1
|
Chen D, Li J, Wu Y, Hong L, Liu Y. Structural dynamics-guided engineering of a riboswitch RNA for evolving c-di-AMP synthases. SCIENCE ADVANCES 2025; 11:eadt8165. [PMID: 40173223 PMCID: PMC11963983 DOI: 10.1126/sciadv.adt8165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Cyclic diadenosine monophosphate (C-di-AMP) synthases are key enzymes for synthesizing c-di-AMP, a potent activator of the stimulator of interferon genes (STING) immune pathway. However, characterizing these enzymes has been hampered by the lack of effective sensors. While c-di-AMP riboswitches, as natural aptamers, hold the potential as RNA biosensors, their poorly comprehended structural dynamics and inherent "OFF" genetic output pose substantial challenges. To address these limitations, we synthesized over 10 fluorophore-labeled samples to probe the conformational changes of the riboswitch at the single-molecule level. By integrating these dynamic findings with steady-state fluorescence titration, mutagenesis, in vivo assays, and strand displacement strategy, we transformed the natural aptamer into a c-di-AMP biosensor. This engineered biosensor reversed its genetic output from "OFF" to "ON" upon c-di-AMP binding, exhibiting a 50-fold improvement in the c-di-AMP detection limit. Leveraging this refined biosensor, we developed a robust strategy for high-throughput in vivo evolution of c-di-AMP synthases.
Collapse
Affiliation(s)
- Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Xue Y, Si X, Yin D, Zhang S, Dai H. Integrating PLOR and SPAAC Click Chemistry for Efficient Site-Specific Fluorescent Labeling of RNA. Int J Mol Sci 2025; 26:2601. [PMID: 40141243 PMCID: PMC11942227 DOI: 10.3390/ijms26062601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Precisely fluorescently labeling specific nucleotide sites of RNA is critical for gaining insights into the structure and function of RNA through multiple fluorescence detection techniques. The position-selective labeling of RNA (PLOR) method provides a promising strategy to achieve this, wherein the fluorophore-modified NTPs can be co-transcriptionally introduced to specific sites of nascent RNA by using T7 RNA polymerase (T7 RNAP). However, due to steric hindrance limitations, the efficiency of T7 RNAP in recognizing and incorporating large fluorophore-modified NTPs into RNA is far from satisfactory. To overcome this challenge, in this work, we developed an efficient PLOR variant (ePLOR) for the site-specific fluorescent labeling of RNA by integrating PLOR with a post-transcriptional SPAAC (strain-promoted azido-alkyne cycloaddition) click chemistry reaction. The efficiency of the SPAAC reaction occurring on RNA is nearly 100%. Consequently, ePLOR enables the precise fluorescent labeling of designated sites across various structural regions of SAM-VI riboswitch and adenine riboswitch RNA, with labeling and synthesis efficiencies that are 2-2.5 times higher than those of PLOR. The strategy developed in this work can be used for the efficient synthesis of a broader spectrum of long-strand RNAs with site-specific fluorescent labeling and greatly facilitate the detection of the structure and function of these RNAs.
Collapse
Affiliation(s)
- Yanyan Xue
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China; (X.S.); (D.Y.); (S.Z.)
- The Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou 225001, China
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Si
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China; (X.S.); (D.Y.); (S.Z.)
| | - Daxu Yin
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China; (X.S.); (D.Y.); (S.Z.)
| | - Shengzhe Zhang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China; (X.S.); (D.Y.); (S.Z.)
- The Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou 225001, China
| | - Hua Dai
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China; (X.S.); (D.Y.); (S.Z.)
- The Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou 225001, China
| |
Collapse
|
3
|
Shin JY, Choi SR, An SY, Bang KM, Song HK, Suh JY, Kim NK. Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer. Nucleic Acids Res 2025; 53:gkae1296. [PMID: 39777471 PMCID: PMC11705072 DOI: 10.1093/nar/gkae1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP. We demonstrated by nuclear magnetic resonance (NMR) and isothermal titration calorimetry that the stable folding of the Vc2 riboswitch requires an adequate supply of Mg2+, Na+ and K+ ions. We found that Mg2+ has a crucial role in the pre-folding of the aptamer, while K+ is essential for establishing the long-range G-C interactions and stabilizing the ligand binding pocket. Precise imino proton assignments revealed the progressive folding of the aptamer. The results indicate that the P2 helix consists of weaker and more dynamic base pairs compared to the P1b helix, allowing the rearrangement of the base pairs in the P2 helix during the folding process required for effective ligand recognition. This study provides a profound understanding riboswitch architecture and dynamics at the atomic level under physiological conditions as well as structural information on apo-state RNA.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seo-Ree Choi
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - So Young An
- Department of Agriculture Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyeong-Mi Bang
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Yong Suh
- Department of Agriculture Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Rudenko AY, Mariasina SS, Ozhiganov RM, Sergiev PV, Polshakov VI. Enzymatic Reactions of S-Adenosyl- L-Methionine: Synthesis and Applications. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S105-S134. [PMID: 40164155 DOI: 10.1134/s0006297924604210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 04/02/2025]
Abstract
S-adenosyl-L-methionine (SAM, AdoMet) is a ubiquitous biomolecule present in all living organisms, playing a central role in a wide array of biochemical reactions and intracellular regulatory pathways. It is the second most common participant in enzymatic reactions in living systems, following adenosine triphosphate (ATP). This review provides a comprehensive analysis of enzymatic reactions involving SAM, whether as a product, a reactant (cosubstrate), or as a non-consumable enzyme cofactor. The discussion encompasses various methods for SAM synthesis, including biotechnological, chemical, and enzymatic approaches. Particular emphasis is placed on the biochemical reactions where SAM functions as a cosubstrate, notably in trans-alkylation reactions, where it acts as a key methyl group donor. Beyond methylation, SAM also serves as a precursor for the synthesis of other molecular building blocks, which are explored in a dedicated section. The review also addresses the role of SAM as a non-consumable cofactor in enzymatic processes, highlighting its function as a prosthetic group for certain protein enzymes and its ability to form complexes with ribozymes. In addition, bioorthogonal systems involving SAM analogues are discussed. These systems employ engineered enzyme-cofactor pairs designed to enable highly selective interactions between target SAM analogues and specific enzymes, facilitating precise reactions even in the presence of other SAM-dependent enzymes. The concluding section explores practical applications of SAM analogues, including their use as selective inhibitors in clinical medicine and as components of reporter systems.
Collapse
Affiliation(s)
- Alexander Yu Rudenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofia S Mariasina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ratislav M Ozhiganov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Petr V Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Stephen C, Palmer D, Mishanina TV. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events. Int J Mol Sci 2024; 25:10495. [PMID: 39408823 PMCID: PMC11476745 DOI: 10.3390/ijms251910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
Collapse
Affiliation(s)
| | | | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA (D.P.)
| |
Collapse
|
6
|
Xiao W, Liu G, Chen T, Zhang Y, Lu C. Bifidobacterium bifidum SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation. Biomolecules 2024; 14:742. [PMID: 39062457 PMCID: PMC11274715 DOI: 10.3390/biom14070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Ting Chen
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Yunlong Zhang
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Changrui Lu
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| |
Collapse
|
7
|
Chauvier A, Dandpat SS, Romero R, Walter NG. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. Nat Commun 2024; 15:3955. [PMID: 38729929 PMCID: PMC11087558 DOI: 10.1038/s41467-024-48409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Intel Corporation, Hillsboro, OR, USA
| | - Rosa Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Walter N, Chauvier A, Dandpat S, Romero R. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. RESEARCH SQUARE 2024:rs.3.rs-3849447. [PMID: 38352525 PMCID: PMC10862961 DOI: 10.21203/rs.3.rs-3849447/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single molecule and bulk approaches, we discovered how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the paradigmatic Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.
Collapse
|
9
|
Lou Y, Woodson SA. Co-transcriptional folding of the glmS ribozyme enables a rapid response to metabolite. Nucleic Acids Res 2024; 52:872-884. [PMID: 38000388 PMCID: PMC10810187 DOI: 10.1093/nar/gkad1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The glmS ribozyme riboswitch, located in the 5' untranslated region of the Bacillus subtilis glmS messenger RNA (mRNA), regulates cell wall biosynthesis through ligand-induced self-cleavage and decay of the glmS mRNA. Although self-cleavage of the refolded glmS ribozyme has been studied extensively, it is not known how early the ribozyme folds and self-cleaves during transcription. Here, we combine single-molecule fluorescence with kinetic modeling to show that self-cleavage can occur during transcription before the ribozyme is fully synthesized. Moreover, co-transcriptional folding of the RNA at a physiological elongation rate allows the ribozyme catalytic core to react without the downstream peripheral stability domain. Dimethyl sulfate footprinting further revealed how slow sequential folding favors formation of the native core structure through fraying of misfolded helices and nucleation of a native pseudoknot. Ribozyme self-cleavage at an early stage of transcription may benefit glmS regulation in B. subtilis, as it exposes the mRNA to exoribonuclease before translation of the open reading frame can begin. Our results emphasize the importance of co-transcriptional folding of RNA tertiary structure for cis-regulation of mRNA stability.
Collapse
Affiliation(s)
- Yuan Lou
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|