1
|
Nie H, Chen Y. SIM2, associated with clinicopathologic features, promotes the malignant biological behaviors of endometrial carcinoma cells. BMC Cancer 2025; 25:666. [PMID: 40217155 PMCID: PMC11987308 DOI: 10.1186/s12885-025-14077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) poses a significant threat to women's health. Identifying effective prognostic biomarkers and therapeutic targets is essential for improving survival rates in EC patients. This study aimed to identify key regulators involved in EC progression and investigate the biological functions of SIM bHLH transcription factor 2 (SIM2) in EC. METHODS Gene expression profiles and clinical data from EC and control samples were retrieved from the TCGA and GEO databases. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify genes associated with EC tumorigenesis and progression. The least absolute shrinkage and selection operator (LASSO) method was applied to further screen prognostic genes and construct a prognostic risk model. The expression and biological function of SIM2 were analyzed using the GEPIA, HPA, and LinkedOmics databases. SIM2 knockdown and overexpression models were established in EC cell lines, and their function was validated through qRT-PCR, CCK-8, flow cytometry, and western blot. Additionally, an in vivo lung/liver metastasis model was employed to further validate the cancer-promoting properties of SIM2 in EC. RESULTS WGCNA identified 343 EC-related genes. Cox regression analysis and LASSO were further applied to identify 13 prognostic genes, leading to the development of a robust prognostic risk model that effectively predicted EC patients' clinical outcomes. Significant differences in the tumor immune microenvironment were observed between the high- and low-risk groups. Among these 13 genes, SIM2 was significantly overexpressed in EC tissues, and its high expression was associated with poor prognosis in EC patients. SIM2 depletion inhibited EC cell viability, induced cell cycle arrest, and promoted apoptosis. Additionally, SIM2 knockdown increased the expression of cleaved caspase-3 and reduced the levels of Cyclin D1 and CDK4 proteins, while SIM2 overexpression showed the opposite effects. In vivo, silencing SIM2 notably suppressed the metastatic potential of EC cells. CONCLUSION SIM2 serves as both a biomarker and a therapeutic target for EC diagnosis and prognosis prediction, which positively modulates the malignant phenotypes of EC cells.
Collapse
Affiliation(s)
- Hua Nie
- Reproductive Medicine Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College Huazhong University of Science and Technology Reproductive Medicine Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China
- Department of Obsterics and Gynecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China
| | - Yu Chen
- Reproductive Medicine Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College Huazhong University of Science and Technology Reproductive Medicine Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China.
- Department of Obsterics and Gynecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China.
| |
Collapse
|
2
|
Fan Z, Xiao Y, Du Y, Zhang Y, Zhou W. Pancreatic cancer subtyping - the keystone of precision treatment. Front Immunol 2025; 16:1563725. [PMID: 40264765 PMCID: PMC12011869 DOI: 10.3389/fimmu.2025.1563725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
In recent years, the incidence and mortality rates of pancreatic cancer have been rising, posing a severe threat to human health. Tumor heterogeneity remains a critical barrier to advancing diagnosis and treatment efforts. The lack of specific early symptoms, limited early diagnostic methods, high biological complexity, and restricted therapeutic options contribute to the poor outcomes and prognosis of pancreatic cancer. Therefore, there is an urgent need to explore the different subtypes in-depth and develop personalized therapeutic strategies tailored to each subtype. Increasing evidence highlights the pivotal role of molecular subtyping in treating pancreatic cancer. This review focuses on recent advancements in classifying molecular subtypes and therapeutic approaches, discussed from the perspectives of gene mutations, genomics, transcriptomics, proteomics, metabolomics, and immunomics.
Collapse
Affiliation(s)
- Zeyang Fan
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Yao Xiao
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Yan Du
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Yan Zhang
- The Second Clinical Medical School, Lanzhou University,
Lanzhou, China
| | - Wence Zhou
- Department of General Surgery , The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Sun H, Yu Y, Ge X, Cao L, Li F, Wu J. Upregulation of serum miR-4429 discriminates chronic heart failure patients and regulates cardiomyocyte injury via modulating HAPLN1. Minerva Cardiol Angiol 2025; 73:184-191. [PMID: 39283199 DOI: 10.23736/s2724-5683.24.06596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
BACKGROUND Chronic heart failure (CHF) is the outcome of various cardiac diseases. Due to the unobvious symptoms of early-stage CHF, the screening of CHF remains a challenging problem. This study focused on the dysregulated miR-4429 and evaluated its significance in the diagnosis and development of CHF, aiming to explore a novel biomarker for CHF. METHODS A total of 103 CHF patients and 71 healthy individuals with matched clinicopathological features were enrolled. Serum miR-4429 levels were analyzed by PCR and its significance in discriminating CHF patients was evaluated by receiver operatinf curve (ROC). Cardiomyocyte was treated with H2O2 to mimic cell injury during CHF, the regulatory effect and the underlying mechanism of miR-4429 was investigated by cell transfection and cell counting kit-8 assay. RESULTS miR-4429 was significantly upregulated in CHF patients (P< 0.0001), which sensitively and specifically discriminated CHF patients from healthy individuals (AUC=0.803, 95% CI=0.735-0.872). miR-4429 was closely associated with the decreased cardiac function of CHF patients (r>0.5, P<0.0001). H2O2 induced increased miR-4429 and reduced HAPLN1 in cardiomyocytes (P<0.001). H2O2-treated cardiomyocytes showed inhibited proliferation and increased reactive oxygen species (ROS) levels, and silencing miR-4429 could alleviate cardiomyocyte injury caused by H2O2 (P<0.0001). miR-4429 negatively regulated HAPLN1, and the knockdown of HAPLN1 could reverse the protective effect of silencing miR-4429 on cardiomyocyte injury (P<0.0001). CONCLUSIONS The upregulation of miR-4429 served as a biomarker discriminating CHF patients and indicating severe disease conditions. Silencing miR-4429 could alleviate cardiomyocyte injury via negatively regulating HAPLN1.
Collapse
Affiliation(s)
- He Sun
- Department of Cardiovascular Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiming Yu
- Department of General Medicine, Weifang People's Hospital, Weifang, China
| | - Xiao Ge
- Department of General Medicine, Weifang People's Hospital, Weifang, China
| | - Lifang Cao
- Department of General Medicine, Weifang People's Hospital, Weifang, China
| | - Feng Li
- Department of General Medicine, Weifang People's Hospital, Weifang, China
| | - Jingjing Wu
- Department of Cardiology, Shanghai Pudong New Area People's Hospital, Shanghai, China -
| |
Collapse
|
4
|
Nash A, DeBonis J, Murungi D, Castillo B, Kim B, Hu F, Chambers C, Nguyen A, Hernandez A, Wang Z, Rios PD, Ghani S, Joshi I, Isa D, Zheng N, Peng W, Igoshin OA, Oberholzer J, Hodges HC, Reticker-Flynn N, Veiseh O. IL-12-producing cytokine factories induce precursor exhausted T cells and elimination of primary and metastatic tumors. J Immunother Cancer 2025; 13:e010685. [PMID: 40169286 PMCID: PMC11962782 DOI: 10.1136/jitc-2024-010685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Curative responses to immunotherapy require the generation of robust systemic immunity with limited toxicity. Recruitment of T cell populations such as precursor exhausted T cells (Tpex) from lymphoid tissues to tumors is a hallmark of effective treatment. However, the ability to efficiently induce this recruitment is lacking in current immunotherapy approaches. Furthermore, systemic administration of immunotherapies frequently results in dose-limiting toxicities, yielding an inadequate therapeutic window for eliciting durable responses. METHODS In this investigation, we evaluated the safety and antitumor efficacy of locally administered interleukin 12 (IL-12) using a clinically translatable cytokine delivery platform (NCT05538624) to identify Tpex recruitment capabilities at tolerable cytokine doses. RESULTS We show IL-12 cytokine factories can effectively treat a broad spectrum of cancer types. Single-cell RNA sequencing data suggests that the antitumor efficacy seen in our studies was due to retinal pigmented epithelial cells-mIL12 treatment inducing differentiation of Tpex cells within the tumor microenvironment. When administered in combination with checkpoint therapy, IL-12 cytokine factory treatment generated systemic abscopal immunity, preventing subcutaneous tumor outgrowth in 8/9 mice with colorectal cancer and lung metastasis in mice with melanoma. Furthermore, this platform was well tolerated in a non-human primate without signs of toxicity. CONCLUSIONS Our new immunotherapy approach provides a robust strategy for inducing Tpex recruitment and systemic immunity against a range of solid peritoneal malignancies, many incurable with current immunotherapy strategies. Notably, these features were achieved using IL-12, and by leveraging our technology, we avoided the toxicities that have prevented the translation of IL-12 to the clinic. Our findings provide a strong rationale for the clinical development of IL-12 cytokine factories.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jonathon DeBonis
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Danna Murungi
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Bertha Castillo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Fangheng Hu
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Courtney Chambers
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Annie Nguyen
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Andrea Hernandez
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Zeshi Wang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | - Ningbo Zheng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Weiyi Peng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Center for Theoretical Biological Physics, Rice University, HoustON, Texas, USA
| | - Jose Oberholzer
- Celltrans, Chicago, Illinois, USA
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - H Courtney Hodges
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathan Reticker-Flynn
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
5
|
Cai Y, Huang G, Ren M, Chai Y, Huang X, Yan T. Synthesizing network pharmacology, bioinformatics, and in vitro experimental verification to screen candidate targets of Salidroside for mitigating Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4539-4558. [PMID: 39503755 DOI: 10.1007/s00210-024-03555-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 04/10/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder leading to cognitive deficits. Salidroside (Sal), a primary bioactive ingredient extracted from the roots of Rhodiola rosea L., has potent neuroprotective effects in AD. However, studies on potential targets for Sal-anchored AD are limited. In this study, we combined network pharmacology, bioinformatics, and experimental validation to identify potential targets of Sal treating AD. First, we screened 10 pyroptosis-related genes (PRGs) in Sal and AD using public databases. Then, we used Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis to explore the biological functions of the shared PRGs (Sal and AD). This finding exhibited that pathways linked to inflammation, like the nucleotide oligomerization domain (NOD)-like receptors signaling pathway, are important for Sal to help fight AD. The GeneMANIA functional results subsequently revealed an association between AD and the processes of inflammasome complex and inflammatory response. Additionally, nine hub genes were identified in the protein-protein interaction network of these shared PRGs. Subsequent analysis of the genes and phenotypes confirmed that these nine hub genes were directly correlated with AD. Subsequently, an in vitro AD model was created using rat adrenal pheochromocytoma cell line (PC12) cells induced by amyloid β-peptide (Aβ) 25-35 (20 µM). Sal significantly reduced the pyroptosis caused by Aβ 25-35 in PC12 cells and decreased the expression levels of IL-1β, CASP1, IL-18, PYCARD, and NLRP3. Furthermore, molecular docking and molecular dynamics simulations confirmed that Sal could stably bind to NLRP3. Druggability analysis revealed that Sal had excellent druggability. These results demonstrated that Sal could alleviate AD by targeting IL-1β, CASP1, IL-18, PYCARD, and NLRP3 to regulate the NLRP3-mediated pyroptosis signaling pathway.
Collapse
Affiliation(s)
- Yawen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Pharmacy, Shanghai Changhai Hospital, Second Military University, Shanghai, 200433, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Zhao L, Zhang Z, Wang D, Yang L, Liu Z, Lou C. Analysis of the effectiveness and safety of lenvatinib/bevacizumab combined with PD-1/PD-L1 inhibitors and GEMOX in the first-line treatment of advanced biliary tract carcinoma. Clin Exp Med 2025; 25:87. [PMID: 40106138 PMCID: PMC11922973 DOI: 10.1007/s10238-025-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
To assess the efficacy and safety of lenvatinib/bevacizumab combined with programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors and gemcitabine/oxaliplatin (GEMOX) as first-line treatments in patients with advanced biliary tract cancer (BTC). Patients with advanced BTC who received lenvatinib/bevacizumab combined with PD-1/PD-L1 inhibitors plus gemcitabine/oxaliplatin (GEMOX) chemotherapy were retrospectively screened. The primary endpoints were overall survival (OS) and progression-free survival (PFS), whereas the secondary endpoints were objective response rate (ORR), disease control rate (DCR), and safety. Prognostic factors for survival were analyzed. A total of 172 individuals were enrolled and categorized into four groups: Group A received GEMOX plus PD-1 antibody (sintilimab or camrelizumab) and lenvatinib; group B received GEMOX and PD-1 antibody (sintilimab or camrelizumab) and bevacizumab; group C received GEMOX and PD-1 antibody (sintilimab or camrelizumab); and group D received GEMOX alone. The median OS was 13.63 months (95% confidence interval [CI]: 12.37-14.89), 12.41 months (95% CI: 10.67-12.32), 11.23 months (95% CI: 9.39-13.07), and 8.86 months (95% CI: 7.28-10.44) in groups A, B, C, and D, respectively (P = 0.312). In groups A, B, C, and D, the median PFS was 12.42 months, 11.05 months, 8.89 months, and 6.02 months. A statistically significant difference was observed (t = 2, 95% CI: 11.31-13.53, P < 0.01). The ORR was 45.00% (17/40) in group A, 34.78% (16/46) in group B, 16.67% (5/30) in group C, and 17.86% (10/56) in group D. The DCR was 87.50% (35/40), 78.26% (36/46), 76.67% (23/30), and 58.93% (33/56) in groups A, B, C, and D, respectively. In addition, regression analysis showed that patients' metastasis site, whether the neutrophil-lymphocyte ratio was < 2.3, and whether chemotherapy was administered through hepatic artery embolization and was independent prognostic factors influencing median OS and PFS. Almost all patients included in the study experienced treatment-related adverse events (TRAEs) of varying degrees of severity, with grade 1-2 adverse events predominating. Lenvatinib/bevacizumab combined with programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors and gemcitabine/oxaliplatin (GEMOX) represent an effective and tolerable regimen for advanced BTC in a multicenter retrospective real-world study.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Zhengfeng Zhang
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Dazhen Wang
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Ze Liu
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Changjie Lou
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| |
Collapse
|
7
|
Chen M, Liu H, Xiao Y, Liang R, Xu H, Hong B, Qian Y. Predictive biomarkers of pancreatic cancer metastasis: A comprehensive review. Clin Chim Acta 2025; 569:120176. [PMID: 39914505 DOI: 10.1016/j.cca.2025.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
This review provides a comprehensive overview of predictive biomarkers associated with metastasis in pancreatic cancer (PC), one of the most aggressive malignancies characterized by late-stage diagnosis and poor prognosis. Metastasis, particularly to the liver, lungs, and lymph nodes, significantly worsens patient outcomes by compromising organ function and promoting disease progression. Reliable biomarkers for predicting and detecting metastasis at early stages are critical for improving survival rates and guiding personalized therapies. This paper highlights both general and specific biomarkers, including genetic mutations, protein expression changes, and carbohydrate tumor markers such as CA19-9. Immunological factors, including PD-L1, inflammatory cytokines, and chemokines, further influence the metastatic process within the tumor microenvironment (TME). Specific biomarkers play pivotal roles in promoting metastasis through mechanisms such as epithelial-to-mesenchymal transition (EMT), tumor microenvironment remodeling, and immune evasion. Emerging markers such as circulating tumor cells (CTCs) and volatile organic compounds (VOCs) offer promising non-invasive tools for metastasis detection and monitoring. This review not only consolidates existing knowledge but also highlights the mechanisms through which specific biomarkers facilitate metastasis. Despite recent progress, challenges such as biomarker standardization, technical variability, and clinical validation remain, and addressing these hurdles is essential for integrating predictive biomarkers into clinical practice. Ultimately, this review contributes to advancing early detection strategies, personalized treatment options, and improved prognosis for PC patients.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruijin Liang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hong Xu
- Departments of Pathology, Quzhou Second People's Hospital, Quzhou 324022, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
8
|
Ishii Y, Serikawa M, Uemura K, Tatsukawa Y, Nakamura S, Ikemoto J, Miyamoto S, Arihiro K, Takahashi S, Oka S. Impact of endoscopic ultrasound-guided fine needle aspiration on positive peritoneal lavage cytology in patients with resectable pancreatic body and tail cancer. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:897-905. [PMID: 39117567 DOI: 10.1002/jhbp.12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND/PURPOSE A recent study has demonstrated that the timing of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) significantly influences the peritoneal lavage cytology (CY) outcomes in pancreatic body-tail cancer. The aim of this study was to clarify the impact of EUS-FNA on CY positivity in patients with resectable pancreatic body-tail cancer. METHODS Patients with anatomically resectable pancreatic body-tail cancer surgically resected at Hiroshima University Hospital were enrolled, and elated clinicopathological factors, including EUS-FNA variables and CY positivity rate, were analyzed. RESULTS Of the 129 eligible patients, 16 (12%) had positive CY. The EUS-FNA rates of the CY-positive and CY-negative groups were not significantly different (63% vs. 52%, p = .440). Multivariate analysis revealed that lymph node metastasis was the only independent risk factor for CY positivity (odds ratio: 5.734, p = .031). A total of 10 (14%) of the 69 patients who underwent EUS-FNA had positive CY; however, needle specifications and the interval between EUS-FNA and CY examination did not differ between the CY-positive and CY-negative groups. CY positivity rates were comparable for intervals ≤14 days and ≥15 days (17% vs. 14%, p = 1.000). CONCLUSIONS EUS-FNA may not affect CY positivity in patients with resectable pancreatic body-tail cancer, regardless of the timing.
Collapse
Affiliation(s)
- Yasutaka Ishii
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Uemura
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yumiko Tatsukawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Nakamura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Juri Ikemoto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sayaka Miyamoto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinya Takahashi
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Li X, Xu Y, Si JX, Gu F, Ma YY. Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review). Int J Mol Med 2024; 54:98. [PMID: 39301653 PMCID: PMC11410309 DOI: 10.3892/ijmm.2024.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
Collapse
Affiliation(s)
- Xiang Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315048, P.R. China
| | - Jing-Xing Si
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Gu
- Department of Paediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Yu Ma
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
10
|
Li J, Zhang W, Chen L, Wang X, Liu J, Huang Y, Qi H, Chen L, Wang T, Li Q. Targeting extracellular matrix interaction in gastrointestinal cancer: Immune modulation, metabolic reprogramming, and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189225. [PMID: 39603565 DOI: 10.1016/j.bbcan.2024.189225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The extracellular matrix (ECM) is a major constituent of the tumor microenvironment, acting as a mediator that supports the progression of gastrointestinal (GI) cancers, particularly in mesenchymal subtypes. Beyond providing structural support, the ECM actively shapes the tumor microenvironment (TME) through complex biochemical and biomechanical remodeling. Dysregulation of ECM composition and signaling is closely linked to increased cancer aggressiveness, poor prognosis, and resistance to therapy. ECM components, such as collagen, fibronectin, laminin, and periostin, influence tumor growth, metastasis, immune modulation, and metabolic reprogramming by interacting with tumor cells, immune cells, and cancer-associated fibroblasts. In this review, we highlight the heterogeneous nature of the ECM and the dualistic roles of its components across GI cancers, with a focus on their contributions to immune evasion and metabolic remodeling via intercellular interactions. Additionally, we explore therapeutic strategies targeting ECM remodeling and ECM-centered interactions, emphasizing their potential in enhancing existing anti-tumor therapies.
Collapse
Affiliation(s)
- Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Wang R, Zheng Y, Zhang Z, Song K, Wu E, Zhu X, Wu TP, Ding J. MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell. Nat Commun 2024; 15:8798. [PMID: 39394211 PMCID: PMC11470080 DOI: 10.1038/s41467-024-53114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either 'best-mapped' or 'random-mapped' locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.
Collapse
Affiliation(s)
- Ruohan Wang
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yumin Zheng
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kailu Song
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Erxi Wu
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
- College of Medicine and Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | | | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jun Ding
- School of Computer Science, McGill University, Montreal, Quebec, Canada.
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Department of Medicine, McGill University, Montreal, Quebec, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada.
- Mila-Quebec AI Institue, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Niu C, Zhang J, Okolo PI. Harnessing Plant Flavonoids to Fight Pancreatic Cancer. Curr Nutr Rep 2024; 13:566-581. [PMID: 38700837 DOI: 10.1007/s13668-024-00545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW This review draws on the last fifteen years (2009-2024) of published data to summarize the potential effect of plant flavonoids on pancreatic carcinogenesis and discuss the possible mechanisms of action to establish their applicability as anti-cancer agents. RECENT FINDINGS This review found that the plant flavonoids with anti-pancreatic cancer activity mainly include chalcones, dihydrochalcones, flavanols, flavanones, flavones, isoflavonoids, flavonols, isoflavones, and flavanonols. Most of these flavonoids have anti-proliferative, pro-apoptotic, cell cycle arrest, anti-angiogenic, anti-inflammatory, anti-epithelial-mesenchymal transition, and anti-metastatic properties. Some flavonoids can also regulate autophagy, immune and glucose uptake in the context of pancreatic cancer. Several molecules and signaling pathways are associated with the pharmacological activities of plant flavonoids, including AMP-activated protein kinase, mitogen-activated protein kinases, phosphatidylinositol-3-kinase/protein kinase B, nuclear factor-κB, signal transducer, and activator of transcription 3, Smad3, epidermal growth factor receptor, and vascular endothelial growth factor. This review provides strong evidence that plant flavonoids have potential against pancreatic carcinogenesis in experimental animals through various pharmacological mechanisms. They are a promising resource for use as adjuvant anti-cancer therapy. However, randomized controlled clinical trials with those flavonoids are needed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
13
|
Gao Y, Shen Y, Dong J, Zhou Y, Zhu C, Yu Q, Qin X. Pancreatic head carcinoma derived from the dorsal pancreas is more likely to metastasize early than from the ventral pancreas through microvascular invasion. Medicine (Baltimore) 2024; 103:e39296. [PMID: 39151507 PMCID: PMC11332757 DOI: 10.1097/md.0000000000039296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
The development of the pancreatic head originates from the fusion of the ventral and dorsal pancreatic primordia during embryonic development. Theoretically, the origin of pancreatic head cancer also exists from the ventral pancreas and the dorsal pancreas. Among 49 patients with pancreatic head cancer, pancreatic head cancer was divided into pancreatic head cancer originating from the ventral (PHCv) or dorsal pancreas (PHCd) through imaging and pathological classification. The clinical data was collected and compared between the PHCv group and the PHCd group. The results showed that the patients from the PHCd group had worse long-term survival than those from the PHCv group (10 months vs 14.5 months). Similarly, the progression-free survival (PFS) results also indicate that patients from the PHCd group had a shorter time than those from the PHCv group (5 months vs 9.5 months). Further stratified analysis of potentially related factors showed that microvascular invasion is related to poor prognosis, and patients with pancreatic head cancer derived from the dorsal pancreas are more likely to develop microvascular invasion.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Yuhang Shen
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Jun Dong
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Yang Zhou
- Department of Pathology, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Chunfu Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Qiang Yu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Xihu Qin
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| |
Collapse
|
14
|
Yao G, Zhu Y, Liu C, Man Y, Liu K, Zhang Q, Tan Y, Duan Q, Chen D, Du Z, Fan Y. Comparative analysis of the mutational landscape and evolutionary patterns of pancreatic ductal adenocarcinoma metastases in the liver or peritoneum. Heliyon 2024; 10:e35428. [PMID: 39170579 PMCID: PMC11336646 DOI: 10.1016/j.heliyon.2024.e35428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) often presents with liver or peritoneal metastases at diagnosis. Despite similar treatment approaches, patient outcomes vary between these metastatic sites. To improve targeted therapies for metastatic PDAC, a comprehensive analysis of the genetic profiles and evolutionary patterns at these distinct metastatic locations is essential. Methods We performed whole exome sequencing on 44 tissue samples from 27 PDAC patients, including primary tumours and matched liver or peritoneal metastases. We analysed somatic mutation profiles, signatures, and affected pathways for each group, and examined clonal evolution using subclonal architectures and phylogenetic trees. Results KRAS mutations remained the predominant driver alteration, with a prevalence of 89 % across all tumours. Notably, we observed site-specific differences in mutation frequencies, with KRAS alterations detected in 77.8 % (7/9) of peritoneal metastases and 87.5 % (7/8) of liver metastases. TP53 mutations exhibited a similar pattern, occurring in 55.6 % (5/9) of peritoneal and 37.5 % (3/8) of liver metastases. Intriguingly, we identified site-specific alterations in DNA repair pathway genes, including ATM and BRCA1, with distinct mutational profiles in liver versus peritoneal metastases. Furthermore, liver metastases demonstrated a significantly higher tumor mutational burden (TMB) compared to peritoneal metastases (median [IQR]: 2.14 [1.77-2.71] vs. 1.29 [1.21-1.69] mutations/Mb; P = 0.048). Conclusions In conclusion, metastasis of pancreatic cancer may be influenced by variables other than KRAS mutations, such as TP53. PDAC peritoneal and liver metastases may differ in potential therapeutic biomarkers. Further inquiry is needed on the biological mechanisms underlying metastasis and the treatment of diverse metastases.
Collapse
Affiliation(s)
- Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanfeng Zhu
- Department of Nursing, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shangha, China
| | - Chunhui Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanwen Man
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Kefeng Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Yuan Tan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Qianqian Duan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shanghai, China
| | - Yonggang Fan
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| |
Collapse
|
15
|
Yang H, Hu B, Wang X, Chen W, Zhou H. The effects of hyaluronan and proteoglycan link protein 1 (HAPLN1) in ameliorating spinal cord injury mediated by Nrf2. Biotechnol Appl Biochem 2024; 71:929-939. [PMID: 38607990 DOI: 10.1002/bab.2587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1β. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.
Collapse
Affiliation(s)
- Hongzhi Yang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Bin Hu
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Xichun Wang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Wenjie Chen
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Huanbin Zhou
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Balihu General Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
16
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
17
|
Yan T, Song S, Sun W, Ge Y. HAPLN1 knockdown inhibits heart failure development via activating the PKA signaling pathway. BMC Cardiovasc Disord 2024; 24:197. [PMID: 38580957 PMCID: PMC10996236 DOI: 10.1186/s12872-024-03861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.
Collapse
Affiliation(s)
- Tao Yan
- Department of Cardiology, Zibo Municipal Hospital, Ward 1, No. 139 Huangong Road, Linzi District, Zibo City, Shandong Province, 255400, China
| | - Shushuai Song
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, No. 201 Nanjing Road, Shibei District, Qingdao City, Shandong Province, 266034, China
| | - Wendong Sun
- Department of Cardiology, Zibo Municipal Hospital, No. 139 Huangong Road, Linzi District, Zibo City, Shandong Province, 255400, China
| | - Yiping Ge
- Department of Cardiology, Qingdao Fuwai Cardiovascular Hospital, No. 201 Nanjing Road, Shibei District, Qingdao City, Shandong Province, 266034, China.
| |
Collapse
|
18
|
Marino-Bravante GE, Carey AE, Hüser L, Dixit A, Wang V, Kaur A, Liu Y, Ding S, Schnellmann R, Gerecht S, Gu L, Eisinger-Mathason TSK, Chhabra Y, Weeraratna AT. Age-dependent loss of HAPLN1 erodes vascular integrity via indirect upregulation of endothelial ICAM1 in melanoma. NATURE AGING 2024; 4:350-363. [PMID: 38472454 DOI: 10.1038/s43587-024-00581-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.
Collapse
Affiliation(s)
- Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanpreet Kaur
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Supeng Ding
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Rahel Schnellmann
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Signaling and Microenvironment, FoxChase Cancer Center, Philadelphia, PA, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Chen X, Song QL, Wang JY, Ji R, Cao ML, Guo DY, Zhang Y, Yang J. FKBP5 regulates trophoblast-macrophage crosstalk in recurrent spontaneous abortion through PI3K/AKT and NF-κB signaling pathways. Free Radic Biol Med 2023; 209:55-69. [PMID: 37827456 DOI: 10.1016/j.freeradbiomed.2023.10.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
FK506-binding protein 5 (FKBP5) contributes to many diseases; However, it remains unclear whether FKBP5 is relevant to recurrent spontaneous abortion (RSA) and the mechanisms by which it is involved in maternal-fetal immunological tolerance. Placental tissue was collected in women with normal pregnancy and RSA and examined for FKBP5 expression. Human trophoblast cell lines and THP-1-derived M0 macrophages were used to explore the role of FKBP5 in RSA and its mechanism. The role of FKBP5 on pregnancy outcomes was assessed using a mouse model of miscarriage. This study found that upregulation of FKBP5 at the placental interface is involved in the pathogenesis of RSA by depressing trophoblast function and promoting M1-type macrophage polarization. First, FKBP5 expression was upregulated in the villi of RSA, and FKBP5 regulated trophoblast function by inhibiting HAPLN1 expression through suppression of PI3K/AKT signaling. In addition, FKBP5 inhibited trophoblast IL-6 secretion by suppressing PI3K/AKT signaling, thereby promoting macrophage polarization toward the M1 phenotype. Meanwhile, FKBP5 was significantly elevated in decidual macrophages from patients with RSA and promoted M1 macrophage polarization via ROS/NF-κB signaling and further inhibited trophoblast function. Finally, FKBP5 inhibitors improved embryo resorption rate in miscarried mice. In conclusion, FKBP5 is essential in maintaining pregnancy and trophoblast-macrophage crosstalk in the maternal-fetal interface, which may be a potential target for diagnosing and treating RSA.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Qian Lin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia Yu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Ming Liang Cao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Duan Ying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|