1
|
Salajková Z, Barolo L, Baiocco P, Ruzicka B, Mura F, Di Lorenzo F, Boffi A, Ricco V, Ruocco G, Leonetti M. Optical signature of retinal Tau fibrillation. Sci Rep 2025; 15:7792. [PMID: 40044873 PMCID: PMC11882907 DOI: 10.1038/s41598-025-92565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Fibrillated Tau proteins are believed to be a signature of Alzheimer's disease (AD) and may be potentially employed as a biosensor for AD early detection. Several studies revealed the presence of Tau accumulation and aggregation in the retina, similar to that observed in the brains of individuals with AD. These retinal changes can be non-invasively visualised through AD-related scores derived from reflectance measurements of the patient fundus. However, a direct link with the optical properties of fibrillated protein clusters is still lacking. Here, we present a new optical technique which measures the scattering optical properties of protein fibrils. Our experimental findings show that the scattering intensity of Tau has a wavelength dependence correlated to their size. The optical signal qualitatively replicates the spectral signature observed in human AD patient retinas. Our paper shows that the Tau protein spectral signature is compatible with the distinctive spectral signature of the AD, further confirming that retinal investigation is a promising tool.
Collapse
Affiliation(s)
- Zita Salajková
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy.
| | - Lorenzo Barolo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Paola Baiocco
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Barbara Ruzicka
- Sapienza Unit, Institute for Complex Systems of the National Research Council (ISC-CNR), Piazzale A. Moro 5, 00185, Rome, Italy
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Mura
- Research Center on Nanotechnologies Applied to Engineering of Sapienza (CNIS), P.zza Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Di Lorenzo
- Neuropsychophisiology Lab, Istituto Di Ricovero E Cura a Carattere Scientifico Santa Lucia, via Ardeatina 306, 00179, Rome, Italy
| | - Alberto Boffi
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Vincenzo Ricco
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Leonetti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- D-Tails s.r.l. BCorp, Via di Torre Rossa, 66, 00165, Rome, Italy
- Rome Unit, Institute of Nanotechnology of the National Research Council of Italy, CNR-NANOTEC, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
2
|
Zhang X, Upputuri PK, Coughlan MF, Kemble DJ, Khan U, Zakharov YN, Zhang L, Perelman LT, Qiu L. Dual-angle light scattering spectroscopy for calibration-free measurements of scatterer suspensions. OPTICS LETTERS 2025; 50:33-36. [PMID: 39718846 PMCID: PMC11891018 DOI: 10.1364/ol.543614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/16/2024] [Indexed: 12/26/2024]
Abstract
It can be difficult to employ optical techniques for analyzing biological structures smaller than or comparable to the wavelength of light, such as extracellular vesicles or some types of bacteria. Biological light scattering spectroscopy (LSS), developed to address this problem, has been successfully used for characterizing tissue on cellular and subcellular scales. At the same time, calibration with a reference sample of known optical properties can complicate LSS measurements. In this Letter, we present dual-angle LSS (daLSS), which is designed for calibration-free measurements of scatterer suspensions. It employs measurements of a sample at two distinct angles, which then allows system effects to be removed entirely. Not only does daLSS simplify and speed up the measurement procedure, but it also makes spectra more reproducible, an important feature for diagnostic techniques. We validated the technique by accurately reconstructing the sizes of polystyrene microspheres with diameters less than 100 nm and then demonstrated that not only are the daLSS spectra of several common bacteria strains easily distinguishable but they are also highly reproducible.
Collapse
Affiliation(s)
- Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Paul K Upputuri
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Mark F Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - David J Kemble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts 02215 USA
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Yuri N Zakharov
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Lei Zhang
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Lev T Perelman
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| | - Le Qiu
- Center for Advanced Biomedical Imaging and Photonics, Harvard University, Boston, Massachusetts 02215 USA
| |
Collapse
|
3
|
Chang S, Krzyzanowska H, Bowden AK. Label-Free Optical Technologies to Enhance Noninvasive Endoscopic Imaging of Early-Stage Cancers. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:289-311. [PMID: 38424030 DOI: 10.1146/annurev-anchem-061622-014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
White light endoscopic imaging allows for the examination of internal human organs and is essential in the detection and treatment of early-stage cancers. To facilitate diagnosis of precancerous changes and early-stage cancers, label-free optical technologies that provide enhanced malignancy-specific contrast and depth information have been extensively researched. The rapid development of technology in the past two decades has enabled integration of these optical technologies into clinical endoscopy. In recent years, the significant advantages of using these adjunct optical devices have been shown, suggesting readiness for clinical translation. In this review, we provide an overview of the working principles and miniaturization considerations and summarize the clinical and preclinical demonstrations of several such techniques for early-stage cancer detection. We also offer an outlook for the integration of multiple technologies and the use of computer-aided diagnosis in clinical endoscopy.
Collapse
Affiliation(s)
- Shuang Chang
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Halina Krzyzanowska
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Audrey K Bowden
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Zlobina NV, Budylin GS, Tseregorodtseva PS, Andreeva VA, Sorokin NI, Kamalov DM, Strigunov AA, Armaganov AG, Kamalov AA, Shirshin EA. In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study. Lasers Surg Med 2024; 56:496-507. [PMID: 38650443 DOI: 10.1002/lsm.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES The aim of this work is to assess the performance of multimodal spectroscopic approach combined with single core optical fiber for detection of bladder cancer during surgery in vivo. METHODS Multimodal approach combines diffuse reflectance spectroscopy (DRS), fluorescence spectroscopy in the visible (405 nm excitation) and near-infrared (NIR) (690 nm excitation) ranges, and high-wavenumber Raman spectroscopy. All four spectroscopic methods were combined in a single setup. For 21 patients with suspected bladder cancer or during control cystoscopy optical spectra of bladder cancer, healthy bladder wall tissue and/or scars were measured. Classification of cancerous and healthy bladder tissue was performed using machine learning methods. RESULTS Statistically significant differences in relative total haemoglobin content, oxygenation, scattering, and visible fluorescence intensity were found between tumor and normal tissues. The combination of DRS and visible fluorescence spectroscopy allowed detecting cancerous tissue with sensitivity and specificity of 78% and 91%, respectively. The addition of features extracted from NIR fluorescence and Raman spectra did not improve the quality of classification. CONCLUSIONS This study demonstrates that multimodal spectroscopic approach allows increasing sensitivity and specificity of bladder cancer detection in vivo. The developed approach does not require special probes and can be used with single-core optical fibers applied for laser surgery.
Collapse
Affiliation(s)
- Nadezhda V Zlobina
- Department of Quantum Electronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
- Department of Fundamental Pathology, National Medical Research Center for Endocrinology, Moscow, Russia
| | - Gleb S Budylin
- Biomedical Science and Technology Park, Laboratory of Clinical Biophotonics, First Moscow State Medical University, Moscow, Russia
| | - Polina S Tseregorodtseva
- Department of Quantum Electronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Fundamental Pathology, National Medical Research Center for Endocrinology, Moscow, Russia
| | | | - Nikolay I Sorokin
- Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - David M Kamalov
- Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey A Strigunov
- Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Artashes G Armaganov
- Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Armais A Kamalov
- Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny A Shirshin
- Department of Quantum Electronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Wakayama T, Higuchi Y, Kondo R, Mizutani Y, Higashiguchi T. Lensless single-fiber ghost imaging. APPLIED OPTICS 2023; 62:9559-9567. [PMID: 38108781 DOI: 10.1364/ao.507550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
We demonstrate lensless single-fiber ghost imaging, which allows illumination and collection using a single optical fiber without a transmission-type system. Speckle patterns with relative coincidence degrees of 0.14 were formed by image reconstruction using improved differential ghost imaging. Employing fiber with a diameter of 105 µm, we achieved a spatial resolution of 0.05 mm in an observing area of 9m m 2, at a working distance of 10 mm. Compared to a conventional neuroendoscope at a power density of 94m W/c m 2, our imaging could be realized by extremely weak illumination at a laser power density of 0.10m W/c m 2. Using our lensless single-fiber ghost imaging, with 30,000 speckle patterns and implementing a diffuser, we attained an average coincidence degree of 0.45.
Collapse
|
6
|
Malinet C, Montcel B, Dutour A, Fajnorova I, Liebgott H, Muleki-Seya P. Cancer characterization using light backscattering spectroscopy and quantitative ultrasound: an ex vivo study on sarcoma subtypes. Sci Rep 2023; 13:16650. [PMID: 37789008 PMCID: PMC10547769 DOI: 10.1038/s41598-023-43322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
Histological analysis is the gold standard method for cancer diagnosis. However, it is prone to subjectivity and sampling bias. In response to these limitations, we introduce a quantitative bimodal approach that aims to provide non-invasive guidance towards suspicious regions. Light backscattering spectroscopy and quantitative ultrasound techniques were combined to characterize two different bone tumor types from animal models: chondrosarcomas and osteosarcomas. Two different cell lines were used to induce osteosarcoma growth. Histological analyses were conducted to serve as references. Three ultrasound parameters and intensities of the light reflectance profiles showed significant differences between chondrosarcomas and osteosarcomas at the 5% level. Likewise, variations in the same biomarkers were reported for the two types of osteosarcoma, despite their similar morphology observed in the histological examinations. These observations show the sensitivity of our techniques in probing fine tissue properties. Secondly, the ultrasound spectral-based technique identified the mean size of chondrosarcoma cells and nuclei with relative errors of about 22% and 9% respectively. The optical equivalent technique correctly extracted scatterer size distributions that encompass nuclei and cells for chondrosarcomas and osteosarcomas ([Formula: see text] and [Formula: see text] respectively). The optical scattering contributions of nuclei were estimated at 52% for the chondrosarcomas and 69% for the osteosarcomas, probably indicating the abundant and the absent extracellular matrix respectively. Thus, the ultrasound and the optical methods brought complementary parameters. They successfully estimated morphological parameters at the cellular and the nuclear scales, making our bimodal technique promising for tumor characterization.
Collapse
Affiliation(s)
- Cyril Malinet
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France.
| | - Bruno Montcel
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Aurélie Dutour
- Centre de Recherche en Cancérologie de Lyon/Centre Léon Bérard, Equipe mort cellulaire et cancers pédiatriques, UMR INSERM 1052, CNRS 5286, Lyon , France
| | - Iveta Fajnorova
- Centre de Recherche en Cancérologie de Lyon/Centre Léon Bérard, Equipe mort cellulaire et cancers pédiatriques, UMR INSERM 1052, CNRS 5286, Lyon , France
| | - Hervé Liebgott
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Pauline Muleki-Seya
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|