1
|
He X, He Q, Liu Z, Yao Y. Noncovalent Soft Composites with Superior Thermal Conductivity and Photothermal Efficiency for Advanced Thermal Management. NANO LETTERS 2025; 25:7933-7942. [PMID: 40319499 DOI: 10.1021/acs.nanolett.5c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Soft materials with elevated thermal conductivity are highly sought after for efficient, adaptable thermal management in contemporary electronics, yet their fabrication remains challenging. We describe a soft composite created by integrating tannic acid-mediated liquid metals and graphene nanosheets into a polyurethane matrix through a noncovalent assembly approach that involves multiple interfacial supramolecular interactions. This composite demonstrates remarkable toughness (90.39 MJ m-3) and stretchability (1050% strain) alongside superior through-plane thermal conductivity (18.69 W m-1 K-1) and in-plane thermal conductivity (8.05 W m-1 K-1). Additionally, the composite features excellent broadband light absorption (>85%) and a photothermal conversion efficiency of 84%, enabling heat generation. Our findings overcome the traditional trade-off between high thermal conductivity and mechanical compliance in a single material. We anticipate that our design strategy will pave the way for advanced thermal management materials that require functional integration.
Collapse
Affiliation(s)
- Xuhua He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Nanjing University, Shenzhen 518057, China
| | - Qian He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Nanjing University, Shenzhen 518057, China
| | - Zhijie Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Nanjing University, Shenzhen 518057, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Nanjing University, Shenzhen 518057, China
| |
Collapse
|
2
|
Su G, Peng J, Li L, Chen Z, Xin Z, Feng J, Zhou Y, Zhao Y, Lu Z, Sun M, Zhou T, Rao H. Load-Bearing Organogels: Hierarchical Anisotropic Composite Structure for High Mechanical Toughness and Antifatigue-Fracture Capability under Extreme Conditions. ACS NANO 2025; 19:16760-16774. [PMID: 40273305 DOI: 10.1021/acsnano.5c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gels with excellent mechanical properties and antifatigue-fracture capability are attractive materials for load-bearing applications; however, at extreme temperatures, they still suffer from catastrophic failure caused by freezing- or dehydration-induced crack propagation. Here, we present a series of hierarchical anisotropic composite organogels that are strong yet tough and antifatigue-fracture over a wide temperature range (-30 to 60 °C) through the combination strategies of freezing-casting, annealing, and solvent exchange with polyols. Such a hybrid design endows the gels with anisotropic and hierarchical structures and excellent tolerance to extreme temperatures, thus guaranteeing efficient energy dissipation and crack propagation resistance under both ambient and harsh conditions. For instance, the organogel obtained via solvent exchange with glycerol exhibited high strength (22.6 MPa), toughness (198.0 MJ/m3), fatigue threshold (6.92 kJ/m2), and particularly, a superhigh fracture energy (665.7 kJ/m2), which is even higher than anhydrous elastomers, metals, and alloys. Importantly, these values were further boosted at extreme temperatures, such as fatigue thresholds of 8.01 and 9.77 kJ/m2 at -30 and 60 °C, respectively. This work offers an attractive strategy for fabricating gel materials that are reliable for load-bearing applications under extreme conditions.
Collapse
Affiliation(s)
- Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Junjie Peng
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Lan Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Zhishuo Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Zhijiang Xin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Jin Feng
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yaping Zhou
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Yongpeng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Tao Zhou
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| |
Collapse
|
3
|
Lyu X, Yu K, Zhang H, Zhou P, Shen Z, Zou Z. Tough fiber-reinforced composite ionogels with crack resistance surpassing metals. Nat Commun 2025; 16:4005. [PMID: 40301368 PMCID: PMC12041386 DOI: 10.1038/s41467-025-59396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Ion-conductive materials have received much attention because of their good mechanical and electrical properties. However, their practical applications are still hampered by limited toughness and crack resistance, stemming from the restricted size of energy dissipation zones, which impacts their reliability and durability. Herein, tough fiber-reinforced composite ionogels (FRCIs) with crack resistance are fabricated by incorporating high-performance fibers into elastic ionogels to efficiently dissipate energy. The FRCIs exhibit good tearing toughness, high strength, high elastic modulus, and low bending modulus. The toughness and crack resistance of the FRCI far exceed that of previously reported gel materials, even outperforming metals and alloys. Furthermore, the electrical resistance of FRCI shows high sensitivity to deformation. Moreover, it remains undamaged after undergoing 10,000 bending cycles when fixing the artificial bone, and possesses self-sensing impact resistance, demonstrating great potential in intelligent robots and smart protective equipment.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China.
| | - Kun Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Zhihao Shen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, China.
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Peng W, Zhang Y, Zhang Z, Zhao H, Huang H, Zhao J, Cheng BX, He J, Xu B, Shang B, Nie S, Wang S, Duan Q. Liquid Metal-Promoted Supramolecular Interactions Enable Ultrafast Self-Healing Triboelectric Materials with High Performance at Room Temperature. NANO LETTERS 2025; 25:6622-6630. [PMID: 40208821 DOI: 10.1021/acs.nanolett.5c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Soft self-healing materials are excellent candidates for wearable devices to power sensors due to their excellent compliance, extensibility, and self-restorability. However, combining ultrafast and autonomous restorative properties with excellent mechanical capabilities for application in self-powered wearable device still poses challenges. Utilizing the high mobility and conductivity of liquid metal, this paper incorporates it into polydimethylsiloxane by a supramolecular interfacial assembly strategy to prepare a triboelectric material with ultrahigh stretchability (12000%) and remarkable self-healing (30 min at ∼25 °C). The dynamic bonds endow the material with excellent and universal self-healing ability under extreme environments (-20 °C, near infrared, and underwater), mechanical durability, and triboelectric properties (100 V and 0.81 W/m2). By integrating the material into wearable self-powered devices, real-time feedback on human joint movement is enabled. This work offers a valuable strategy to balance the trade-off between shape adaptation and self-healing, paving the way for enhanced applicability in sensing applications.
Collapse
Affiliation(s)
- Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Haohe Huang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Jiamin Zhao
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bei Xu
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Baijun Shang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Li Y, Jin Y, Chen H, Zhou R, Mei J, Mao Z. A Visible Light-Responsive, Fast Room-Temperature Self- Healing, Mechanically Robust, Antibacterial Waterborne Polyurethane Based on Triple Dynamic Bonds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20307-20323. [PMID: 40110726 DOI: 10.1021/acsami.5c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Despite the recent rapid advancements in room-temperature self-healing waterborne polyurethanes, imparting fast self-healing ability while concurrently maintaining robust mechanical performance of waterborne polyurethanes remains a formidable challenge. Herein, we propose a molecular structure design strategy for developing visible light-responsive, room-temperature self-healing, and antibacterial waterborne polyurethane (DMZWPU) containing triple dynamic bonds of diselenide bonds, multiple hydrogen bonds, and Zn(II)-carboxylate coordination bonds. This innovative approach effectively balances the tensile stress, fracture toughness, and self-healing ability of the material. Thanks to the synergy of the three dynamic bonds, the resulting DMZWPU film demonstrates a tensile stress of 40.32 MPa and a fracture toughness of 119.29 MJ/m3, respectively. Furthermore, based on the dynamic characteristics of three dynamic bonds and the dual induction of trace ethanol and visible light, the damaged DMZWPU film can recover more than 85% of the tensile stress at room temperature within 2 h. These performances outperform those of most of the currently reported room-temperature self-healable polymers (healing efficiency >80%). Due to the combined action of selenium and zinc ions, the DWZWPU film exhibits excellent antibacterial properties (sterilization rate of 100% in 24 h). Finally, the DMZWPU emulsion is effectively applied for leather finishing processes, and the results show that the DMZWPU coating exhibits excellent folding resistance, wear resistance, and room-temperature self-healing function, as well as enhanced water resistance and dry friction resistance. In summary, this study provides a novel perspective for the development of waterborne polyurethane with high mechanical performances and rapid self-healable ability at room temperature.
Collapse
Affiliation(s)
- Yupeng Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yong Jin
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Haonan Chen
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Rong Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jiangyang Mei
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhexian Mao
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Xu M, Zhang J, Dong C, Tang C, Hu F, Malliaras GG, Occhipinti LG. Simultaneous Isotropic Omnidirectional Hypersensitive Strain Sensing and Deep Learning-Assisted Direction Recognition in a Biomimetic Stretchable Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420322. [PMID: 39887745 PMCID: PMC12038543 DOI: 10.1002/adma.202420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Omnidirectional strain sensing and direction recognition ability are features of the human tactile sense, essential to address the intricate and dynamic requirements of real-world applications. Most of the current strain sensors work by converting uniaxial strain into electrical signals, which restricts their use in environments with multiaxial strain. Here, the first device with simultaneous isotropic omnidirectional hypersensitive strain sensing and direction recognition (IOHSDR) capabilities is introduced. By mimicking the human fingers from three dimensions, the IOHSDR device realizes a novel heterogeneous substrate that incorporates the involute of a circle, resulting in isotropic behavior in the radial direction and anisotropic property in the involute direction for hypersensitive strain sensing. With the assistance of a deep learning-based model, the IOHSDR device accomplishes an impressive accuracy of 99.58% in recognizing 360° stretching directions. Additionally, it exhibits superior performance in the typical properties of stretchable strain sensors, with a gauge factor of 634.12, an ultralow detection limit of 0.01%, and outstanding durability exceeding 15 000 cycles. The demonstration of radial artery pulse and throat vibration applications highlights the IOHSDR's unique characteristics of isotropic omnidirectional sensing and precise direction detection unleashing new classes of wearable health monitoring devices.
Collapse
Affiliation(s)
- Muzi Xu
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Jiaqi Zhang
- Department of Electrical and Electronic EngineeringUniversity of Hong KongPokfulam RoadHong Kong SAR999077China
| | - Chaoqun Dong
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Chenyu Tang
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Fangxin Hu
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Luigi G. Occhipinti
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
7
|
Guo C, Li C, Qiao Z, Lei C, Ju Z, Zhang Y, Zhang Q, Fu Q, Wu K. Crack-Resistant and Self-Healable Passive Radiative Cooling Silicone Compounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500738. [PMID: 40018766 DOI: 10.1002/adma.202500738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Crack damage and expansion are prevalent issues in outdoor materials, which absorb or transmit sunlight to damaged areas, substantially impairing the functionality of passive radiative cooling systems. Herein, a silicone/dielectric radiative cooling compound is introduced that is both self-healing and crack-resistant, developed through the synthesis of a dynamic and crack-resistant polymer/dielectric hydrogen bond network. This network incorporates boron nitride dielectrics, which serve as sunlight scatterers and hydrogen bond acceptors, with customized silicone polymer featuring high atmospheric window emissive chain segments and UV-vis-NIR transparent hydrogen bond moieties. When cracks form, the polymer's chain mobility allows the hydrogen bond moieties in boron nitride and silicone to re-associate, realizing self-healing of cracks from micrometers to millimeters wide and restoring cooling performance to ≈100%. The combination of rigid boron nitride and sacrificial hydrogen bonds in polymer also enhances the materials' fracture energy to 865%, effectively preventing further crack propagation under stress through autonomous crack blunting and deflection. These remarkable characteristics make this radiative cooling compound highly suited for increasingly complex, dynamic, and prolonged outdoor application environments.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Chuanlong Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Zeshuang Qiao
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Qin Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
9
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
10
|
Chen J, Xiong S, Li N, Yu J, Wang Y, Hu Z. Liquid Metal Particles Decorated by Poly(imidazole-urea) as Versatile Adhesive and Recyclable Inks for Substrate-Irrelevant Direct Writing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16000-16009. [PMID: 40013748 DOI: 10.1021/acsami.4c21108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Liquid metals (LMs) with fluidity and conductivity are widely applied in flexible electronics. However, the surface patterning of liquid metals (LMs) is restricted by the low adhesion effect on the substrates because of the intrinsic high surface tension. In this study, a versatile adhesive conductive poly(imidazole-urea)/eutectic Ga75.5In24.5 alloy (PIU/EGaIn) ink is proposed by wrapping the EGaIn particles with PIU through metal coordination to realize substrate-independent direct writing. The adhesion of PIU guarantees that the PIU/EGaIn ink can be written smoothly on different substrates, ranging from flexible to rigid and plane to camber. Complex patterns can also be stamped on the substrate by transfer printing. The maximum conductivity of the handwriting trace can reach as high as 1.3 × 106 S/m due to the highly efficient stability of EGaIn particles with a low content of residue PIU. The written circuit demonstrates high stability and maintains constant conductivity after 500 cycles of deformations (folding, bending, and stretching), thanks to the good adhesion effect of PIU with substrates. In addition, the resistance touch sensor was patterned to detect finger contact as a demonstration of potential application. The PIU/EGaIn ink waste can be recycled using an alkaline solution owing to the intrinsic degradability of PIU. This strategy offers a new choice for universal adhesive conductive ink that is suitable for environmentally friendly flexible electronics.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Shuqiang Xiong
- Shanghai Aerospace Equipments Manufacturer Co. Ltd., Shanghai Engineering Research Center of Specialized Polymer Materials for Aerospace, 200245 Shanghai, P. R. China
| | - Na Li
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Junrong Yu
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Yan Wang
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Zuming Hu
- State Key Laboratory of Advanced Fiber Materials, Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| |
Collapse
|
11
|
Van Nguyen D, Song P, Manshaii F, Bell J, Chen J, Dinh T. Advances in Soft Strain and Pressure Sensors. ACS NANO 2025; 19:6663-6704. [PMID: 39933798 DOI: 10.1021/acsnano.4c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft strain and pressure sensors represent a breakthrough in material engineering and nanotechnology, providing accurate and reliable signal detection for applications in health monitoring, sports management, human-machine interface, or soft robotics, when compared to traditional rigid sensors. However, their performance is often compromised by environmental interference and off-axis mechanical deformations, which lead to nonspecific responses, as well as unstable and inaccurate measurements. These challenges can be effectively addressed by enhancing the sensors' specificity, making them responsive only to the desired stimulus while remaining insensitive to unwanted stimuli. This review systematically examines various materials and design strategies for developing strain and pressure sensors with high specificity for target physical signals, such as tactility, pressure distribution, body motions, or artery pulse. This review highlights approaches in materials engineering that impart special properties to the sensors to suppress interference from factors such as temperature, humidity, and liquid contact. Additionally, it details structural designs that improve sensor performance under different types of off-axis mechanical deformations. This review concludes by discussing the ongoing challenges and opportunities for inspiring the future development of highly specific electromechanical sensors.
Collapse
Affiliation(s)
- Duy Van Nguyen
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Farid Manshaii
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - John Bell
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Jun Chen
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Toan Dinh
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
12
|
Li H, He J, Liang C, Bin F, Li X, Wang X, Wang Z, Bu X, Xiao D, Jia H, Rong W. Design and in-situ biomimetic fabrication of a high-density strain sensor array for parachute canopy fabric. iScience 2025; 28:111794. [PMID: 39917022 PMCID: PMC11800110 DOI: 10.1016/j.isci.2025.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
In-situ monitoring of non-uniform strains in spacecraft parachute canopies is essential to ensure safe landings. Traditional wearable strain sensors struggle to meet high-resolution measurement requirements due to their low density. In-situ inkjet printing offers a promising solution for fabricating high-density strain sensor arrays directly on the fabric surface. However, capillary effects in the canopy fabric cause droplet leakage, hindering stable printing. To address this, we drew inspiration from nature, using modified silane to mimic the wax layer of coconut husk for modifying the canopy fabric, which enabled the in-situ fabrication of a strain sensor array via inkjet printing. This modification overcame capillary effects and balanced the fabric's wettability, essential for stable printing. Furthermore, a layered printing strategy was designed to increase sensor density to 4 units·cm-2, facilitating high-resolution measurement of non-uniform strains in the canopy. This study offers a feasible approach for developing sensors for large-scale parachute strain measurements.
Collapse
Affiliation(s)
- Hui Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangang He
- AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610091, China
| | - Chunzu Liang
- Beijing Satellite Manufacturing Factory, Beijing 100086, China
| | - Fengjiao Bin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xianda Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zihao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangxiao Bu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dengbao Xiao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - He Jia
- Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
| | - Wei Rong
- Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
| |
Collapse
|
13
|
Zhang J, Sun F, Xu J, Zhao ZH, Fu J. Research Progress of Human Biomimetic Self-Healing Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408199. [PMID: 39466995 DOI: 10.1002/smll.202408199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Humans can heal themselves after injury, which inspires researchers to develop bionic self-healing materials. Such materials not only equipped with the self-repair capacities akin to those of the human body, but also emulate the mechanical properties of human organs, including the tensile resilience of muscles, the fatigue resistance of skin, and the elevated modulus typical of cartilage. Based on the design concept of imitating the structure of human organs, the bionic self-healing material perfectly solves the problem of poor mechanical properties of self-healing materials caused by weak bond energy and inter-chain flow. This review discusses various organ-inspired self-healing materials in detail, summarizes their synthetic principles and introduces their fascinating mechanical properties. Finally, the application prospects of bionic self-healing polymer materials, such as bio-strain sensors, self-healing anticorrosive coatings, biomedical detection, etc., are outlined. Considering the excellent comprehensive performance and multi-functions of human biomimetic self-healing polymers, more outstanding sustainable materials will be developed, accelerating research progress in self-healing materials and realizing environmentally friendly products in multiple fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zi-Han Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
14
|
Guo X, Dong Y, Qin J, Zhang Q, Zhu H, Zhu S. Fracture-Resistant Stretchable Materials: An Overview from Methodology to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312816. [PMID: 38445902 DOI: 10.1002/adma.202312816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Stretchable materials, such as gels and elastomers, are attractive materials in diverse applications. Their versatile fabrication platforms enable the creation of materials with various physiochemical properties and geometries. However, the mechanical performance of traditional stretchable materials is often hindered by the deficiencies in their energy dissipation system, leading to lower fracture resistance and impeding their broader range of applications. Therefore, the synthesis of fracture-resistant stretchable materials has attracted great interest. This review comprehensively summarizes key design considerations for constructing fracture-resistant stretchable materials, examines their synthesis strategies to achieve elevated fracture energy, and highlights recent advancements in their potential applications.
Collapse
Affiliation(s)
- Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Yue Dong
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Jianliang Qin
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
15
|
Ma Q, Xu L, Fan Y, Wang L, Xu J, Zhao J, Chen X. A Multifunctional Coating with Active Corrosion Protection Through a Synergistic pH- and Thermal-Responsive Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406912. [PMID: 39324225 PMCID: PMC11636077 DOI: 10.1002/smll.202406912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Indexed: 09/27/2024]
Abstract
This article aims to develop CeO2 nanocontainer-constructed coating with a synergistic self-healing and protective nature through a simple mechanical blending technique to manage metal corrosion. The proposed coating exhibits excellent corrosion resistance, which is primarily attributed to the combination of thermal-driven healing and active corrosion inhibition. Paraffin wax and 2-polybenzothiazole-loaded CeO2 nanotubes (CeO2-MBT) are directly doped into epoxy coating to perform such a multifunctional role. CeO2 nanocontainers and encapsulated corrosion inhibitor MBT can be released by pH triggers to achieve instant corrosion inhibition upon the surface of metal substrate. In addition, any physical defects in the coating are responsively repaired by heating incorporated paraffin wax to regain structural integrity and consequent barrier function. Corrosion protection efficiency remains sufficient even after ten cycles of damage and healing. Such a multiple-functional coating strategy provides an alternative pathway toward efficient and sustainable performance to tackle corrosion-related challenges of metal components in both short-term and long-term services.
Collapse
Affiliation(s)
- Qi‐Xuan Ma
- College of ChemistryJilin UniversityChangchun130022China
| | - Li Xu
- College of ChemistryJilin UniversityChangchun130022China
| | - Yong Fan
- College of ChemistryJilin UniversityChangchun130022China
| | - Li Wang
- College of ChemistryJilin UniversityChangchun130022China
| | - Jia‐Ning Xu
- College of ChemistryJilin UniversityChangchun130022China
| | - Jie Zhao
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB)Jilin UniversityChangchun130022China
| | - Xiao‐Bo Chen
- Department of Mechanical, Manufacturing, and Mechatronics EngineeringSchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
16
|
Sun F, Zhang J, Liu T, Yao H, Wang L, Meng H, Gao Y, Cao Y, Yao B, Xu J, Fu J. A Versatile Microporous Design toward Toughened yet Softened Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410650. [PMID: 39460439 DOI: 10.1002/adma.202410650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Realizing the full potential of self-healing materials in stretchable electronics necessitates not only low modulus to enable high adaptivity, but also high toughness to resist crack propagation. However, existing toughening strategies for soft self-healing materials have only modestly improves mechanical dissipation near the crack tip (ГD), and invariably compromise the material's inherent softness and autonomous healing capabilities. Here, a synthetic microporous architecture is demonstrated that unprecedently toughens and softens self-healing materials without impacting their intrinsic self-healing kinetics. This microporous structure spreads energy dissipation across the entire material through a bran-new dissipative mode of adaptable crack movement (ГA), which substantially increases the fracture toughness by 31.6 times, from 3.19 to 100.86 kJ m-2, and the fractocohesive length by 20.7 times, from 0.59 mm to 12.24 mm. This combination of unprecedented fracture toughness (100.86 kJ m-2) and centimeter-scale fractocohesive length (1.23 cm) surpasses all previous records for synthetic soft self-healing materials and even exceeds those of light alloys. Coupled with significantly enhanced softness (0.43 MPa) and nearly perfect autonomous self-healing efficiency (≈100%), this robust material is ideal for constructing durable kirigami electronics for wearable devices.
Collapse
Affiliation(s)
- FuYao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JingYi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hai Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - HengYu Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - YunLong Gao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - YanFeng Cao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - BoWen Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JianHua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JiaJun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
17
|
Chen H, Sang M, Pan Y, Duan S, Hu Y, Gong X. Fireproof Cavity Structure with Enhanced Impact Resistance and Thermal Insulation toward Safeguarding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62639-62653. [PMID: 39492797 DOI: 10.1021/acsami.4c12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Developing devices emphasizing safety protection is becoming increasingly important due to the widespread occurrence of impact damage and thermal hazards. Herein, the F-SSG/TPU-based circular cavity structure (FC) is developed through a convenient and efficient template method, which can effectively achieve anti-impact and thermal insulation for protection. The flame-retardant shear stiffening gel/thermoplastic urethane (F-SSG/TPU) is synthesized through the dynamic interaction between the SSG, TPU, and modified ammonium polyphosphate (APP@UiO-66-NH2) by thermo-solvent reactions. The developed FC can dissipate the impact force from 4.19 to 0.99 kN at 45 cm impacting heights, indicating good anti-impact performance. Moreover, the thermal insulation test demonstrates that the FC achieves a temperature drop of 76 °C at 160 °C attributed to the unique cavity structure design. Under the continuous shock of high-temperature flame, FC remains intact, and its performance is almost undamaged. These results elaborate that the designed FC can effectively resist various damage, such as high-temperature shock and collision. Then, a wearable wristband integrated with FC is developed which exhibits superior impact resistance and heat insulation properties compared with commercial wristbands. In short, this cavity structure based on high-performance F-SSG/TPU material shows promising potential applications in the protection field.
Collapse
Affiliation(s)
- Hong Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
- Anhui Weiwei Rubber Parts Group Co., Ltd., Tongcheng 231460, China
| | - Yucheng Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Shilong Duan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui 230026, PR China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui 230026, PR China
| |
Collapse
|
18
|
Lin X, Li CY, Liang LX, Guo QY, Zhang Y, Fu SR, Zhang Q, Chen F, Han D, Fu Q. Organic-inorganic covalent-ionic network enabled all-in-one multifunctional coating for flexible displays. Nat Commun 2024; 15:9680. [PMID: 39516461 PMCID: PMC11549396 DOI: 10.1038/s41467-024-54083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Touch displays are ubiquitous in modern technologies. However, current protective methods for emerging flexible displays against static, scratches, bending, and smudge rely on multilayer materials that impede progress towards flexible, lightweight, and multifunctional designs. Developing a single coating layer integrating all these functions remains challenging yet highly anticipated. Herein, we introduce an organic-inorganic covalent-ionic hybrid network that leverages the reorganizing interaction between siloxanes (i.e., trifluoropropyl-funtionalized polyhedral oligomeric silsesquioxane and cyclotrisiloxane) and fluoride ions. This nanoscale organic-inorganic covalent-ionic hybridized crosslinked network, combined with a low surface energy trifluoropropyl group, offers a monolithic layer coating with excellent optical, antistatic, anti-smudge properties, flexibility, scratch resistance, and recyclability. Compared with existing protective materials, this all-in-one coating demonstrates comprehensive multifunctionality and closed-loop recyclability, making it ideal for future flexible displays and contributing to ecological sustainability in consumer electronics.
Collapse
Affiliation(s)
- Xiong Lin
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Chen-Yu Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Lu-Xuan Liang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Qing-Yun Guo
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yongzheng Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Si-Rui Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Qin Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Feng Chen
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China
| | - Di Han
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
19
|
Fan J, Zhang J. Preparation of Self-healing Thermoplastic Polysiloxane-Polyurea/Polyether-Polyurea Elastomer Blends with a Co-continuous Microphase Structure and In-Depth Research on Their Synergistic Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54885-54896. [PMID: 39320961 DOI: 10.1021/acsami.4c12019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Polymer blending has been an important method to create materials with specific properties that have synergistic effects. However, there are few reports on the mechanism of synergistic effects. It is well known that it is quite difficult to obtain ideal blends composed of nonpolar organosilicon polymers and polar polymers. In this paper, thermoplastic polyurea elastomer blends with a co-continuous microphase structure consisting of polysiloxane-polyurea (PDMS-PUA), polyether amine-polyurea (PEA-PUA), and compatibilizer PDMS-PUA-grafted PEA-PUA (PDMS-PUA-g-PEA-PUA) were prepared for the first time. For the first time, introduction of polysiloxane does not sacrifice mechanical properties of thermoplastic polyurea elastomers. For example, the tensile strength of the elastomer blend with 30 wt % PDMS-PUA content reached 25.7 MPa, which is higher than those of PEA-PUA and PDMS-PUA. The blends also show typical outstanding characters such as exceptional heat and water resistance. The mechanism of the synergistic effect on mechanical properties is revealed based on in-depth studies on mutual interphase interaction. In situ variable temperature infrared spectroscopic analysis (VTIR) shows that compatibilization facilitates the construction of a denser hydrogen bonding network at the blend interface, which is thought to play a key role in the co-continuous microphase structure. Microscopic morphological characterization shows that PDMS-PUA and PEA-PUA phases are deformed and oriented together during the stretching process, thus jointly resisting external forces. Moreover, the blends show an exceptional self-healing ability due to their strong and reversible hydrogen bonding network.
Collapse
Affiliation(s)
- Jinlong Fan
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Zhang
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Zibo 256401, China
| |
Collapse
|
20
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
21
|
Zou H, Li S, Wang Z, Wei Z, Hu R, Wang T, Zhao F, Zhang Y, Yang Y. Strong and Healable Elastomers with Photothermal-Stimulus Dynamic Nanonetworks Enabled by Subnano Ultrafine MoO 3-x Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48363-48373. [PMID: 39221601 DOI: 10.1021/acsami.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
One-dimensional nanomaterials have become one of the most available nanoreinforcing agents for developing next-generation high-performance functional self-healing composites owing to their unique structural characteristics and surface electron structure. However, nanoscale control, structural regulation, and crystal growth are still enormous challenges in the synthesis of specific one-dimensional nanomaterials. Here, oxygen-defective MoO3-x nanowires with abundant surface dynamic bonding were successfully synthesized as novel nanofillers and photothermal response agents combined with a polyurethane matrix to construct composite elastomers, thus achieving mechanically enhanced and self-healing properties. Benefiting from the surface plasmon resonance of the MoO3-x nanowires and interfacial multiple dynamic bonding interactions, the composite elastomers demonstrated strong mechanical performance (with a strength of 31.45 MPa and elongation of 1167.73%) and ultrafast photothermal toughness self-healing performance (20 s and an efficiency of 94.34%). The introduction of MoO3-x nanowires allows the construction of unique three-dimensional cross-linked nanonetworks that can move and regulate interfacial dynamic interactions under 808 nm infrared laser stimulation, resulting in controlled mechanical and healing performance. Therefore, such special elastomers with strong photothermal responses and mechanical properties are expected to be useful in next-generation biological antibacterial materials, wearable devices, and artificial muscles.
Collapse
Affiliation(s)
- Hongli Zou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Sijia Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Zhuo Wang
- National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Baotou 014000, Inner Mongolia, P.R. China
| | - Zehui Wei
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Renquan Hu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Teng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Fu Zhao
- National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Baotou 014000, Inner Mongolia, P.R. China
| | - Yaoming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, P.R. China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| |
Collapse
|
22
|
Xie Z, Zhu J, Dou Z, Zhang Y, Wang K, Wu K, Fu Q. Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film. Nat Commun 2024; 15:7817. [PMID: 39242564 PMCID: PMC11379682 DOI: 10.1038/s41467-024-52234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Dielectric polymer composites for film capacitors have advanced significantly in recent decades, yet their practical implementation in industrial-scale, thin-film processing faces challenges, particularly due to limited biaxial stretchability. Here, we introduce a mechanochemical solution that applies liquid metal onto rigid dielectric fillers (e.g. boron nitride), dramatically transforming polymer-filler interface characteristics. This approach significantly reduces modulus mismatch and stress concentration at the interface region, enabling polypropylene composites to achieve biaxial stretching ratio up to 450 × 450%. Furthermore, liquid metal integration enhances boron nitride's dielectric polarization while maintaining inherent insulation, producing high-dielectric-constant, low-loss films. These films, only microns thick yet quasi square meters in area, achieve a 55% increase in energy density over commercial biaxially-oriented polypropylene (from 2.9 to 4.5 J cm-3 at 550 MV/m), keeping 90% discharge efficiency. Coupled with improved thermal conductivity, durability, and device capacitance, this distinctive interface engineering approach makes these composites promising for high-performance film capacitors.
Collapse
Affiliation(s)
- Zilong Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianan Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ke Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Zhan H, Wen B, Tian B, Zheng K, Li Q, Wu W. Printed Self-Healing Stretchable Electronics for Bio-signal Monitoring and Intelligent Packaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400740. [PMID: 38693082 DOI: 10.1002/smll.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Integrating self-healing capabilities into printed stretchable electronic devices is important for improving performance and extending device life. However, achieving printed self-healing stretchable electronic devices with excellent device-level healing ability and stretchability while maintaining outstanding electrical performance remains challenging. Herein, a series of printed device-level self-healing stretchable electronic devices is achieved by depositing liquid metal/silver fractal dendrites/polystyrene-block-polyisoprene-block-polystyrene (LM/Ag FDs/SIS) conductive inks onto a self-healing thermoplastic polyurethane (TPU) film via screen printing method. Owing to the fluidic properties of the LM and the interfacial hydrogen bonding and disulfide bonds of TPU, the as-obtained stretchable electronic devices maintain good electronic properties under strain and exhibit device-level self-healing properties without external stimulation. Printed self-healing stretchable electrodes possess high electrical conductivity (1.6 × 105 S m-1), excellent electromechanical properties, and dynamic stability, with only a 2.5-fold increase in resistance at 200% strain, even after a complete cut and re-healing treatment. The printed self-healing capacitive stretchable strain sensor shows good linearity (R2 ≈0.9994) in a wide sensing range (0%-200%) and is successfully applied to bio-signal detection. Furthermore, the printed self-healing electronic smart label is designed and can be used for real-time environmental monitoring, which exhibits promising potential for practical application in food preservation packaging.
Collapse
Affiliation(s)
- Haoye Zhan
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bo Wen
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Quancai Li
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
24
|
Chen J, Chen A, Zou C, Chen C. Synthesis of Photoresponsive Fast Self-healing Polyolefin Composites by Nickel-Catalyzed Copolymerization of Ethylene and Lignin Cluster Monomers. Angew Chem Int Ed Engl 2024; 63:e202404603. [PMID: 38764411 DOI: 10.1002/anie.202404603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/21/2024]
Abstract
Polymers may suffer from sudden mechanical damages during long-term use under various harsh operating environments. Rapid and real-time self-healing will extend their service life, which is particularly attractive in the context of circular economy. In this work, a lignin cluster polymerization strategy (LCPS) was designed to prepare a series of lignin functionalized polyolefin composites with excellent mechanical properties through nickel catalyzed copolymerization of ethylene and lignin cluster monomers. These composites can achieve rapid self-healing within 30 seconds under a variety of extreme usage environments (underwater, seawater, extremely low temperatures as low as -60 °C, organic solvents, acid/alkali solvents, etc.), which is of great significance for real-time self-healing of sudden mechanical damage. More importantly, the dynamic cross-linking network within these composites enable great re-processability and amazing sealing performances.
Collapse
Affiliation(s)
- Jiawei Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ao Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
25
|
Gao H, Zhao F, Liu J, Meng Z, Han Z, Liu Y. What Exactly Can Bionic Strategies Achieve for Flexible Sensors? ACS APPLIED MATERIALS & INTERFACES 2024; 16:38811-38831. [PMID: 39031068 DOI: 10.1021/acsami.4c06905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Flexible sensors have attracted great attention in the field of wearable electronic devices due to their deformability, lightness, and versatility. However, property improvement remains a key challenge. Fortunately, natural organisms exhibit many unique response mechanisms to various stimuli, and the corresponding structures and compositions provide advanced design ideas for the development of flexible sensors. Therefore, this Review highlights recent advances in sensing performance and functional characteristics of flexible sensors from the perspective of bionics for the first time. First, the "twins" of bionics and flexible sensors are introduced. Second, the enhancements in electrical and mechanical performance through bionic strategies are summarized according to the prototypes of humans, plants, and animals. Third, the functional characteristics of bionic strategies for flexible sensors are discussed in detail, including self-healing, color-changing, tangential force, strain redistribution, and interfacial resistance. Finally, we summarize the challenges and development trends of bioinspired flexible sensors. This Review aims to deepen the understanding of bionic strategies and provide innovative ideas and references for the design and manufacture of next-generation flexible sensors.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Fangyi Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Jiaxi Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, Liaoning 110167, China
| |
Collapse
|
26
|
Sokjorhor J, Yimyai T, Thiramanas R, Crespy D. Self-healing, antibiofouling and anticorrosion properties enabled by designing polymers with dynamic covalent bonds and responsive linkages. J Mater Chem B 2024; 12:6827-6839. [PMID: 38904191 DOI: 10.1039/d4tb00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coating metal structures with a protective material is a popular strategy to prevent their deterioration due to corrosion. However, maintaining the barrier properties of coatings after their mechanical damage is challenging. Herein, we prepared multifunctional coatings with self-healing ability to conserve their anticorrosion performance after damage. The coating was formed by blending synthesized redox-responsive copolymers with the ability to release a corrosion inhibitor upon the onset of corrosion with synthesized self-healing polyurethanes containing disulfide bonds. The corrosion rate of steel substrates coated with a blend is approximately 24 times lower than that of steel coated with only self-healing polyurethane. An exceptional healing efficiency, as high as 95%, is obtained after mechanical damage. The antibiofouling property against bacterial and microalgal attachments on coatings is facilitated by the repellent characteristic of fluorinated segments and the biocidal activity of the inhibitor moieties in the copolymer.
Collapse
Affiliation(s)
- Jenpob Sokjorhor
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Tiwa Yimyai
- Department of Chemical and Bimolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Raweewan Thiramanas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
27
|
Yang D, Zhao K, Yang R, Zhou SW, Chen M, Tian H, Qu DH. A Rational Design of Bio-Derived Disulfide CANs for Wearable Capacitive Pressure Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403880. [PMID: 38723049 DOI: 10.1002/adma.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Classic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced. The polymer network possesses a mechanically ductile character with an Arrhenius-type temperature-dependent viscoelasticity. The assembled capacitive pressure sensor is able to achieve a sensitivity of up to 9.26 kPa-1, fast response/recovery time of 32/24 ms, and can deliver consistent signals of continuous consecutive cycles even after being self-healed or closed-loop recycled for real-time detection of human motions. This is expected to be of high interest for current capacitive sensing research to move toward a life-like, high performance, and circular economy direction.
Collapse
Affiliation(s)
- Ding Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Kai Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rulin Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
28
|
Cheng J, Yao X, Zhang Z, Tan Y, Hu N, Ma C, Zhang G. Intelligent anti-impact elastomers by precisely tailoring the topology of modular polymer networks. MATERIALS HORIZONS 2024; 11:3143-3156. [PMID: 38629134 DOI: 10.1039/d4mh00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
High-performance elastomers are essential in daily life and various industrial sectors such as personal protection, soft electronics, and vibration control. Nevertheless, despite massive efforts, concurrently achieving ultrahigh flexibility and remarkable impact resistance continues to be elusive. Herein, we report an innovative modular construction strategy that employs a topology-tailoring polymer network consisting of stereoscopic (epoxy-oligosiloxane nanoclusters) and linear (amino-terminated polyurea) building blocks as independent modules to develop intelligent anti-impact elastomers via an epoxy-amine mechanism. By precisely tailoring the topology of building blocks, the elastomers demonstrate high flexibility and toughness, remarkable impact responsiveness and ultrahigh energy dissipation. Their anti-impact ability surpasses those of most common soft and rigid materials such as steel, plastic, rubber, foam, or even polyborosiloxane. Moreover, the elastomers are well-qualified for use in flexible display technologies, owing to their high transparency (>92% transmittance), exceptional fold-resistance (no creasing after 10 000 bends), and good thermal stability (no discoloration at 100 °C). Furthermore, the elastomers exhibit excellent versatility, enabling them to be combined with either soft or rigid materials to generate composites with ultrahigh puncture and ballistic resistance. This study offers a promising framework for the design and fabrication of intelligent anti-impact elastomers and provides valuable insights into the development of next-generation protective materials.
Collapse
Affiliation(s)
- Jianfeng Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Xianhua Yao
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhipeng Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yizhong Tan
- National Defense Engineering College, Army Engineering University of PLA, Nanjing 210007, P. R. China
| | - Nan Hu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chunfeng Ma
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China.
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China.
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
29
|
Chen J, Wang Z, Yao B, Geng Y, Wang C, Xu J, Chen T, Jing J, Fu J. Ultra-Highly Stiff and Tough Shape Memory Polyurea with Unprecedented Energy Density by Precise Slight Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401178. [PMID: 38648568 DOI: 10.1002/adma.202401178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Shape memory polymers (SMPs) have attracted significant attention and hold vast potential for diverse applications. Nevertheless, conventional SMPs suffer from notable shortcomings in terms of mechanical properties, environmental stability, and energy density, significantly constraining their practical utility. Here, inspired by the structure of muscle fibers, an innovative approach that involves the precise incorporation of subtle, permanent cross-linking within a hierarchical hydrogen bonding supramolecular network is reported. This novel strategy has culminated in the development of covalent and supramolecular shape memory polyurea, which exhibits exceptional mechanical properties, including high stiffness (1347 MPa), strength (82.4 MPa), and toughness (312.7 MJ m-3), ensuring its suitability for a wide range of applications. Furthermore, it boasts remarkable recyclability and repairability, along with excellent resistance to moisture, heat, and solvents. Moreover, the polymer demonstrates outstanding shape memory effects characterized by a high energy density (24.5 MJ m-3), facilitated by the formation of strain-induced oriented nanostructures that can store substantial amounts of entropic energy. Simultaneously, it maintains a remarkable 96% shape fixity and 99% shape recovery. This delicate interplay of covalent and supramolecular bonds opens up a promising pathway to the creation of high-performance SMPs, expanding their applicability across various domains.
Collapse
Affiliation(s)
- Jiaoyang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhifeng Wang
- Testing Center, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Bowen Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
30
|
Kumar V, Alam MN, Park SS. Review of Recent Progress on Silicone Rubber Composites for Multifunctional Sensor Systems. Polymers (Basel) 2024; 16:1841. [PMID: 39000697 PMCID: PMC11244113 DOI: 10.3390/polym16131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The latest progress (the year 2021-2024) on multifunctional sensors based on silicone rubber is reported. These multifunctional sensors are useful for real-time monitoring through relative resistance, relative current change, and relative capacitance types. The present review contains a brief overview and literature survey on the sensors and their multifunctionalities. This contains an introduction to the different functionalities of these sensors. Following the introduction, the survey on the types of filler or rubber and their fabrication are briefly described. The coming section deals with the fabrication methodology of these composites where the sensors are integrated. The special focus on mechanical and electro-mechanical properties is discussed. Electro-mechanical properties with a special focus on response time, linearity, and gauge factor are reported. The next section of this review reports the filler dispersion and its role in influencing the properties and applications of these sensors. Finally, various types of sensors are briefly reported. These sensors are useful for monitoring human body motions, breathing activity, environment or breathing humidity, organic gas sensing, and, finally, smart textiles. Ultimately, the study summarizes the key takeaway from this review article. These conclusions are focused on the merits and demerits of the sensors and are followed by their future prospects.
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Md Najib Alam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sang Shin Park
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
31
|
Qin J, Chen Y, Guo X, Huang Y, Chen G, Zhang Q, He G, Zhu S, Ruan X, Zhu H. Regulation of Hard Segment Cluster Structures for High-performance Poly(urethane-urea) Elastomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400255. [PMID: 38602431 PMCID: PMC11165464 DOI: 10.1002/advs.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Elastomers are widely used in daily life; however, the preparation of degradable and recyclable elastomers with high strength, high toughness, and excellent crack resistance remains a challenging task. In this report, a polycaprolactone-based poly(urethane-urea) elastomer is presented with excellent mechanical properties by optimizing the arrangement of hard segment clusters. It is found that long alkyl chains of the chain extenders lead to small and evenly distributed hard segment clusters, which is beneficial for improving mechanical properties. Together with the multiple hydrogen bond structure and stress-induced crystallization, the obtained elastomer exhibits a high strength of 63.3 MPa, an excellent toughness of 431 MJ m-3 and an outstanding fracture energy of 489 kJ m-2, while maintaining good recyclability and degradability. It is believed that the obtained elastomer holds great promise in various application fields and it contributes to the development of a sustainable society.
Collapse
Affiliation(s)
- Jianliang Qin
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Yifei Chen
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
| | - Xiwei Guo
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Yi Huang
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Guoqing Chen
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Qi Zhang
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Gaohong He
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
- State Key Laboratory of Fine ChemicalsR&D Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian116023China
| | - Shiping Zhu
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Xuehua Ruan
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
| | - He Zhu
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| |
Collapse
|
32
|
Laysandra L, Rusli RA, Chen YW, Chen SJ, Yeh YW, Tsai TL, Huang JH, Chuang KS, Njotoprajitno A, Chiu YC. Elastic and Self-Healing Copolymer Coatings with Antimicrobial Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25194-25209. [PMID: 38684227 PMCID: PMC11103657 DOI: 10.1021/acsami.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The revolutionary self-healing function for long-term and safe service processes has inspired researchers to implement them in various fields, including in the application of antimicrobial protective coatings. Despite the great advances that have been made in the field of fabricating self-healing and antimicrobial polymers, their poor transparency and the trade-off between the mechanical and self-healing properties limit the utility of the materials as transparent antimicrobial protective coatings for wearable optical and display devices. Considering the compatibility in the blending process, our group proposed a self-healing, self-cross-linkable poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} copolymer (AP)-based protective coating combined with two types of commercial cationic antimicrobial agents (i.e., dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)), leading to the fabrication of a multifunctional modified compound film of (AP/b%CHG)-grafted-a%DTSACL. The first highlight of this research is that the reactivity of the hydroxyl group in the N-(hydroxymethyl)acrylamide of the copolymer side chains under thermal conditions facilitates the "grafting to" process with the trimethoxysilane groups of DTSACL to form AP-grafted-DTSACL, yielding favorable thermal stability, improvement in hydrophobicity, and enhancement of mechanical strength. Second, we highlight that the addition of CHG can generate covalent and noncovalent interactions in a complex manner between the two biguanide groups of CHG with the AP and DTSACL via a thermal-triggered cross-linking reaction. The noncovalent interactions synergistically serve as diverse dynamic hydrogen bonds, leading to complete healing upon scratches and even showing over 80% self-healing efficiency on full-cut, while covalent bonding can effectively improve elasticity and mechanical strength. The soft nature of CHG also takes part in improving the self-healing of the copolymer. Moreover, it was discovered that the addition of CHG can enhance antimicrobial effectiveness, as demonstrated by the long-term superior antibacterial activity (100%) against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and the antifouling function on a glass substrate and/or a silica wafer coated by the modified polymer.
Collapse
Affiliation(s)
- Livy Laysandra
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Randy Arthur Rusli
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Wei Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Shi-Ju Chen
- Taipei
Municipal Zhongshan Girls High School, Taipei 10617, Taiwan
| | - Yao-Wei Yeh
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
| | - Tsung-Lin Tsai
- Department
of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jui-Hsiung Huang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Kao-Shu Chuang
- Department
of Green Material Technology, Green Technology
Research Institute, CPC Corporation, Kaohsiung City 811, Taiwan
| | - Andreas Njotoprajitno
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
33
|
Lai J, Wang X, Zhao Q, Zhang C, Gong T, He L, Wang Z, Xia H. 3D Printing Self-Healing and Self-Adhesive Elastomers for Wearable Electronics in Amphibious Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16880-16892. [PMID: 38506556 DOI: 10.1021/acsami.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
To meet the demands of challenging usage scenarios, there is an increasing need for flexible electronic skins that can operate properly not only in terrestrial environments but also extend to complex aquatic conditions. In this study, we develop an elastomer by incorporating dynamic urea bonds and hydrogen bonds into the polydimethylsiloxane backbone, which exhibits excellent autonomous self-healing and reversible adhesive performance in both dry and wet environments. A multifunctional flexible sensor with excellent sensing stability, amphibious self-healing capacity, and amphibious self-adhesive performance is fabricated through solvent-free 3D printing. The sensor has a high sensing sensitivity (GF = 45.1) and a low strain response threshold (0.25%) and can be used to detect small human movements and physiological activities, such as muscle movement, joint movement, respiration, and heartbeat. The wireless wearable sensing system assembled by coupling this device with a bluetooth transmission system is suitable for monitoring strenuous human movement in amphibious environments, such as playing basketball, cycling, running (terrestrial environments), and swimming (aquatic environments). The design strategy provides insights into enhancing the self-healing and self-adhesive properties of soft materials and promises a prospective avenue for fabricating flexible electronic skin that can work properly in amphibious environments.
Collapse
Affiliation(s)
- Jialiang Lai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaorong Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Qifan Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Gong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lirong He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
35
|
Morang S, Bandyopadhyay A, Borah N, Kar A, Mandal BB, Karak N. Photoluminescent Self-Healable Waterborne Polyurethane/Mo and S Codoped Graphitic Carbon Nitride Nanocomposite with Bioimaging and Encryption Capability. ACS APPLIED BIO MATERIALS 2024; 7:1910-1924. [PMID: 38391158 DOI: 10.1021/acsabm.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Creating polymers that combine various functions within a single system expands the potential applications of such polymeric materials. However, achieving polymer materials that possess simultaneously elevated strength, toughness, and self-healing capabilities, along with special properties, remains a significant challenge. The present study demonstrates the preparation of S and Mo codoped graphitic carbon nitride (g-C3N4) (Mo@S-CN) nanohybrid and the fabrication of self-healing waterborne polyurethane (SHWPU)/Mo@S-CN (SHWPU/NS) nanocomposites for advanced applications. Mo@S-CN is an intriguing combination of g-C3N4 nanosheets and molybdenum oxide (MoOx) nanorods, forming a complex lamellar structure. This unique arrangement significantly improves the inborn properties of SHWPU to an impressive degree, especially mechanical strength (28.37-34.11 MPa), fracture toughness (73.65-140.98 MJ m-2), and thermal stability (340.17-348.01 °C), and introduces fluorescence activity into the matrix. Interestingly, a representative SHWPU/NS0.5 film is so tough that a dumbbell of 15 kg, which is 53,003 times heavier than the weight of the film, can be successfully lifted without any significant crack. Remarkably, fluorescence activity is developed because of electronic excitations occurring within the repeating polymeric tris-triazine units of the Mo@S-CN nanohybrid. This fascinating feature was effectively harnessed by assessing the usability of aqueous dispersions of the Mo@S-CN nanohybrid and photoluminescent SHWPU/NS nanocomposites as sustainable stains for bioimaging of human dermal fibroblast cells and anticounterfeiting materials, respectively. The in vitro fluorescence tagging test showed blue emission from 365 nm excitation, green emission from 470 nm excitation, and red emission from 545 nm excitation. Most importantly, in vitro hemocompatibility assessment, in vitro cytocompatibility, cell proliferation assessment, and cellular morphology assessment supported the biocompatibility nature of the Mo@S-CN nanohybrid and SHWPU/NS nanocomposites. Thus, these materials can be used for advanced applications including bioimaging.
Collapse
Affiliation(s)
- Samiran Morang
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nobomi Borah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Annesha Kar
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| |
Collapse
|
36
|
Yang H, Ding S, Wang J, Sun S, Swaminathan R, Ng SWL, Pan X, Ho GW. Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat Commun 2024; 15:1636. [PMID: 38388467 PMCID: PMC10883982 DOI: 10.1038/s41467-024-45786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Compliant strain sensors are crucial for soft robots' perception and autonomy. However, their deformable bodies and dynamic actuation pose challenges in predictive sensor manufacturing and long-term robustness. This necessitates accurate sensor modelling and well-controlled sensor structural changes under strain. Here, we present a computational sensor design featuring a programmed crack array within micro-crumples strategy. By controlling the user-defined structure, the sensing performance becomes highly tunable and can be accurately modelled by physical models. Moreover, they maintain robust responsiveness under various demanding conditions including noise interruptions (50% strain), intermittent cyclic loadings (100,000 cycles), and dynamic frequencies (0-23 Hz), satisfying soft robots of diverse scaling from macro to micro. Finally, machine intelligence is applied to a sensor-integrated origami robot, enabling robotic trajectory prediction (<4% error) and topographical altitude awareness (<10% error). This strategy holds promise for advancing soft robotic capabilities in exploration, rescue operations, and swarming behaviors in complex environments.
Collapse
Affiliation(s)
- Haitao Yang
- Institute of Flexible Electronics (IFE) & Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shuo Ding
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jiahao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shuo Sun
- Department of Mechanical Engineering, National University of Singapore, Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Ruphan Swaminathan
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Serene Wen Ling Ng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xinglong Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| |
Collapse
|
37
|
Jia H, Jimbo K, Yokochi H, Otsuka H, Michinobu T. Self-healing and shape-memory polymers based on cellulose acetate matrix. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2320082. [PMID: 38455385 PMCID: PMC10919307 DOI: 10.1080/14686996.2024.2320082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
The creation of self-healing polymers with superior strength and stretchability from biodegradable materials is attracting increasing attention. In this study, we synthesized new biomass-derived cellulose acetate (CA) derivatives by ring-opening graft polymerization of δ-valerolactone followed by the introduction of ureidopyrimidinone (Upy) groups in the polymer side chains. Due to the semicrystalline aliphatic characteristics of the side chain poly(δ-valerolactone) (PVL) and quadruple hydrogen bonds formed by the Upy groups, the stretchability of the resulting polymers was significantly enhanced. Moreover, the shape memory ability and self-healing property (58.3% of self-healing efficiency) were successfully imparted to the polymer. This study demonstrates the great significance of using biomass sources to create self-healing polymers.
Collapse
Affiliation(s)
- Han Jia
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
| | - Keiya Jimbo
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
| | - Hirogi Yokochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
| |
Collapse
|
38
|
Wang L, Guo S, Zhang X. Novel Radiochromic Elastomer Dosimeter Based on the Self-Sensitizing Effect of Disulfide Bonds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6474-6484. [PMID: 38285620 DOI: 10.1021/acsami.3c17945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
γ-Irradiation is a kind of high-energy ionizing ray, which has widespread applications in material, food, and medical industries as well as in the environment. Since this irradiation is invisible, quantitatively monitoring its exposure doses is crucial to irradiated targets. As a type of dosimeter, radiochromic dosimeters can detect γ-irradiation by color changing, and its strategy to realize the radiochromic behavior basically relies on active radicals from radiolysis of an external environmental medium. However, the primary problem of this external environment-mediated sensitization strategy is that it complicates the components of dosimeters. Herein, we present a novel type of self-sensitizing radiochromic poly(urethane-urea) elastomers (PUUEs), where disulfide bonds, serving as radiation-responsive and sensitizing units, are introduced. This is the first attempt to utilize radicals generated from radiolysis of weak bonds in a solid polymer matrix to sensitize color change of dye-doped radiochromic dosimeters. Moreover, it is intriguing that the simultaneously introduced aryl hydrazone bond endows dosimeters with excellent color retention and maintains the Δa* value of 72.9% even after 1 month on the basis of the as-irradiated specimen. Besides, the metathesis of disulfide bonds not only endows dosimeters with better self-healing capability, but also accelerates the postcuring behavior and hydrogen bond reconfiguration, resulting in improved mechanical performance.
Collapse
Affiliation(s)
- Lei Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xianlong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
39
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Ai L, Lin W, Cao C, Li P, Wang X, Lv D, Li X, Yang Z, Yao X. Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies. Nat Commun 2023; 14:7723. [PMID: 38001116 PMCID: PMC10673831 DOI: 10.1038/s41467-023-43574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The rapid-developing soft robots and wearable devices require flexible conductive materials to maintain electric functions over a large range of deformations. Considerable efforts are made to develop stretchable conductive materials; little attention is paid to the frequent failures of integrated circuits caused by the interface mismatch of soft substrates and rigid silicon-based microelectronics. Here, we present a stretchable solder with good weldability that can strongly bond with electronic components, benefiting from the hierarchical assemblies of liquid metal particles, small-molecule modulators, and non-covalently crosslinked polymer matrix. Our self-solder shows high conductivity (>2×105 S m-1), extreme stretchability (~1000%, and >600% with chip-integrated), and high toughness (~20 MJ m-3). Additionally, the dynamic interactions within our solder's surface and interior enable a range of unique features, including ease of integration, component substitution, and circuit recyclability. With all these features, we demonstrated an application as thermoforming technology for three-dimensional (3D) conformable electronics, showing potential in reducing the complexity of microchip interfacing, as well as scalable fabrication of chip-integrated stretchable circuits and 3D electronics.
Collapse
Affiliation(s)
- Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Weikang Lin
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyu Li
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhengbao Yang
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
41
|
Ikura R, Kajimoto K, Park J, Murayama S, Fujiwara Y, Osaki M, Suzuki T, Shirakawa H, Kitamura Y, Takahashi H, Ohashi Y, Obata S, Harada A, Ikemoto Y, Nishina Y, Uetsuji Y, Matsuba G, Takashima Y. Highly Stretchable Stress-Strain Sensor from Elastomer Nanocomposites with Movable Cross-links and Ketjenblack. ACS POLYMERS AU 2023; 3:394-405. [PMID: 37841949 PMCID: PMC10571104 DOI: 10.1021/acspolymersau.3c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Practical applications like very thin stress-strain sensors require high strength, stretchability, and conductivity, simultaneously. One of the approaches is improving the toughness of the stress-strain sensing materials. Polymeric materials with movable cross-links in which the polymer chain penetrates the cavity of cyclodextrin (CD) demonstrate enhanced strength and stretchability, simultaneously. We designed two approaches that utilize elastomer nanocomposites with movable cross-links and carbon filler (ketjenblack, KB). One approach is mixing SC (a single movable cross-network material), a linear polymer (poly(ethyl acrylate), PEA), and KB to obtain their composite. The electrical resistance increases proportionally with tensile strain, leading to the application of this composite as a stress-strain sensor. The responses of this material are stable for over 100 loading and unloading cycles. The other approach is a composite made with KB and a movable cross-network elastomer for knitting dissimilar polymers (KP), where movable cross-links connect the CD-modified polystyrene (PSCD) and PEA. The obtained composite acts as a highly sensitive stress-strain sensor that exhibits an exponential increase in resistance with increasing tensile strain due to the polymer dethreading from the CD rings. The designed preparations of highly repeatable or highly responsive stress-strain sensors with good mechanical properties can help broaden their application in electrical devices.
Collapse
Affiliation(s)
- Ryohei Ikura
- Department
of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront
Research Center for Fundamental Sciences, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kota Kajimoto
- Department
of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department
of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront
Research Center for Fundamental Sciences, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shunsuke Murayama
- Graduate
School of Organic Materials Engineering, Yamagata University. 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yusei Fujiwara
- Department
of Mechanical Engineering, Osaka Institute
of Technology.5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Motofumi Osaki
- Department
of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront
Research Center for Fundamental Sciences, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tomohiro Suzuki
- Kanagawa
Technical Center, Yushiro Chemical Industry
Co., Ltd. 1580 Tabata, Samukawa-machi, Koza-gun, Kanagawa 253-0193, Japan
| | - Hidenori Shirakawa
- Kanagawa
Technical Center, Yushiro Chemical Industry
Co., Ltd. 1580 Tabata, Samukawa-machi, Koza-gun, Kanagawa 253-0193, Japan
| | - Yujiro Kitamura
- Kanagawa
Technical Center, Yushiro Chemical Industry
Co., Ltd. 1580 Tabata, Samukawa-machi, Koza-gun, Kanagawa 253-0193, Japan
| | - Hiroaki Takahashi
- Kanagawa
Technical Center, Yushiro Chemical Industry
Co., Ltd. 1580 Tabata, Samukawa-machi, Koza-gun, Kanagawa 253-0193, Japan
| | - Yasumasa Ohashi
- Kanagawa
Technical Center, Yushiro Chemical Industry
Co., Ltd. 1580 Tabata, Samukawa-machi, Koza-gun, Kanagawa 253-0193, Japan
| | - Seiji Obata
- Research
Core for Interdisciplinary Sciences, Okayama
University.3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Akira Harada
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University. 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute. 1-1-1 Kouto, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuta Nishina
- Research
Core for Interdisciplinary Sciences, Okayama
University.3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Graduate
School of Natural Science and Technology, Okayama University. 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasutomo Uetsuji
- Department
of Mechanical Engineering, Osaka Institute
of Technology.5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Go Matsuba
- Graduate
School of Organic Materials Engineering, Yamagata University. 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yoshinori Takashima
- Department
of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront
Research Center for Fundamental Sciences, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University. 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Chen L, Xu J, Zhu M, Zeng Z, Song Y, Zhang Y, Zhang X, Deng Y, Xiong R, Huang C. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. MATERIALS HORIZONS 2023; 10:4000-4032. [PMID: 37489089 DOI: 10.1039/d3mh00236e] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Recently, polymers capable of repeatedly self-healing physical damage and restoring mechanical properties have attracted extensive attention. Among the various supramolecular chemistry, hydrogen-bonding (H-bonding) featuring reversibility, directionality and high per-volume concentration has become one of the most attractive directions for the development of self-healing polymers (SHPs). Herein, we review the recent advances in the design of high-performance SHPs based on different H-bonding types, for example, H-bonding motifs and excessive H-bonding. In particular, the effects of the structural design of SHPs on their mechanical performance and healing efficiency are discussed in detail. Moreover, we also summarize how to employ H-bonding-based SHPs for the preparation of self-healable electronic devices, focusing on promising topics, including energy harvesting devices, energy storage devices, and flexible sensing devices. Finally, the current challenges and possible strategies for the development of H-bonding-based SHPs and their smart electronic applications are highlighted.
Collapse
Affiliation(s)
- Long Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ziyuan Zeng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
43
|
Li C, Dong W, Li L, Dou Z, Li Y, Wei L, Zhang Q, Fu Q, Wu K. A strain-reinforcing elastomer adhesive with superior adhesive strength and toughness. MATERIALS HORIZONS 2023; 10:4183-4191. [PMID: 37534697 DOI: 10.1039/d3mh00966a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Strong and ductile adhesives often undergo both interfacial and cohesive failure during the debonding process. Herein, we report a rare self-reinforcing polyurethane adhesive that shows the different phenomenon of only interfacial failure yet still exhibiting superior adhesive strength and toughness. It is synthesized by designing a hanging adhesive moiety, hierarchical H-bond moieties, and a crystallizable soft segment into one macromolecular polyurethane. The former hanging adhesive moiety allows the hot-melt adhesive to effectively associate with the target substrate, providing sufficient adhesion energy; the latter hierarchical H-bond moieties and a crystallizable soft segment cooperate to enable the adhesive to undergo large lap-shear deformations through sacrificing weak bonds and mechano-responsive strength through the fundamental mechanism of strain-induced crystallization. As a result, this polyurethane adhesive can keep itself intact during the debonding process while still withstanding a high lap-shear strength and dissipating tremendous stress energy. Its adhesive strength and work of debonding are as high as 11.37 MPa and 10.32 kN m-1, respectively, outperforming most reported tough adhesives. This self-reinforcing adhesive is regarded as a new member of the family of strong and ductile adhesives, which will provide innovative chemical and structural inspirations for future conveniently detachable yet high-performance adhesives.
Collapse
Affiliation(s)
- Chuanlong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuhan Li
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liuhe Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
44
|
Chen P, Li F, Wang G, Ying B, Chen C, Tian Y, Chen M, Lee KJ, Ying WB, Zhu J. Toward Highly Matching the Dura Mater: A Polyurethane Integrating Biocompatible, Leak-Proof, and Self-Healing Properties. Macromol Biosci 2023; 23:e2300111. [PMID: 37222304 DOI: 10.1002/mabi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Indexed: 05/25/2023]
Abstract
The dura mater is the final barrier against cerebrospinal fluid leakage and plays a crucial role in protecting and supporting the brain and spinal cord. Head trauma, tumor resection and other traumas damage it, requiring artificial dura mater for repair. However, surgical tears are often unavoidable. To address these issues, the ideal artificial dura mater should have biocompatibility, anti-leakage, and self-healing properties. Herein, this work has used biocompatible polycaprolactone diol as the soft segment and introduced dynamic disulfide bonds into the hard segment, achieving a multifunctional polyurethane (LSPU-2), which integrated the above mentioned properties required in surgery. In particular, LSPU-2 matches the mechanical properties of the dura mater and the biocompatibility tests with neuronal cells demonstrate extremely low cytotoxicity and do not cause any negative skin lesions. In addition, the anti-leakage properties of the LSPU-2 are confirmed by the water permeability tester and the 900 mm H2 O static pressure test with artificial cerebrospinal fluid. Due to the disulfide bond exchange and molecular chain mobility, LSPU-2 could be completely self-healed within 115 min at human body temperature. Thus, LSPU-2 comprises one of the most promising potential artificial dura materials, which is essential for the advancement of artificial dura mater and brain surgery.
Collapse
Affiliation(s)
- Pandi Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Fenglong Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guyue Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Chao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Tian
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yoo-Seong, 34134, Republic of Korea
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
45
|
Zhang Z, Jiang X, Ma Y, Lu X, Jiang Z. High-Performance Branched Polymer Elastomer Based on a Topological Network Structure and Dynamic Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43048-43059. [PMID: 37647234 DOI: 10.1021/acsami.3c11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
High performance has always been the research focus of elastomers. However, there are inherent conflicts among properties of elastomers, such as strength and toughness, strength and damping performance, strength and self-healing ability, etc. Herein, first, we synthesized a unique structure of the dangling chain containing proton donors and receptors. Then, we design and fabricate a kind of high-performance elastomer with a gradient distribution of a dangling chain and a dynamic bond structure. The dangling chains of different lengths intertwine with each other and self-assemble to form a "dense accumulation" structure driven by hydrogen bonds, and the elastomer exhibits special micro/nano scale aggregated states and microphase separation. The "dense accumulation" structure plays a vital role in the increase of mechanical properties. Meanwhile, under the joint action of a dangling chain and a dynamic bond, the damping performance and self-healing performance of the elastomer are greatly enhanced. High strength (27.5 MPa), toughness (121.9 MJ·m-3), 94.8% healing efficiency and outstanding damping performance (tan δ ≥ 0.4, high damping temperature range up to 144 °C) are simultaneously achieved beyond the current state-of-the-art. This topoarchitected polymer with a gradient distribution of dangling chains successfully solves the defects of conventional branched polymers in deteriorating their mechanical properties. This material design provides a new strategy for the development of high-performance structural and functional integrated elastomers.
Collapse
Affiliation(s)
- Zhenpeng Zhang
- South China University of Technology, Guangzhou 501641, China
| | - Xiaolin Jiang
- South China University of Technology, Guangzhou 501641, China
| | - Yuanhao Ma
- South China University of Technology, Guangzhou 501641, China
| | - Xun Lu
- South China University of Technology, Guangzhou 501641, China
| | - Zhijie Jiang
- South China University of Technology, Guangzhou 501641, China
| |
Collapse
|
46
|
Zhong W, Hu R, Zhou S, Xu J, Wang K, Yao B, Xiong R, Fu J. Spatiotemporally Responsive Hydrogel Dressing with Self-Adaptive Antibacterial Activity and Cell Compatibility for Wound Sealing and Healing. Adv Healthc Mater 2023; 12:e2203241. [PMID: 37222707 DOI: 10.1002/adhm.202203241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Adhesive hydrogels containing quaternary ammonium salt (QAS) moieties have shown attractive advantages in treatment for acute wounds, attributed to their high performances in wound sealing and sterilization. However, the introduction of QAS commonly leads to high cytotoxicity and adhesive deterioration. Herein, aimed to solve these two issues, a self-adaptive dressing with delicate spatiotemporal responsiveness is developed by employing cellulose sulfate (CS) as dynamic layers to coat QAS-based hydrogel. In detail, due to the acid environment of wound in the early stages of healing, the CS coating will quickly detach to expose the active QAS groups for maximum disinfectant efficacy; meanwhile, as the wound gradually heals and recovers to a neutral pH, the CS will remain stable to keep QAS screened, realizing a high cell growth-promoting activity for epithelium regeneration. Additionally, attributed to the synergy of temporary hydrophobicity by CS and slow water absorption kinetics of the hydrogel, the resultant dressing possesses outstanding wound sealing and hemostasis performance. At last, this work anticipates this approach to intelligent wound dressings based on dynamic and responsive intermolecular interaction can also be applied to a wide range of self-adaptive biomedical materials employing different chemistries for applications in medical therapy and health monitoring.
Collapse
Affiliation(s)
- Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jianhua Xu
- Jiangsu Co-Innovation of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ranhua Xiong
- Jiangsu Co-Innovation of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
47
|
Geng B, Zeng H, Luo H, Wu X. Construction of Wearable Touch Sensors by Mimicking the Properties of Materials and Structures in Nature. Biomimetics (Basel) 2023; 8:372. [PMID: 37622977 PMCID: PMC10452172 DOI: 10.3390/biomimetics8040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Wearable touch sensors, which can convert force or pressure signals into quantitative electronic signals, have emerged as essential smart sensing devices and play an important role in various cutting-edge fields, including wearable health monitoring, soft robots, electronic skin, artificial prosthetics, AR/VR, and the Internet of Things. Flexible touch sensors have made significant advancements, while the construction of novel touch sensors by mimicking the unique properties of biological materials and biogenetic structures always remains a hot research topic and significant technological pathway. This review provides a comprehensive summary of the research status of wearable touch sensors constructed by imitating the material and structural characteristics in nature and summarizes the scientific challenges and development tendencies of this aspect. First, the research status for constructing flexible touch sensors based on biomimetic materials is summarized, including hydrogel materials, self-healing materials, and other bio-inspired or biomimetic materials with extraordinary properties. Then, the design and fabrication of flexible touch sensors based on bionic structures for performance enhancement are fully discussed. These bionic structures include special structures in plants, special structures in insects/animals, and special structures in the human body. Moreover, a summary of the current issues and future prospects for developing wearable sensors based on bio-inspired materials and structures is discussed.
Collapse
Affiliation(s)
| | | | - Hua Luo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | | |
Collapse
|
48
|
Wan X, Mu T, Yin G. Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices. NANO-MICRO LETTERS 2023; 15:99. [PMID: 37037957 PMCID: PMC10086096 DOI: 10.1007/s40820-023-01075-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices. Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces, but also demands the overall device to be flexible in response to external fields. However, flexible energy storage devices inevitably occur mechanical damages (extrusion, impact, vibration)/electrical damages (overcharge, over-discharge, external short circuit) during long-term complex deformation conditions, causing serious performance degradation and safety risks. Inspired by the healing phenomenon of nature, endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices. Herein, this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices. Firstly, the main intrinsic self-healing mechanism is introduced. Then, the research situation of electrodes, electrolytes, artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed. Finally, the current challenges and perspective are provided. We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field.
Collapse
Affiliation(s)
- Xin Wan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Tiansheng Mu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|