1
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Gritti F. Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy. J Chromatogr A 2025; 1743:465691. [PMID: 39874743 DOI: 10.1016/j.chroma.2025.465691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics. In this review, we first recall non-exhaustively the main currently available analytical techniques (enzyme-linked immunosorbent assay (ELISA), agarose gel electrophoresis (AGE), pulse field gel electrophoresis (PFGE), capillary gel electrophoresis (CGE), mass photometry (MP), anion-exchange chromatography (AEX), ion-pairing reversed-phase liquid chromatography (IP-RPLC), hydrophobic interaction chromatography (HIC), size-exclusion chromatography (SEC), hydrodynamic chromatography (HDC), highly converging flow ultra-filtration (HCF-UF), asymmetrical flow field-flow fractionation (AF4), mass spectrometry (MS), and atomic force microscopy (AFM)) for analyzing mixtures containing large nucleic acid biopolymers, while assessing their strengths and weaknesses. We then focus comprehensively on the SC technique, report on its past applications since its birth, and review in detail the history and evolution of the proposed retention mechanisms accounting for the observations made in SC. This includes and emphasizes the latest physico-chemical insights (shear rates in packed HPLC columns, entropic elasticity and relaxation of dsDNA, dsRNA, and mRNA biopolymers) governing the retention behavior of such biopolymers in SC. Finally, based on the recent advancements in understanding the fundamentals of retention in SC, we provide some perspectives and recent proof-of-concept for the analytical characterization by SC of large dsDNAs (plasmid digests, polymerase chain reaction (PCR) verification), the separation of supercoiled/circular and linear dsDNAs (plasmid linearization), the isolation and quantification of large dsRNAs impurities present in mRNA samples produced by IVT, and the differentiation between dsRNA conformers.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.
| |
Collapse
|
3
|
Lee YT, Degenhardt MFS, Skeparnias I, Degenhardt HF, Bhandari YR, Yu P, Stagno JR, Fan L, Zhang J, Wang YX. The conformational space of RNase P RNA in solution. Nature 2025; 637:1244-1251. [PMID: 39695229 PMCID: PMC11779636 DOI: 10.1038/s41586-024-08336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
RNA conformational diversity has fundamental biological roles1-5, but direct visualization of its full conformational space in solution has not been possible using traditional biophysical techniques. Using solution atomic force microscopy, a deep neural network and statistical analyses, we show that the ribonuclease P (RNase P) RNA adopts heterogeneous conformations consisting of a conformationally invariant core and highly flexible peripheral structural elements that sample a broad conformational space, with amplitudes as large as 20-60 Å in a multitude of directions, with very low net energy cost. Increasing Mg2+ drives compaction and enhances enzymatic activity, probably by narrowing the conformational space. Moreover, analyses of the correlations and anticorrelations between spatial flexibility and sequence conservation suggest that the functional roles of both the structure and dynamics of key regions are embedded in the primary sequence. These findings reveal the structure-dynamics basis for the embodiment of both enzymatic precision and substrate promiscuity in the RNA component of the RNase P. Mapping the conformational space of the RNase P RNA demonstrates a new general approach to studying RNA structure and dynamics.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Hermann F Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Lixin Fan
- Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
4
|
Tripepi A, Shakoor H, Klapetek P. A Simple Protocol for Visualization of RNA-Protein Complexes by Atomic Force Microscopy. Curr Protoc 2025; 5:e70084. [PMID: 39781608 PMCID: PMC11713223 DOI: 10.1002/cpz1.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges. Here, we describe a simple and reliable method to visualize positively charged proteins bound to RNA that does not require metallic cations. This method allowed us to effectively detect and visualize Staufen-RNA complexes by height or logarithmic stiffness. The study of the mechanical properties is particularly important in the case of protein-coated RNA complexes, where RNA cannot be detected by height channel. In any case, it is necessary to compare AFM data with the data derived from other techniques like nuclear magnetic resonance, X-ray crystallography, cryogenic electron microscopy, and small-angle X-ray scattering. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Preparation and visualization of RNA-protein complex.
Collapse
Affiliation(s)
- Andrea Tripepi
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Center of Biomolecular ResearchBrnoCzech Republic
- These authors contributed equally to this work.
| | - Huma Shakoor
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Center of Biomolecular ResearchBrnoCzech Republic
- These authors contributed equally to this work.
| | | |
Collapse
|
5
|
Degenhardt MFS, Degenhardt HF, Bhandari YR, Lee YT, Ding J, Yu P, Heinz WF, Stagno JR, Schwieters CD, Watts NR, Wingfield PT, Rein A, Zhang J, Wang YX. Determining structures of RNA conformers using AFM and deep neural networks. Nature 2025; 637:1234-1243. [PMID: 39695231 PMCID: PMC11779638 DOI: 10.1038/s41586-024-07559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2024] [Indexed: 12/20/2024]
Abstract
Much of the human genome is transcribed into RNAs1, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded2-are conformationally heterogeneous and flexible, which is a prerequisite for function3,4, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold5 for protein structure prediction do not apply to RNA. Therefore, determining the structures of heterogeneous RNAs remains an unmet challenge. Here we report holistic RNA structure determination method using atomic force microscopy, unsupervised machine learning and deep neural networks (HORNET), a novel method for determining three-dimensional topological structures of RNA using atomic force microscopy images of individual molecules in solution. Owing to the high signal-to-noise ratio of atomic force microscopy, this method is ideal for capturing structures of large RNA molecules in distinct conformations. In addition to six benchmark cases, we demonstrate the utility of HORNET by determining multiple heterogeneous structures of RNase P RNA and the HIV-1 Rev response element (RRE) RNA. Thus, our method addresses one of the major challenges in determining heterogeneous structures of large and flexible RNA molecules, and contributes to the fundamental understanding of RNA structural biology.
Collapse
Affiliation(s)
- Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Hermann F Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan Rein
- Retrovirus Assembly Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Jinwei Zhang
- Structural Biology of Noncoding RNAs and Ribonucleoproteins Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
6
|
Goyon A. Keeping up with a Quickly Diversifying Pharmaceutical Landscape. ACS MEASUREMENT SCIENCE AU 2024; 4:615-619. [PMID: 39713029 PMCID: PMC11659996 DOI: 10.1021/acsmeasuresciau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
Small molecules and antibodies have dominated the pharmaceutical landscape for decades. However, limitations associated with therapeutic targets deemed "undruggable" and progress in biology and chemistry have led to the blossoming of drug modalities and therapeutic approaches. In 2023, a high number of 9 oligonucleotide and peptide products were approved by the Food and Drug Administration (FDA), accounting for 16% of all drugs approved. Additionally, for the first time, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene therapy product was approved for the treatment of sickle cell disease. New drug modalities possess a wide range of physicochemical properties and structures, which complicates their analytical characterization. Impurities are formed at each step of the oligonucleotide and peptide solid phase synthesis and during shelf life. Longer chain lengths lead to a higher number of closely related impurities that become increasingly more difficult to separate from the full-length product. Chemical modifications such as phosphorothioates (PS) result in the presence of diastereomers, which often require orthogonal methods for their profiling and strategies to prevent their interference with the separation of achiral impurities. In-vitro produced mRNA and plasmid DNA also present a variety of quality attributes that need to be determined, such as the polyA tail length or capping efficiency. Analytical challenges arise from the variety of drug modality physiochemical properties and attributes, fast turnaround times, and heightened level of characterization needed to enable data-driven decisions early in the drug development process. This perspective provides the author's views on the lessons learned and strategies employed in recent years.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Machine learning helps to determine the diverse conformations of RNA molecules. Nature 2024:10.1038/d41586-024-04134-2. [PMID: 39695281 DOI: 10.1038/d41586-024-04134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
|
8
|
Seim I, Zhang V, Jalihal AP, Stormo BM, Cole SJ, Ekena J, Nguyen HT, Thirumalai D, Gladfelter AS. RNA encodes physical information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627970. [PMID: 39713325 PMCID: PMC11661273 DOI: 10.1101/2024.12.11.627970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Most amino acids are encoded by multiple codons, making the genetic code degenerate. Synonymous mutations affect protein translation and folding, but their impact on RNA itself is often neglected. We developed a genetic algorithm that introduces synonymous mutations to control the diversity of structures sampled by an mRNA. The behavior of the designed mRNAs reveals a physical code layered in the genetic code. We find that mRNA conformational heterogeneity directs physical properties and functional outputs of RNA-protein complexes and biomolecular condensates. The role of structure and disorder of proteins in biomolecular condensates is well appreciated, but we find that RNA conformational heterogeneity is equally important. This feature of RNA enables both evolution and engineers to build cellular structures with specific material and responsive properties.
Collapse
Affiliation(s)
- Ian Seim
- Duke University, Department of Cell Biology, Durham, NC
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vita Zhang
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | | - Joanne Ekena
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | |
Collapse
|
9
|
Gritti F. Ultra-high pressure slalom chromatography: Application to the characterization of large DNA and RNA samples relevant in cell and gene therapy. J Chromatogr A 2024; 1738:465487. [PMID: 39536531 DOI: 10.1016/j.chroma.2024.465487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Slalom chromatography (SC), initially co-discovered by Boyes and Kasai in the late 1980s, has recently re-emerged as a breakthrough technique to rapidly analyze DNA samples. With the development of cutting-edge ultra-high pressure liquid chromatography (UHPLC) systems and columns, SC now offers enhanced resolution and sensitivity for analyzing large DNA samples. By revisiting the fundamentals of the SC retention mechanism (non-equilibrium separation mode) and considering the physicochemical properties of DNA biopolymers (contour length, extension under shear flow, relaxation time), we provide analytical chemists with a general strategy and framework for selecting the most relevant applications in the expanding field of cell and gene therapy. We then present proof-of-concept data demonstrating the rapid separation (under 2 min) of plasmid digest samples containing linear double-stranded (ds) DNA macromolecules starting from 2 kbp to 25 kbp, as well as the accurate size determination (±6%) of linear dsDNAs. Additionally, we show rapid baseline separation and quantification of extensible linear dsDNAs, along with the more rigid plasmid dsDNA (supercoiled/circular/nicked circular). We also quantify dsRNA impurities present in vitro transcription (IVT) media used for producing new mRNA therapeutics and assess dsRNA structural heterogeneity (conformational isomers). These findings aim to support in a near future application chemists in addressing emerging bioanalytical challenges in cell and gene therapy by offering advanced SC columns and methods.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Core Research/Fundamental Milford, MA, 01757, USA.
| |
Collapse
|
10
|
Lee YT. Nexus between RNA conformational dynamics and functional versatility. Curr Opin Struct Biol 2024; 89:102942. [PMID: 39413483 PMCID: PMC11602372 DOI: 10.1016/j.sbi.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
RNA conformational dynamics is pivotal for functional regulations in biology. RNA can function as versatile as protein but adopts multiple distinct structures. In this review, we provide a focused review of the recent advances in studies of RNA conformational dynamics and address some of the misconceptions about RNA structure and its conformational dynamics. We discuss why the traditional methods for structure determination come up short in describing RNA conformational space. The examples discussed provide illustrations of the structure-based mechanisms of RNAs with diverse roles, including viral, long noncoding, and catalytic RNAs, one of which focuses on the debated area of conformational heterogeneity of an RNA structural element in the HIV-1 genome.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Shen T, Hu Z, Sun S, Liu D, Wong F, Wang J, Chen J, Wang Y, Hong L, Xiao J, Zheng L, Krishnamoorthi T, King I, Wang S, Yin P, Collins JJ, Li Y. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat Methods 2024; 21:2287-2298. [PMID: 39572716 PMCID: PMC11621015 DOI: 10.1038/s41592-024-02487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Collapse
Affiliation(s)
- Tao Shen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| | - Felix Wong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- OneAIM Ltd, Hong Kong SAR, China
| | - Jiayang Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jin Xiao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tejas Krishnamoorthi
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China.
- Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
12
|
Zhang J, Fang X. Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs. Curr Opin Struct Biol 2024; 89:102944. [PMID: 39442417 DOI: 10.1016/j.sbi.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
RNA's inherent flexibility and dynamics pose great challenges to characterize its structure and dynamics using conventional techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy. Three complementary molecular ruler techniques, the electron paramagnetic resonance (EPR) spectroscopy, X-ray scattering interferometry (XSI) and Förster resonance energy transfer (FRET) which measure intramolecular and intermolecular pair-wise distance distributions in the nanometer range in a solution, have become increasingly popular and been widely used to explore RNA structure and dynamics. The prerequisites for successful application of such techniques are to achieve site-specific labeling of RNAs with spin labels, fluorescent tags, or gold nanoparticles, respectively, which are however, challenging, especially to large RNAs (generally >200 nts). Here, we briefly review the basics of these molecular rulers, how the NaM-TPT3 unnatural base pair system empower them, and their applications to explore conformational dynamics of large RNAs, especially in the context of flavivirus RNA genome.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianyang Fang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Geng A, Roy R, Al-Hashimi HM. Conformational penalties: New insights into nucleic acid recognition. Curr Opin Struct Biol 2024; 89:102949. [PMID: 39522437 DOI: 10.1016/j.sbi.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA.
| |
Collapse
|
14
|
Li CY, Sandhu S, Ken ML. RNA ensembles from in vitro to in vivo: Toward predictive models of RNA cellular function. Curr Opin Struct Biol 2024; 89:102915. [PMID: 39401473 DOI: 10.1016/j.sbi.2024.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 11/29/2024]
Abstract
Deepening our understanding of RNA biology and accelerating development of RNA-based therapeutics go hand-in-hand-both requiring a transition from qualitative descriptions of RNA structure to quantitative models capable of predicting RNA behaviors, and from a static to an ensemble view. Ensembles are determined from their free energy landscapes, which define the relative populations of conformational states and the energetic barriers separating them. Experimental determination of RNA ensembles over the past decade has led to powerful predictive models of RNA behavior in vitro. It has also been shown during this time that the cellular environment redistributes RNA ensembles, changing the abundances of functionally relevant conformers relative to in vitro contexts with subsequent functional RNA consequences. However, recent studies have demonstrated that testing models built from in vitro ensembles with highly quantitative measurements of RNA cellular function, aided by emerging computational methodologies, enables predictive modelling of cellular activity and biological discovery.
Collapse
Affiliation(s)
- Catherine Y Li
- The Scripps Research Institute, Graduate Program, La Jolla, CA, USA
| | - Shawn Sandhu
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Megan L Ken
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA.
| |
Collapse
|
15
|
Gritti F. Theoretical predictions to facilitate the method development in slalom chromatography for the separation of large DNA molecules. J Chromatogr A 2024; 1736:465379. [PMID: 39305540 DOI: 10.1016/j.chroma.2024.465379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Slalom chromatography (SC) re-emerged in 2024 due to the availability of low adsorption ultra-high pressure liquid chromatography (UHPLC) packed columns/instruments and large modalities being investigated in the context of cell and gene therapies. The physico-chemical principles of SC retention combined with hydrodynamic chromatography (HDC) exclusion have been recently reported. In SC, DNA macromolecules are retarded because: (1) they can be stretched to lengths comparable to the particle diameter, and (2) their elastic relaxation time is long enough to maintain them in non-equilibrium extended conformations under regular UHPLC shear flow conditions. Here, a quantitative HDC-SC retention model is consolidated. A general plate height model accounting for the band broadening of long DNA biopolymers along packed beds is also derived for supporting method development and predicting speed-resolution performance in SC. For illustration, the chromatographic speed-resolution properties in SC are predicted for the separation of specific critical pairs (4.0/4.5, 10/11, and 25/27 kbp) of linear dsDNA polymers. The calculations are performed for two available custom-made particle sizes, dp= 1.7 and 2.5μm, at a constant pressure of 10,000 psi. The predictions are directly validated from experimental data acquired using low adsorption MaxPeakTM 4.6 mm i.d. Columns packed with 1.7μm BEHTM 45 Å (15 cm long column) and 2.5μm BEH 125 Å (30 cm long column) Particles, and by injecting six linear dsDNAs (λ DNA-Hind III Digest). The LC system is very low dispersion ACQUITYTM UPLCTM I-class PLUS System, and the mobile phase is a 100 mM phosphate buffer at pH 8. Maximum resolution is always achieved when the average extended lengths of linear dsDNAs are equal to a critical length, which is proportional to the particle diameter and to the square root of the applied shear rate. Most advantageously, the experimental results reveal that the relaxation times of linear dsDNAs observed under shear flow conditions are two orders of magnitude shorter than those expected in the absence of flow: this enables the detection of the longest linear dsDNAs up to 25 kbp without irremediable loss in column performance. Finally, the retention-efficiency model elaborated in this work can be used to rapidly anticipate and develop methods (selection of particle size, column length, and operating pressure) for any targeted DNA and time-resolution constraints.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Core Research/Fundamental, Milford, MA, 01757, USA.
| |
Collapse
|
16
|
Mukherjee S, Moafinejad SN, Badepally NG, Merdas K, Bujnicki JM. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024; 32:1860-1876. [PMID: 39321802 DOI: 10.1016/j.str.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in RNA three-dimensional (3D) structure prediction have provided significant insights into RNA biology, highlighting the essential role of RNA in cellular functions and its therapeutic potential. This review summarizes the latest developments in computational methods, particularly the incorporation of artificial intelligence and machine learning, which have improved the efficiency and accuracy of RNA structure predictions. We also discuss the integration of new experimental data types, including cryoelectron microscopy (cryo-EM) techniques and high-throughput sequencing, which have transformed RNA structure modeling. The combination of experimental advances with computational methods represents a significant leap in RNA structure determination. We review the outcomes of RNA-Puzzles and critical assessment of structure prediction (CASP) challenges, which assess the state of the field and limitations of existing methods. Future perspectives are discussed, focusing on the impact of RNA 3D structure prediction on understanding RNA mechanisms and its implications for drug discovery and RNA-targeted therapies, opening new avenues in molecular biology.
Collapse
Affiliation(s)
- Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| |
Collapse
|
17
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
18
|
Chauvier A, Walter NG. Beyond ligand binding: Single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation. Curr Opin Struct Biol 2024; 88:102893. [PMID: 39067113 DOI: 10.1016/j.sbi.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Riboswitches are specialized RNA structures that orchestrate gene expression in response to sensing specific metabolite or ion ligands, mostly in bacteria. Upon ligand binding, these conformationally dynamic RNA motifs undergo structural changes that control critical gene expression processes such as transcription termination and translation initiation, thereby enabling cellular homeostasis and adaptation. Because RNA folds rapidly and co-transcriptionally, riboswitches make use of the low complexity of RNA sequences to adopt alternative, transient conformations on the heels of the transcribing RNA polymerase (RNAP), resulting in kinetic partitioning that defines the regulatory outcome. This review summarizes single molecule microscopy evidence that has begun to unveil a sophisticated network of dynamic, kinetically balanced interactions between riboswitch architecture and the gene expression machinery that, together, integrate diverse cellular signals.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. https://twitter.com/adrienchauvier
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Musier-Forsyth K, Rein A, Hu WS. Transcription start site choice regulates HIV-1 RNA conformation and function. Curr Opin Struct Biol 2024; 88:102896. [PMID: 39146887 PMCID: PMC11932513 DOI: 10.1016/j.sbi.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
HIV-1, the causative agent of AIDS, is a retrovirus that packages two copies of unspliced viral RNA as a dimer into newly budding virions. The unspliced viral RNA also serves as an mRNA template for translation of two polyproteins. Recent studies suggest that the fate of the viral RNA (genome or mRNA) is determined at the level of transcription. RNA polymerase II uses heterogeneous transcription start sites to generate major transcripts that differ in only two guanosines at the 5' end. Remarkably, this two-nucleotide difference is sufficient to alter the structure of the 5'-untranslated region and generate two pools of RNA with distinct functions. The presence of both RNA species is needed for optimal viral replication and fitness.
Collapse
Affiliation(s)
- Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA.
| | - Alan Rein
- Retrovirus Assembly Section, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
20
|
Bonilla SL, Jang K. Challenges, advances, and opportunities in RNA structural biology by Cryo-EM. Curr Opin Struct Biol 2024; 88:102894. [PMID: 39121532 DOI: 10.1016/j.sbi.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
RNAs are remarkably versatile molecules that can fold into intricate three-dimensional (3D) structures to perform diverse cellular and viral functions. Despite their biological importance, relatively few RNA 3D structures have been solved, and our understanding of RNA structure-function relationships remains in its infancy. This limitation partly arises from challenges posed by RNA's complex conformational landscape, characterized by structural flexibility, formation of multiple states, and a propensity to misfold. Recently, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for the visualization of conformationally dynamic RNA-only 3D structures. However, RNA's characteristics continue to pose challenges. We discuss experimental methods developed to overcome these hurdles, including the engineering of modular modifications that facilitate the visualization of small RNAs, improve particle alignment, and validate structural models.
Collapse
Affiliation(s)
- Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, NY, 10065, USA.
| | - Karen Jang
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
21
|
Nooteboom SW, Okholm KR, Lamberti V, Oomen B, Sutherland DS, Zijlstra P. Rate-Engineered Plasmon-Enhanced Fluorescence for Real-Time Microsecond Dynamics of Single Biomolecules. NANO LETTERS 2024; 24:11641-11647. [PMID: 39248371 PMCID: PMC11421078 DOI: 10.1021/acs.nanolett.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Single-molecule fluorescence has revealed a wealth of biochemical processes but does not give access to submillisecond dynamics involved in transient interactions and molecular dynamics. Here we overcome this bottleneck and demonstrate record-high photon count rates of >107 photons/s from single plasmon-enhanced fluorophores. This is achieved by combining two conceptual novelties: first, we balance the excitation and decay rate enhancements by the antenna's volume, resulting in maximum fluorescence intensity. Second, we enhance the triplet decay rate using a multicomponent surface chemistry that minimizes microsecond blinking. We demonstrate applications to two exemplary molecular processes: we first reveal transient encounters and hybridization of DNA with a 1 μs temporal resolution. Second, we exploit the field gradient around the nanoparticle as a molecular ruler to reveal microsecond intramolecular dynamics of multivalent complexes. Our results pave the way toward real-time microsecond studies of biochemical processes using an implementation compatible with existing single-molecule fluorescence methods.
Collapse
Affiliation(s)
- Sjoerd W Nooteboom
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Kasper R Okholm
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CELLPAT), 8000 Aarhus C, Denmark
| | - Vincenzo Lamberti
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Bas Oomen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CELLPAT), 8000 Aarhus C, Denmark
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna J, Piszczek G, Ott M, Schuck P. Assembly of SARS-CoV-2 nucleocapsid protein with nucleic acid. Nucleic Acids Res 2024; 52:6647-6661. [PMID: 38587193 PMCID: PMC11194069 DOI: 10.1093/nar/gkae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- HHMI, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
de Moura TR, Purta E, Bernat A, Martín-Cuevas E, Kurkowska M, Baulin E, Mukherjee S, Nowak J, Biela A, Rawski M, Glatt S, Moreno-Herrero F, Bujnicki J. Conserved structures and dynamics in 5'-proximal regions of Betacoronavirus RNA genomes. Nucleic Acids Res 2024; 52:3419-3432. [PMID: 38426934 PMCID: PMC11014237 DOI: 10.1093/nar/gkae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Tales Rocha de Moura
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Agata Bernat
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Eva M Martín-Cuevas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Małgorzata Kurkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Jakub Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow, Poland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
25
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Nussinov R, Liu Y, Zhang W, Jang H. Cell phenotypes can be predicted from propensities of protein conformations. Curr Opin Struct Biol 2023; 83:102722. [PMID: 37871498 PMCID: PMC10841533 DOI: 10.1016/j.sbi.2023.102722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Proteins exist as dynamic conformational ensembles. Here we suggest that the propensities of the conformations can be predictors of cell function. The conformational states that the molecules preferentially visit can be viewed as phenotypic determinants, and their mutations work by altering the relative propensities, thus the cell phenotype. Our examples include (i) inactive state variants harboring cancer driver mutations that present active state-like conformational features, as in K-Ras4BG12V compared to other K-Ras4BG12X mutations; (ii) mutants of the same protein presenting vastly different phenotypic and clinical profiles: cancer and neurodevelopmental disorders; (iii) alterations in the occupancies of the conformational (sub)states influencing enzyme reactivity. Thus, protein conformational propensities can determine cell fate. They can also suggest the allosteric drugs efficiency.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
27
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna JA, Piszczek G, Ott M, Schuck P. Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568361. [PMID: 38045338 PMCID: PMC10690241 DOI: 10.1101/2023.11.22.568361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-) protein into ribonucleoprotein particles (RNPs), 38±10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining mutant proteins in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multi-valent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Abdullah M. Syed
- Gladstone Institutes, San Francisco, CA 94158
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
| | | | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jennifer A. Doudna
- Gladstone Institutes, San Francisco, CA 94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: Rebirth through fragmentation. Mol Cell 2023; 83:3953-3971. [PMID: 37802077 PMCID: PMC10841463 DOI: 10.1016/j.molcel.2023.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
29
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
30
|
Procknow RR, Kennedy KJ, Kluba M, Rodriguez LJ, Taga ME. Genetic dissection of regulation by a repressing and novel activating corrinoid riboswitch enables engineering of synthetic riboswitches. mBio 2023; 14:e0158823. [PMID: 37823641 PMCID: PMC10653944 DOI: 10.1128/mbio.01588-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In addition to proteins, microbes can use structured RNAs such as riboswitches for the important task of regulating gene expression. Riboswitches control gene expression by changing their structure in response to binding a small molecule and are widespread among bacteria. Here we determine the mechanism of regulation in a riboswitch that responds to corrinoids-a family of coenzymes related to vitamin B12. We report the alternative RNA secondary structures that couple corrinoid sensing with response in a repressing and novel activating corrinoid riboswitch. We then applied this knowledge to flipping the regulatory sign by constructing synthetic riboswitches that activate expression to a higher level than the natural one. In the process, we observed patterns in which sequence, in addition to structure, impacts function in paired RNA regions. The synthetic riboswitches we describe here have potential applications as biosensors.
Collapse
Affiliation(s)
- Rebecca R. Procknow
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristopher J. Kennedy
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Maxwell Kluba
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Lesley J. Rodriguez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michiko E. Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
31
|
Ding J, Deme J, Stagno JR, Yu P, Lea S, Wang YX. Capturing heterogeneous conformers of cobalamin riboswitch by cryo-EM. Nucleic Acids Res 2023; 51:9952-9960. [PMID: 37534568 PMCID: PMC10570017 DOI: 10.1093/nar/gkad651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.
Collapse
Affiliation(s)
- Jienyu Ding
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Chen Q, Zhou T. Emerging functional principles of tRNA-derived small RNAs and other regulatory small RNAs. J Biol Chem 2023; 299:105225. [PMID: 37673341 PMCID: PMC10562873 DOI: 10.1016/j.jbc.2023.105225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.
Collapse
Affiliation(s)
- Qi Chen
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
33
|
Tants JN, Schlundt A. Advances, Applications, and Perspectives in Small-Angle X-ray Scattering of RNA. Chembiochem 2023; 24:e202300110. [PMID: 37466350 DOI: 10.1002/cbic.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Indexed: 07/20/2023]
Abstract
RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms. Owing to the inherent dynamics, size, and instability of RNA, its structure determination remains challenging. Methods such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy can provide high-resolution structures; however, their limitations make structure determination, even for small RNAs, cumbersome, if at all possible. Although at a low resolution, small-angle X-ray scattering (SAXS) has proven valuable in advancing structure determination of RNAs as a complementary method, which is also applicable to large-sized RNAs. Here, we review the technological and methodological advancements of RNA SAXS. We provide examples of the powerful inclusion of SAXS in structural biology and discuss possible future applications to large RNAs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
34
|
Lee HK, Lee YT, Fan L, Wilt HM, Conrad CE, Yu P, Zhang J, Shi G, Ji X, Wang YX, Stagno JR. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. Structure 2023; 31:848-859.e3. [PMID: 37253356 PMCID: PMC10335363 DOI: 10.1016/j.str.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The thiamine pyrophosphate (TPP)-sensing riboswitch is one of the earliest discovered and most widespread riboswitches. Numerous structural studies have been reported for this riboswitch bound with various ligands. However, the ligand-free (apo) structure remains unknown. Here, we report a 3.1 Å resolution crystal structure of Escherichia coli TPP riboswitch in the apo state, which exhibits an extended, Y-shaped conformation further supported by small-angle X-ray scattering data and driven molecular dynamics simulations. The loss of ligand interactions results in helical uncoiling of P5 and disruption of the key tertiary interaction between the sensory domains. Opening of the aptamer propagates to the gene-regulatory P1 helix and generates the key conformational flexibility needed for the switching behavior. Much of the ligand-binding site at the three-way junction is unaltered, thereby maintaining a partially preformed pocket. Together, these results paint a dynamic picture of the ligand-induced conformational changes in TPP riboswitches that confer conditional gene regulation.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD 21702, USA
| | - Haley M Wilt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chelsie E Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Genbin Shi
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xinhua Ji
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
35
|
Procknow RR, Kennedy KJ, Kluba M, Rodriguez LJ, Taga ME. Genetic dissection of regulation by a repressing and novel activating corrinoid riboswitch enables engineering of synthetic riboswitches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546531. [PMID: 37425860 PMCID: PMC10327014 DOI: 10.1101/2023.06.26.546531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to sense and respond to intracellular metabolite levels enables cells to adapt to environmental conditions. Many prokaryotes use riboswitches - structured RNA elements usually located in the 5' untranslated region of mRNAs - to sense intracellular metabolites and respond by modulating gene expression. The corrinoid riboswitch class, which responds to adenosylcobalamin (coenzyme B12) and related metabolites, is among the most widespread in bacteria. The structural elements for corrinoid binding and the requirement for a kissing loop interaction between the aptamer and expression platform domains have been established for several corrinoid riboswitches. However, the conformational changes in the expression platform that modulate gene expression in response to corrinoid binding remain unknown. Here, we employ an in vivo GFP reporter system in Bacillus subtilis to define alternative secondary structures in the expression platform of a corrinoid riboswitch from Priestia megaterium by disrupting and restoring base-pairing interactions. Moreover, we report the discovery and characterization of the first riboswitch known to activate gene expression in response to corrinoids. In both cases, mutually exclusive RNA secondary structures are responsible for promoting or preventing the formation of an intrinsic transcription terminator in response to the corrinoid binding state of the aptamer domain. Knowledge of these regulatory mechanisms allowed us to develop synthetic corrinoid riboswitches that convert repressing riboswitches to riboswitches that robustly induce gene expression in response to corrinoids. Due to their high expression levels, low background, and over 100-fold level of induction, these synthetic riboswitches have potential use as biosensors or genetic tools.
Collapse
Affiliation(s)
- Rebecca R. Procknow
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Kristopher J. Kennedy
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Maxwell Kluba
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Lesley J. Rodriguez
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Michiko E. Taga
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA USA
| |
Collapse
|
36
|
Degenhardt MFS, Degenhardt HF, Bhandari YR, Lee YT, Ding J, Heinz WF, Stagno JR, Schwieters CD, Zhang J, Wang YX. Determining structures of individual RNA conformers using atomic force microscopy images and deep neural networks. RESEARCH SQUARE 2023:rs.3.rs-2798658. [PMID: 37425706 PMCID: PMC10327248 DOI: 10.21203/rs.3.rs-2798658/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The vast percentage of the human genome is transcribed into RNA, many of which contain various structural elements and are important for functions. RNA molecules are conformationally heterogeneous and functionally dyanmics1, even when they are structured and well-folded2, which limit the applicability of methods such as NMR, crystallography, or cryo-EM. Moreover, because of the lack of a large structure RNA database, and no clear correlation between sequence and structure, approaches like AlphaFold3 for protein structure prediction, do not apply to RNA. Therefore determining the structures of heterogeneous RNA is an unmet challenge. Here we report a novel method of determining RNA three-dimensional topological structures using deep neural networks and atomic force microscopy (AFM) images of individual RNA molecules in solution. Owing to the high signal-to-noise ratio of AFM, our method is ideal for capturing structures of individual conformationally heterogeneous RNA. We show that our method can determine 3D topological structures of any large folded RNA conformers, from ~ 200 to ~ 420 residues, the size range that most functional RNA structures or structural elements fall into. Thus our method addresses one of the major challenges in frontier RNA structural biology and may impact our fundamental understanding of RNA structure.
Collapse
Affiliation(s)
- Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Hermann F Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda, USA
| | - Jinwei Zhang
- Structural Biology of Noncoding RNAs and Ribonucleoproteins Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| |
Collapse
|
37
|
Lin BC, Katneni U, Jankowska KI, Meyer D, Kimchi-Sarfaty C. In silico methods for predicting functional synonymous variants. Genome Biol 2023; 24:126. [PMID: 37217943 PMCID: PMC10204308 DOI: 10.1186/s13059-023-02966-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.
Collapse
Affiliation(s)
- Brian C Lin
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Katarzyna I Jankowska
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA.
| |
Collapse
|