - William Lambert
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Hologic / SuperSonic Imagine, 135 Rue Emilien Gautier, 13290, Aix-en-Provence, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
10
|
Park S, Jo Y, Kang M, Hong JH, Ko S, Kim S, Park S, Park HC, Shim SH, Choi W. Label-free adaptive optics single-molecule localization microscopy for whole zebrafish. Nat Commun 2023; 14:4185. [PMID: 37443177 PMCID: PMC10344925 DOI: 10.1038/s41467-023-39896-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Specimen-induced aberration has been a major factor limiting the imaging depth of single-molecule localization microscopy (SMLM). Here, we report the application of label-free wavefront sensing adaptive optics to SMLM for deep-tissue super-resolution imaging. The proposed system measures complex tissue aberrations from intrinsic reflectance rather than fluorescence emission and physically corrects the wavefront distortion more than three-fold stronger than the previous limit. This enables us to resolve sub-diffraction morphologies of cilia and oligodendrocytes in whole zebrafish as well as dendritic spines in thick mouse brain tissues at the depth of up to 102 μm with localization number enhancement by up to 37 times and localization precision comparable to aberration-free samples. The proposed approach can expand the application range of SMLM to whole zebrafish that cause the loss of localization number owing to severe tissue aberrations.
Collapse
Affiliation(s)
- Sanghyeon Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea
- Department of Physics, Korea University, Seoul, Republic of Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea
- Department of Physics, Korea University, Seoul, Republic of Korea
| | - Minsu Kang
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea
| | - Sangyoon Ko
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University, Ansan, Republic of Korea
| | - Sangjun Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Republic of Korea
| | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul, Republic of Korea.
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Republic of Korea.
- Department of Physics, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Ren Y, Jian J, Tan W, Wang J, Chen T, Zhang H, Xia W. Single-shot decoherence polarization gated imaging through turbid media. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:073706. [PMID: 37486200 DOI: 10.1063/5.0152654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
We propose a method for imaging through a turbid medium by using a single-shot decoherence polarization gate (DPG). The DPG is made up of a polarizer, an analyzer, and a weakly scattering medium. Contrary to intuition, we discover that the preferential utilization of sparsely scattered photons by introducing weakly scattering mediums can lead to better image quality. The experimental results show that the visibilities of the images acquired from the DPG imaging method are obviously improved. The contrast of the bar can be increased by 50% by the DPG imaging technique. Furthermore, we study the effect of the volume concentration of the weakly scattering medium on the speckle suppression and the enhancement of the visibilities of the images. The variances of the contrasts of the image show that there exists an optimum optical depth (∼0.8) of the weakly scattering medium for DPG imaging through a specific turbid medium.
Collapse
Affiliation(s)
- Yuhu Ren
- School of Physics and Technology, University of Jinan, Shandong, Jinan 250022, China
| | - Jimo Jian
- Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Wenjiang Tan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xianning-xilu 28, Xi'an 710049, China
| | - Jing Wang
- School of Physics and Technology, University of Jinan, Shandong, Jinan 250022, China
| | - Tao Chen
- School of Physics and Technology, University of Jinan, Shandong, Jinan 250022, China
| | - Haikun Zhang
- School of Physics and Technology, University of Jinan, Shandong, Jinan 250022, China
| | - Wei Xia
- School of Physics and Technology, University of Jinan, Shandong, Jinan 250022, China
| |
Collapse
|