1
|
Nunes LGA, Ma C, Pitts MW, Hoffmann PR. Insights from selenoprotein I mouse models for understanding biological roles of this enzyme. Arch Biochem Biophys 2025; 768:110394. [PMID: 40107406 PMCID: PMC11994276 DOI: 10.1016/j.abb.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Selenoprotein I (selenoi) is a metabolic enzyme expressed in a wide variety of tissues that catalyzes the transfer of the ethanolamine phosphate group from CDP-ethanolamine to lipid acceptors to generate ethanolamine phospholipids. It is a member of the selenoprotein family, a class of proteins that mostly play fundamental roles in redox homeostasis and are defined by the co-translational incorporation of selenium in the form of selenocysteine. Loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a complex form of hereditary spastic paraplegia. Understanding the roles of this selenoprotein and its phospholipid products in different cell types has benefited from the development of mouse models. In particular, global and conditional knockout (KO) of the Selenoi gene in mice has enabled a more complete picture to emerge of how this important selenoprotein is integrated into metabolic pathways. These data have revealed how Selenoi loss-of-function affects embryogenesis, neurodevelopment, the immune system and liver physiology. This review summarizes the insights gained through mouse model experiments and the current understanding the different physiological roles played by this selenoprotein.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
2
|
Park S, Jin Y, Chisholm AD. Context-specific interaction of the lipid regulator DIP-2 with phospholipid synthesis in axon regeneration and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636954. [PMID: 39974891 PMCID: PMC11839101 DOI: 10.1101/2025.02.06.636954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons maintain their morphology over prolonged periods of adult life with limited regeneration after injury. C. elegans DIP-2 is a conserved regulator of lipid metabolism that affects axon maintenance and regeneration after injury. Here, we investigated genetic interactions of dip-2 with mutants in genes involved in lipid biosynthesis and identified roles of phospholipids in axon regrowth and maintenance. CEPT-2 and EPT-1 are enzymes catalyzing the final steps in the de novo phospholipid synthesis (Kennedy) pathway. Loss of function mutants of cept-2 or ept-1 show reduced axon regrowth and failure to maintain axon morphology. We demonstrate that CEPT-2 is cell-autonomously required to prevent age-related axonal defects. Interestingly, loss of function in dip-2 led to suppression of the axon regrowth phenotype observed in either cept-2 or ept-2 mutants, suggesting that DIP-2 acts to counterbalance phospholipid synthesis. Our findings reveal the genetic regulation of lipid metabolism to be critical for axon maintenance under injury and during aging. Article Summary Little is known about how adult neurons live long with limited regenerative capacity. This study investigates the role of lipid metabolism in sustaining neuronal health in C. elegans. Mutating phospholipid synthetic genes impairs axon regrowth after injury. Lack of DIP-2, a lipid regulator, restores regrowth, suggesting DIP-2 counterbalances phospholipid synthesis. Moreover, neuronal phospholipid synthesis is essential for preventing age-dependent axonal defects. These findings reveal phospholipid biosynthesis is key to axon integrity during aging and injury. As lipid metabolism is implicated in neurological disorders, this study serves as an entry point into investigating neuronal lipid biology under various conditions.
Collapse
|
3
|
Wang Q, Cheng W, He T, Li S, Ao J, He Y, Duan C, Li X, Zhang J. Glycerophospholipid metabolic disorders and gender difference of cantharidin-induced hepatotoxicity in rats: Lipidomics and MALDI mass spectrometry imaging analysis. Chem Biol Interact 2025; 405:111314. [PMID: 39551422 DOI: 10.1016/j.cbi.2024.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The hepatotoxicity mechanism of cantharidin (CTD), a major active component of Mylabris was explored based on liver lipidome alterations and spatial distributions in female and male rats using lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). After oral CTD exposure, the livers of female rats were screened for 104 differential lipids including lysophosphatidylethanolamine(LysoPE)(20:2/0:0) and diacylglycerol(DG)(18:2/22:4), whereas the livers of male rats were screened for 76 differential lipids including fatty acid(FA)(24:6) and DG(18:0/22:4). According to the MALDI-MSI results, female rats exhibited 12 differential lipids with alteration in the abundance and spatial distribution of phosphatylcholine(PC), phosphatidylethanolamine(PE), lysophosphatidylcholine(LysoPC), and LysoPE in the liver lesion area. On the other hand, male rats exhibited 8 differential lipids with changes in the abundance and spatial distribution of PC, PE, and FA in the liver lesion area. The lipidomics- and MALDI-MSI-detected differential lipids strongly disrupted glycerophospholipid metabolism in both female and male rats. Additionally, phosphatidate phosphatase (Lipin1), choline/ethanolamine phosphotransferase 1 (CEPT1), and phosphatidylethanolamine N-methyltransferase (PEMT) were screened to distinguish CTD hepatoxicity in female and male rats. Western blotting analysis demonstrated a significant elevation in Lipin1 expression in female and male rat livers, accompanied by a decrease in PEMT expression. Furthermore, CEPT1 expression increased significantly in female rat livers and decreased significantly in male rat livers. These findings suggested that CTD could disrupt lipid metabolism in a gender-specific manner. Moreover, the combination of lipidomics and MALDI-MSI could offer valuable insights into CTD-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Qiyi Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Shan Li
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanmei He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
4
|
Roberts JR, Horibata Y, Kwarcinski FE, Lam V, Raczkowski AM, Hubbard A, White B, Sugimoto H, Tall GG, Ohi MD, Maeda S. Structural basis for catalysis and selectivity of phospholipid synthesis by eukaryotic choline-phosphotransferase. Nat Commun 2025; 16:111. [PMID: 39747155 PMCID: PMC11696302 DOI: 10.1038/s41467-024-55673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5'-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells. Here we present the structure of the yeast CPT1 in multiple substrate-bound states. Structural and functional analysis of these binding-sites reveal the critical residues for the DAG acyl-chain preference and the choline/ethanolamine selectivity. Additionally, we present the structure in complex with a potent inhibitor characterized in this study. The ensemble of structures allows us to propose the reaction mechanism for phospholipid biosynthesis by the family of CDP-alcohol phosphotransferases (CDP-APs).
Collapse
Affiliation(s)
- Jacquelyn R Roberts
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Frank E Kwarcinski
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Vinson Lam
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Akane Hubbard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Betsy White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| | - Shoji Maeda
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Xaira Therapeutics, Brisbane, CA, USA.
| |
Collapse
|
5
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025; 7:35-52. [PMID: 39779890 PMCID: PMC11990872 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Wei T, He Y, Tan D, Zeng X, Hou Y, Wang J, Jiang H, Deng Z, Li J. Dietary sn-2 palmitate influences cognitive behavior by increasing the transport of liver-produced lysophosphatidylcholine VLCPUFAs to the brain. Food Chem 2025; 462:140955. [PMID: 39232272 DOI: 10.1016/j.foodchem.2024.140955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Investigations indicated that sn-2 palmitate have positive effects on brain development, although its mechanism remains largely unexamined. This research delved into how a diet abundant in sn-2 palmitate influenced the cognitive behavior of mice and elucidated the associated mechanisms using metabolomics and lipidomics. The study demonstrated that dietary sn-2 palmitate led to improved working memory and cognition in mice, as well as an increase in brain BDNF concentration when compared to those fed blend vegetable oil (BVO). This was because sn-2 palmitate feeding promoted the synthesis of very long-chain fatty acids (VLCPUFAs) for the lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) in the liver. This led to more efficient delivery of VLCPUFAs to the brain, as indicated by elevated concentration of LPC/LPE-VLCPUFAs in the liver and heightened expression of the major facilitator superfamily domain containing 2a (MFSD2A). In essence, this paper offered a potential mechanism by which sn-2 palmitate enhanced mouse neurodevelopment.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China; Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Dengfeng Tan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoling Zeng
- Ausnutria Dairy (China) Co., Ltd., Changsha, Hunan, 410219, China
| | - Yanmei Hou
- Ausnutria Dairy (China) Co., Ltd., Changsha, Hunan, 410219, China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Co., Ltd., Changsha, Hunan, 410219, China
| | - Hui Jiang
- Hyproca Nutrition Co., Ltd., Changsha, Hunan, 410000, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
7
|
Saoud M, Grau J, Rennert R, Mueller T, Yousefi M, Davari MD, Hause B, Csuk R, Rashan L, Grosse I, Tissier A, Wessjohann LA, Balcke GU. Advancing Anticancer Drug Discovery: Leveraging Metabolomics and Machine Learning for Mode of Action Prediction by Pattern Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404085. [PMID: 39431333 DOI: 10.1002/advs.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Indexed: 10/22/2024]
Abstract
A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). Metabolomics combined with machine learning allowed to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate cancer cells (PC-3). As proof of concept, 38 drugs are studied with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. The transferability of MoA predictions based on PC-3 cell treatments is validated with two other cancer cell models, i.e., breast cancer and Ewing's sarcoma, and show that correct MoA predictions for alternative cancer cells are possible, but still at some expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, it is predicted that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as confirmed by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, this approach offers new opportunities, including the optimization of combinatorial drug applications.
Collapse
Affiliation(s)
- Mohamad Saoud
- Leibniz Institute of Plant Biochemistry, Dept. of Bioorganic Chemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Jan Grau
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, 06120, Halle (Saale), Germany
| | - Robert Rennert
- Leibniz Institute of Plant Biochemistry, Dept. of Bioorganic Chemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Thomas Mueller
- Martin Luther University Halle-Wittenberg, Medical Faculty, University Clinic for Internal Medicine IV (Hematology/Oncology), 06120, Halle (Saale), Germany
| | - Mohammad Yousefi
- Leibniz Institute of Plant Biochemistry, Dept. of Bioorganic Chemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Mehdi D Davari
- Leibniz Institute of Plant Biochemistry, Dept. of Bioorganic Chemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Dept. of Cell and Metabolic Biology, Weinberg 3, 06120, Halle (Saale), Germany
| | - René Csuk
- Martin Luther University Halle-Wittenberg, Institute of Chemistry, Department of Organic and Bioorganic Chemistry, 06120, Halle (Saale), Germany
| | - Luay Rashan
- Dhofar University, Research Center, Frankincense Biodiversity Unit, Salalah, 211, Oman
| | - Ivo Grosse
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, 06120, Halle (Saale), Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Dept. of Cell and Metabolic Biology, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ludger A Wessjohann
- Leibniz Institute of Plant Biochemistry, Dept. of Bioorganic Chemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gerd U Balcke
- Leibniz Institute of Plant Biochemistry, Dept. of Cell and Metabolic Biology, Weinberg 3, 06120, Halle (Saale), Germany
| |
Collapse
|
8
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Tang YF, Xie WY, Wu HY, Guo HX, Wei FH, Ren WZ, Gao W, Yuan B. Huaier Polysaccharide Alleviates Dextran Sulphate Sodium Salt-Induced Colitis by Inhibiting Inflammation and Oxidative Stress, Maintaining the Intestinal Barrier, and Modulating Gut Microbiota. Nutrients 2024; 16:1368. [PMID: 38732614 PMCID: PMC11085394 DOI: 10.3390/nu16091368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.
Collapse
Affiliation(s)
- Yi-Fei Tang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.-F.T.); (W.-Y.X.); (H.-Y.W.); (H.-X.G.); (F.-H.W.); (W.-Z.R.)
| |
Collapse
|
10
|
Zhou Y, Reynolds TB. Innovations in Antifungal Drug Discovery among Cell Envelope Synthesis Enzymes through Structural Insights. J Fungi (Basel) 2024; 10:171. [PMID: 38535180 PMCID: PMC10970773 DOI: 10.3390/jof10030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 11/11/2024] Open
Abstract
Life-threatening systemic fungal infections occur in immunocompromised patients at an alarming rate. Current antifungal therapies face challenges like drug resistance and patient toxicity, emphasizing the need for new treatments. Membrane-bound enzymes account for a large proportion of current and potential antifungal targets, especially ones that contribute to cell wall and cell membrane biosynthesis. Moreover, structural biology has led to a better understanding of the mechanisms by which these enzymes synthesize their products, as well as the mechanism of action for some antifungals. This review summarizes the structures of several current and potential membrane-bound antifungal targets involved in cell wall and cell membrane biosynthesis and their interactions with known inhibitors or drugs. The proposed mechanisms of action for some molecules, gleaned from detailed inhibitor-protein studeis, are also described, which aids in further rational drug design. Furthermore, some potential membrane-bound antifungal targets with known inhibitors that lack solved structures are discussed, as these might be good enzymes for future structure interrogation.
Collapse
Affiliation(s)
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
11
|
Marín-Prida J, Rodríguez-Ulloa A, Besada V, Llopiz-Arzuaga A, Batista NV, Hernández-González I, Pavón-Fuentes N, Marciano Vieira ÉL, Falcón-Cama V, Acosta EF, Martínez-Donato G, Cervantes-Llanos M, Lingfeng D, González LJ, Fernández-Massó JR, Guillén-Nieto G, Pentón-Arias E, Amaral FA, Teixeira MM, Pentón-Rol G. The effects of Phycocyanobilin on experimental arthritis involve the reduction in nociception and synovial neutrophil infiltration, inhibition of cytokine production, and modulation of the neuronal proteome. Front Immunol 2023; 14:1227268. [PMID: 37936684 PMCID: PMC10627171 DOI: 10.3389/fimmu.2023.1227268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vladimir Besada
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Alexey Llopiz-Arzuaga
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Department of Cellular Engineering and Biocatalysis , Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Nathália Vieira Batista
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nancy Pavón-Fuentes
- Immunochemical Department, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Érica Leandro Marciano Vieira
- Translational Psychoneuroimmunology Group, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Viviana Falcón-Cama
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Emilio F. Acosta
- Department of Characterization, Center for Advanced Studies of Cuba, Havana, Cuba
| | - Gillian Martínez-Donato
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Majel Cervantes-Llanos
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dai Lingfeng
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Luis J. González
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Eduardo Pentón-Arias
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Flávio Almeida Amaral
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Pentón-Rol
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| |
Collapse
|
12
|
Raina R, Banerjee A. Architects of the membrane: structures of eukaryotic choline phosphotransferase 1 and choline/ethanolamine phosphotransferase 1. Nat Struct Mol Biol 2023; 30:1247-1250. [PMID: 37696961 DOI: 10.1038/s41594-023-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Affiliation(s)
- Rahul Raina
- Section on Structural and Chemical Biology, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anirban Banerjee
- Section on Structural and Chemical Biology, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|