1
|
Biswas T, Li H, Rohner N. Divergent 3D genome organization in livers of cave and surface morphs of Astyanax mexicanus as a potential driver of unique metabolic adaptations in cave environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615929. [PMID: 40235967 PMCID: PMC11996331 DOI: 10.1101/2024.09.30.615929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The cave morphs of Astyanax mexicanus have evolved a suite of distinct adaptations to life in perpetual darkness, including the loss of eyes and pigmentation loss, as well as profound metabolic changes such as hyperphagia and starvation resilience, traits that sharply contrast with those of their river-dwelling surface counterparts. While changed gene expression is a primary driver of these adaptations, the underlying role of 3D genome organization - a key regulator of gene expression - remains unexplored. Here, we investigate the 3D genome architecture of the livers of surface fish and two cavefish morphs (Pachón and Tinaja) using Hi-C, performing the first comparative 3D genomic analysis in this species. We analyzed and identified cave-specific 3D genomic features, such as genomic compartments and loops, which were conserved in both the cave populations but absent in surface fish. Integrating the 3D genome data with transcriptomic and epigenetic datasets, linked these changes to differential expression of metabolically relevant genes, such as Arhgef19 and Endog . Additionally, our study also uncovered genomic inversions unique to cavefish, potentially tied to cave adaptation. Our findings suggest that 3D genome organization contributes to transcriptomic shifts underlying cavefish phenotypes, providing a novel intra-species and morph specific perspective on 3D chromatin evolution. This study establishes a foundation for exploring how genome architecture potentially facilitates adaptation to new environments. Comparison of morphs within the same species also establishes a foundation for better understanding of how 3D genome reorganization may drive speciation and phenotypic diversity.
Collapse
|
2
|
Paggi JM, Zhang B. Toward decoding the mechanisms that shape sub-megabase-scale genome organization. Curr Opin Struct Biol 2025; 92:103062. [PMID: 40344741 DOI: 10.1016/j.sbi.2025.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Understanding genome organization at the kilobase to megabase scale is critical, as it encompasses genes and regulatory elements. Improvements in the resolution of experimental techniques have revealed novel structural motifs at this scale, including micro-compartments, nucleosome clutches, microdomains, and packing domains. Here we review recent progress on developing theories to explain these observations. Key advances include elucidating the role of nucleosome positioning and epigenetic modifications, the role and mechanisms of compartmentalization in local structure, and the interplay between loop extrusion and phase separation. This work has revealed probable mechanisms by which the observed structures emerge, but it remains unclear how these factors act together in the cell. To this end, recent studies have used chromatin conformation capture data in concert with diverse genomics datasets to create native-like models of chromatin at nucleosome resolution and below. While several roadblocks remain, this strategy promises to decode how molecular forces sum to shape chromatin structure and ultimately regulate transcription.
Collapse
Affiliation(s)
- Joseph M Paggi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA.
| |
Collapse
|
3
|
Kim IV, Navarrete C, Grau-Bové X, Iglesias M, Elek A, Zolotarov G, Bykov NS, Montgomery SA, Ksiezopolska E, Cañas-Armenteros D, Soto-Angel JJ, Leys SP, Burkhardt P, Suga H, de Mendoza A, Marti-Renom MA, Sebé-Pedrós A. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 2025:10.1038/s41586-025-08960-w. [PMID: 40335694 DOI: 10.1038/s41586-025-08960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
In bilaterian animals, gene regulation is shaped by a combination of linear and spatial regulatory information. Regulatory elements along the genome are integrated into gene regulatory landscapes through chromatin compartmentalization1,2, insulation of neighbouring genomic regions3,4 and chromatin looping that brings together distal cis-regulatory sequences5. However, the evolution of these regulatory features is unknown because the three-dimensional genome architecture of most animal lineages remains unexplored6,7. To trace the evolutionary origins of animal genome regulation, here we characterized the physical organization of the genome in non-bilaterian animals (sponges, ctenophores, placozoans and cnidarians)8,9 and their closest unicellular relatives (ichthyosporeans, filastereans and choanoflagellates)10 by combining high-resolution chromosome conformation capture11,12 with epigenomic marks and gene expression data. Our comparative analysis showed that chromatin looping is a conserved feature of genome architecture in ctenophores, placozoans and cnidarians. These sequence-determined distal contacts involve both promoter-enhancer and promoter-promoter interactions. By contrast, chromatin loops are absent in the unicellular relatives of animals. Our findings indicate that spatial genome regulation emerged early in animal evolution. This evolutionary innovation introduced regulatory complexity, ultimately facilitating the diversification of animal developmental programmes and cell type repertoires.
Collapse
Affiliation(s)
- Iana V Kim
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain.
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Iglesias
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grygoriy Zolotarov
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hiroshi Suga
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Alex de Mendoza
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
4
|
Fujioka M, Ke W, Schedl P, Jaynes JB. The homie insulator has sub-elements with different insulating and long-range pairing properties. Genetics 2025; 229:iyaf032. [PMID: 39999387 PMCID: PMC12005253 DOI: 10.1093/genetics/iyaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Chromatin insulators are major determinants of chromosome architecture. Specific architectures induced by insulators profoundly influence nuclear processes, including how enhancers and promoters interact over long distances and between homologous chromosomes. Insulators can pair with copies of themselves in trans to facilitate homolog pairing. They can also pair with other insulators, sometimes with great specificity, inducing long-range chromosomal loops. Contrary to their canonical function of enhancer blocking, these loops can bring distant enhancers and promoters together to activate gene expression, while at the same time blocking other interactions in cis. The details of these effects depend on the choice of pairing partner, and on the orientation specificity of pairing, implicating the 3D architecture as a major functional determinant. Here, we dissect the homie insulator from the Drosophila even skipped (eve) locus, to understand its substructure. We test pairing function based on homie-carrying transgenes interacting with endogenous eve. The assay is sensitive to both pairing strength and orientation. Using this assay, we found that a Su(Hw) binding site in homie is required for efficient long-range interaction, although some activity remains without it. This binding site also contributes to the canonical insulator activities of enhancer blocking and barrier function. Based on this and other results from our functional dissection, each of the canonical insulator activities, chromosomal loop formation, enhancer blocking, and barrier activity, are partially separable. Our results show the complexity inherent in insulator functions, which can be provided by an array of different proteins with both shared and distinct properties.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Angel JC, El Amraoui N, Gürsoy G. pC-SAC: A method for high-resolution 3D genome reconstruction from low-resolution Hi-C data. Nucleic Acids Res 2025; 53:gkaf289. [PMID: 40226920 PMCID: PMC11995266 DOI: 10.1093/nar/gkaf289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The three-dimensional (3D) organization of the genome is crucial for gene regulation, with disruptions linked to various diseases. High-throughput Chromosome Conformation Capture (Hi-C) and related technologies have advanced our understanding of 3D genome organization by mapping interactions between distal genomic regions. However, capturing enhancer-promoter interactions at high resolution remains challenging due to the high sequencing depth required. We introduce pC-SAC (probabilistically Constrained Self-Avoiding Chromatin), a novel computational method for producing accurate high-resolution Hi-C matrices from low-resolution data. pC-SAC uses adaptive importance sampling with sequential Monte Carlo to generate ensembles of 3D chromatin chains that satisfy physical constraints derived from low-resolution Hi-C data. Our method achieves over 95% accuracy in reconstructing high-resolution chromatin maps and identifies novel interactions enriched with candidate cis-regulatory elements (cCREs) and expression quantitative trait loci (eQTLs). Benchmarking against state-of-the-art deep learning models demonstrates pC-SAC's performance in both short- and long-range interaction reconstruction. pC-SAC offers a cost-effective solution for enhancing the resolution of Hi-C data, thus enabling deeper insights into 3D genome organization and its role in gene regulation and disease. Our tool can be found at https://github.com/G2Lab/pCSAC.
Collapse
Affiliation(s)
- J Carlos Angel
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, United States
- New York Genome Center, New York, NY 10013, United States
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States
| | | | - Gamze Gürsoy
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States
- New York Genome Center, New York, NY 10013, United States
- Department of Computer Science, Columbia University, New York, NY 10027, United States
| |
Collapse
|
6
|
Paldi F, Cavalli G. 3D genome folding in epigenetic regulation and cellular memory. Trends Cell Biol 2025:S0962-8924(25)00065-0. [PMID: 40221344 DOI: 10.1016/j.tcb.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
The 3D folding of the genome is tightly linked to its epigenetic state which maintains gene expression programmes. Although the relationship between gene expression and genome organisation is highly context dependent, 3D genome organisation is emerging as a novel epigenetic layer to reinforce and stabilise transcriptional states. Whether regulatory information carried in genome folding could be transmitted through mitosis is an area of active investigation. In this review, we discuss the relationship between epigenetic state and nuclear organisation, as well as the interplay between transcriptional regulation and epigenetic genome folding. We also consider the architectural remodelling of nuclei as cells enter and exit mitosis, and evaluate the potential of the 3D genome to contribute to cellular memory.
Collapse
Affiliation(s)
- Flora Paldi
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Korsak S, Banecki KH, Buka K, Górski PJ, Plewczynski D. Chromatin as a Coevolutionary Graph: Modeling the Interplay of Replication with Chromatin Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646315. [PMID: 40236036 PMCID: PMC11996380 DOI: 10.1101/2025.03.31.646315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Modeling DNA replication poses significant challenges due to the intricate interplay of biophysical processes and the need for precise parameter optimization. In this study, we explore the interactions among three key biophysical factors that influence chromatin folding: replication, loop extrusion, and compartmentalization. Replication forks, known to act as barriers to the motion of loop extrusion factors, also correlate with the phase separation of chromatin into A and B compartments. Our approach integrates three components: (1) a numerical model that takes into advantage single-cell replication timing data to simulate replication fork propagation; (2) a stochastic Monte Carlo simulation that captures the interplay between the biophysical factors, with loop extrusion factors binding, unbinding, and extruding dynamically, while CTCF barriers and replication forks act as static and moving barriers, and a Potts Hamiltonian governs the spreading of epigenetic states driving chromatin compartmentalization; and (3) a 3D OpenMM simulation that reconstructs the chromatin's 3D structure based on the states generated by the stochastic model. To our knowledge, this is the first framework to dynamically integrate and simulate these three biophysical factors, enabling insights into chromatin behavior during replication. Furthermore, we investigate how replication stress alters these dynamics and affects chromatin structure.
Collapse
|
8
|
Oliveira RJ, Oliveira Junior AB, Contessoto VG, Onuchic JN. The synergy between compartmentalization and motorization in chromatin architecture. J Chem Phys 2025; 162:114116. [PMID: 40105139 DOI: 10.1063/5.0239634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
High-resolution techniques capable of manipulating from single molecules to millions of cells are combined with three-dimensional modeling followed by simulation to comprehend the specific aspects of chromosomes. From the theoretical perspective, the energy landscape theory from protein folding inspired the development of the minimal chromatin model (MiChroM). In this work, two biologically relevant MiChroM energy terms were minimized under different conditions, revealing a competition between loci compartmentalization and motor-driven activity mechanisms in chromatin folding. Enhancing the motor activity energy baseline increased the lengthwise compaction and reduced the polymer entanglement. Concomitantly, decreasing compartmentalization-related interactions reduced the overall polymer collapse, although compartmentalization given by the microphase separation remained almost intact. For multiple chromosome simulations, increased motorization intensified the territory formation of the different chains and reduced compartmentalization strength lowered the probability of contact formation of different loci between multiple chains, approximating to the experimental inter-contacts of the human chromosomes. These findings have direct implications for experimental data-driven chromosome modeling, specially those involving multiple chromosomes. The interplay between phase-separation and territory formation mechanisms should be properly implemented in order to recover the genome architecture and dynamics, features that might play critical roles in regulating nuclear functions.
Collapse
Affiliation(s)
- Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | | | - Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77030, USA
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
- Department of Biosciences, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Gopi S, Brandani GB, Tan C, Jung J, Gu C, Mizutani A, Ochiai H, Sugita Y, Takada S. In silico nanoscope to study the interplay of genome organization and transcription regulation. Nucleic Acids Res 2025; 53:gkaf189. [PMID: 40114377 PMCID: PMC11925733 DOI: 10.1093/nar/gkaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotic genomes, regulated access and communication between cis-regulatory elements (CREs) are necessary for enhancer-mediated transcription of genes. The molecular framework of the chromatin organization underlying such communication remains poorly understood. To better understand it, we develop a multiscale modeling pipeline to build near-atomistic models of the 200 kb Nanog gene locus in mouse embryonic stem cells comprising nucleosomes, transcription factors, co-activators, and RNA polymerase II-mediator complexes. By integrating diverse experimental data, including protein localization, genomic interaction frequencies, cryo-electron microscopy, and single-molecule fluorescence studies, our model offers novel insights into chromatin organization and its role in enhancer-promoter communication. The models equilibrated by high-performance molecular dynamics simulations span a scale of ∼350 nm, revealing an experimentally consistent local and global organization of chromatin and transcriptional machinery. Our models elucidate that the sequence-regulated chromatin accessibility facilitates the recruitment of transcription regulatory proteins exclusively at CREs, guided by the contrasting nucleosome organization compared to other regions. By constructing an experimentally consistent near-atomic model of chromatin in the cellular environment, our approach provides a robust framework for future studies on nuclear compartmentalization, chromatin organization, and transcription regulation.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Azuki Mizutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Taguchi YH, Turki T. Novel AI-powered computational method using tensor decomposition for identification of common optimal bin sizes when integrating multiple Hi-C datasets. Sci Rep 2025; 15:7459. [PMID: 40033014 DOI: 10.1038/s41598-025-91355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Identifying the optimal bin sizes (or resolutions) for the integration of multiple Hi-C datasets is a challenge due to the fact that bin sizes must be common over multiple datasets. By contrast, the dependence of quality upon bin sizes can vary from dataset to dataset. Moreover, common structures should not be sought in bin sizes smaller than the optimal bin sizes, below which common structure cannot be the primary structure any more even after increasing the number of mapped short reads per bin. In this case, there are no common structures at finer resolutions, suggesting that individual Hi-C datasets may have to be analyzed separately in the bin sizes smaller than the optimal one. Thus, quality assessments of individual datasets have a limited ability to determine the best bin size for all datasets. In this study, we propose a novel application of tensor decomposition (TD) based unsupervised feature extraction (FE) to choose the optimal bin sizes for the integration of multiple Hi-C datasets. TD-based unsupervised FE exhibit phase transition-like phenomena through which the smallest possible bin size (or the highest resolution) can be automatically estimated empirically, without the need to manually set a threshold value for the integration of multiple Hi-C datasets, retrieved from GEO with GEO ID, GSE260760 and GSE255264. To our knowledge, ours is the first one that can optimize bin sizes over multiple Hi-C profiles without any tunable parameters.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Ward AI, de las Heras JI, Schirmer EC, Fassati A. Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation. Front Cell Dev Biol 2025; 13:1514627. [PMID: 40018706 PMCID: PMC11866950 DOI: 10.3389/fcell.2025.1514627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background CD4+ T cells are a highly differentiated cell type that maintain enough transcriptomic plasticity to cycle between activated and memory statuses. How the 1D chromatin state and 3D chromatin architecture support this plasticity is under intensive investigation. Methods Here, we wished to test a commercially available in situ Hi-C kit (Arima Genomics Inc.) to establish whether published performance on limiting cell numbers from clonal cell lines copies across to a primary immune cell type. We achieved comparable contact matrices from 50,000, 250,000, and 1,000,000 memory CD4+ T-cell inputs. We generated multiple Hi-C and RNA-seq libraries from the same biological blood donors under three separate conditions: unstimulated fresh ex vivo, IL-2-only stimulated, and T cell receptor (TCR)+CD28+IL-2-stimulated, conferring increasingly stronger activation signals. We wished to capture the magnitude and progression of 3D chromatin shifts and correlate these to expression changes under the two stimulations. Results Although some genome organization changes occurred concomitantly with changes in gene expression, at least as many changes occurred without corresponding changes in expression. Counter to the hypothesis that topologically associated domains (TADs) are largely invariant structures providing a scaffold for dynamic looping contacts between enhancers and promotors, we found that there were at least as many dynamic TAD changes. Stimulation with IL-2 alone triggered many changes in genome organization, and many of these changes were strengthened by additional TCR and CD28 co-receptor stimulation. Conclusions This suggests a stepwise process whereby mCD4+ T cells undergo sequential buildup of 3D architecture induced by distinct or combined stimuli likely to "prime" or "deprime" them for expression responses to subsequent TCR-antigen ligation or additional cytokine stimulation.
Collapse
Affiliation(s)
- Alexander I. Ward
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ariberto Fassati
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
12
|
Fillot T, Mazza D. Rethinking chromatin accessibility: from compaction to dynamic interactions. Curr Opin Genet Dev 2025; 90:102299. [PMID: 39705880 PMCID: PMC11793080 DOI: 10.1016/j.gde.2024.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
The genome is traditionally divided into condensed heterochromatin and open euchromatin. However, recent findings challenge this binary classification and the notion that chromatin condensation solely governs the accessibility of transcription factors (TFs) and, consequently, gene expression. Instead, chromatin accessibility is emerging as a factor-specific property that is influenced by multiple determinants. These include the mobility of the chromatin fiber, the capacity of TFs to engage repeatedly with it through multivalent interactions, and the four-dimensional organization of its surrounding diffusible space. Unraveling the molecular and biophysical principles that render a genomic target truly accessible remains a significant challenge, but innovative methods for locally perturbing chromatin, coupled with microscopy techniques that offer single-molecule sensitivity, provide an exciting experimental playground to test new hypotheses.
Collapse
Affiliation(s)
- Tom Fillot
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Davide Mazza
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
13
|
Li K, Zhang P, Xu J, Wen Z, Zhang J, Zi Z, Li L. COCOA: A Framework for Fine-scale Mapping of Cell-type-specific Chromatin Compartments Using Epigenomic Information. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae091. [PMID: 39724385 PMCID: PMC11993304 DOI: 10.1093/gpbjnl/qzae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Chromatin compartmentalization and epigenomic modifications play crucial roles in cell differentiation and disease development. However, precise mapping of chromatin compartment patterns requires Hi-C or Micro-C data at high sequencing depth. Exploring the systematic relationship between epigenomic modifications and compartment patterns remains challenging. To address these issues, we present COCOA, a deep neural network framework using convolution and attention mechanisms to infer fine-scale chromatin compartment patterns from six histone modification signals. COCOA extracts 1D track features through bidirectional feature reconstruction after resolution-specific binning of epigenomic signals. These track features are then cross-fused with contact features using an attention mechanism and transformed into chromatin compartment patterns through residual feature reduction. COCOA demonstrates accurate inference of chromatin compartmentalization at a fine-scale resolution and exhibits stable performance on test sets. Additionally, we explored the impact of histone modifications on chromatin compartmentalization prediction through in silico epigenomic perturbation experiments. Unlike obscure compartments observed in high-depth experimental data at 1-kb resolution, COCOA generates clear and detailed compartment patterns, highlighting its superior performance. Finally, we demonstrate that COCOA enables cell-type-specific prediction of unrevealed chromatin compartment patterns in various biological processes, making it an effective tool for gaining insights into chromatin compartmentalization from epigenomics in diverse biological scenarios. The COCOA Python code is publicly available at https://github.com/onlybugs/COCOA and https://ngdc.cncb.ac.cn/biocode/tools/BT007498.
Collapse
Affiliation(s)
- Kai Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi Wen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Junying Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhike Zi
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
14
|
Jusuf JM, Grosse-Holz S, Gabriele M, Mach P, Flyamer IM, Zechner C, Giorgetti L, Mirny LA, Hansen AS. Genome-wide absolute quantification of chromatin looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632736. [PMID: 39935886 PMCID: PMC11812599 DOI: 10.1101/2025.01.13.632736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of 26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop quantification and report that loops generally occur with low probabilities, generalizing recent live imaging results to the whole genome.
Collapse
Affiliation(s)
- James M. Jusuf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Simon Grosse-Holz
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Michele Gabriele
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
| | - Christoph Zechner
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Scuola Internazionale Superiori di Studi Avanzati, 34136 Trieste, Italy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Lee H, Seo PJ. Hi-GDT: A Hi-C-based 3D gene domain analysis tool for analyzing local chromatin contacts in plants. Gigascience 2025; 14:giaf020. [PMID: 40117178 PMCID: PMC11927400 DOI: 10.1093/gigascience/giaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Three-dimensional (3D) chromatin organization is emerging as a key factor in gene regulation in eukaryotes. Recent studies using high-resolution Hi-C analysis have explored fine-scale local chromatin contact domains in plants, as exemplified by the basic contact domains established at accessible gene border regions in Arabidopsis (Arabidopsis thaliana). However, we lack effective tools to identify these contact domains and examine their structural dynamics. RESULTS We developed the Hi-C-based 3D Gene Domain analysis Tool (Hi-GDT) to identify fine-scale local chromatin contact domains in plants, with a particular focus on gene borders. Hi-GDT successfully identifies local contact domains, including single-gene and multigene domains, with high reproducibility. Hi-GDT can also be used to discover local contact domains that are differentially organized in association with differences in gene expression between tissue types, genotypes, or in response to environmental stimuli. CONCLUSIONS Hi-GDT is a valuable tool for identifying genes regulated by dynamic 3D conformational changes, expanding our understanding of the structural and functional relevance of local 3D chromatin organization in plants. Hi-GDT is publicly available at https://github.com/CDL-HongwooLee/Hi-GDT.
Collapse
Affiliation(s)
- Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
17
|
Saelens W, Pushkarev O, Deplancke B. ChromatinHD connects single-cell DNA accessibility and conformation to gene expression through scale-adaptive machine learning. Nat Commun 2025; 16:317. [PMID: 39747019 PMCID: PMC11697365 DOI: 10.1038/s41467-024-55447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Gene regulation is inherently multiscale, but scale-adaptive machine learning methods that fully exploit this property in single-nucleus accessibility data are still lacking. Here, we develop ChromatinHD, a pair of scale-adaptive models that uses the raw accessibility data, without peak-calling or windows, to link regions to gene expression and determine differentially accessible chromatin. We show how ChromatinHD consistently outperforms existing peak and window-based approaches and find that this is due to a large number of uniquely captured, functional accessibility changes within and outside of putative cis-regulatory regions. Furthermore, ChromatinHD can delineate collaborating regulatory regions, including their preferential genomic conformations, that drive gene expression. Finally, our models also use changes in ATAC-seq fragment lengths to identify dense binding of transcription factors, a feature not captured by footprinting methods. Altogether, ChromatinHD, available at https://chromatinhd.org , is a suite of computational tools that enables a data-driven understanding of chromatin accessibility at various scales and how it relates to gene expression.
Collapse
Affiliation(s)
- Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- VIB Center for Inflammation Research, Ghent, Belgium.
| | - Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
18
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and Deep Learning Methods for Predicting 3D Genome Organization. Methods Mol Biol 2025; 2856:357-400. [PMID: 39283464 DOI: 10.1007/978-1-0716-4136-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Three-dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, topologically associating domains (TADs), and A/B compartments, play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers and transcription factor binding site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, and TAD boundaries) and analyze their pros and cons. We also point out obstacles to the computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P G Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Yao Q, Zhu L, Shi Z, Banerjee S, Chen C. Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression. Nat Struct Mol Biol 2025; 32:48-61. [PMID: 39152238 DOI: 10.1038/s41594-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
DNA supercoiling is a biophysical feature of the double helix with a pivotal role in biological processes. However, understanding of DNA supercoiling in the chromatin remains limited. Here, we developed azide-trimethylpsoralen sequencing (ATMP-seq), a DNA supercoiling assay offering quantitative accuracy while minimizing genomic bias and background noise. Using ATMP-seq, we directly visualized transcription-dependent negative and positive twin-supercoiled domains around genes and mapped kilobase-resolution DNA supercoiling throughout the human genome. Remarkably, we discovered megabase-scale supercoiling domains (SDs) across all chromosomes that are modulated mainly by topoisomerases I and IIβ. Transcription activities, but not the consequent supercoiling accumulation in the local region, contribute to SD formation, indicating the long-range propagation of transcription-generated supercoiling. Genome-wide SDs colocalize with A/B compartments in both human and Drosophila cells but are distinct from topologically associating domains (TADs), with negative supercoiling accumulation at TAD boundaries. Furthermore, genome-wide DNA supercoiling varies between cell states and types and regulates human gene expression, underscoring the importance of supercoiling dynamics in chromatin regulation and function.
Collapse
Affiliation(s)
- Qian Yao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linying Zhu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Shi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 PMCID: PMC11685540 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Li C, Bonder MJ, Syed S, Jensen M, Gerstein MB, Zody MC, Chaisson MJP, Talkowski ME, Marschall T, Korbel JO, Eichler EE, Lee C, Shi X. An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes. Genome Res 2024; 34:2304-2318. [PMID: 39638559 PMCID: PMC11694747 DOI: 10.1101/gr.279419.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
The human genome is packaged within a three-dimensional (3D) nucleus and organized into structural units known as compartments, topologically associating domains (TADs), and loops. TAD boundaries, separating adjacent TADs, have been found to be well conserved across mammalian species and more evolutionarily constrained than TADs themselves. Recent studies show that structural variants (SVs) can modify 3D genomes through the disruption of TADs, which play an essential role in insulating genes from outside regulatory elements' aberrant regulation. However, how SV affects the 3D genome structure and their association among different aspects of gene regulation and candidate cis-regulatory elements (cCREs) have rarely been studied systematically. Here, we assess the impact of SVs intersecting with TAD boundaries by developing an integrative Hi-C analysis pipeline, which enables the generation of an in-depth catalog of TADs and TAD boundaries in human lymphoblastoid cell lines (LCLs) to fill the gap of limited resources. Our catalog contains 18,865 TADs, including 4596 sub-TADs, with 185 SVs (TAD-SVs) that alter chromatin architecture. By leveraging the ENCODE registry of cCREs in humans, we determine that 34 of 185 TAD-SVs intersect with cCREs and observe significant enrichment of TAD-SVs within cCREs. This study provides a database of TADs and TAD-SVs in the human genome that will facilitate future investigations of the impact of SVs on chromatin structure and gene regulation in health and disease.
Collapse
Affiliation(s)
- Chong Li
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Marc Jan Bonder
- Department of Genetics, Groningen, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sabriya Syed
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Matthew Jensen
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, Connecticut 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, Connecticut 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut 06030-6403, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA;
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
22
|
Nolan B, Harris HL, Kalluchi A, Reznicek TE, Cummings C, Rowley MJ. HiCrayon reveals distinct layers of multi-state 3D chromatin organization. NAR Genom Bioinform 2024; 6:lqae182. [PMID: 39703428 PMCID: PMC11655295 DOI: 10.1093/nargab/lqae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Chromatin contact maps are often shown as 2D heatmaps and visually compared to 1D genomic data by simple juxtaposition. While common, this strategy is imprecise, placing the onus on the reader to align features with each other. To remedy this, we developed HiCrayon, an interactive tool that facilitates the integration of 3D chromatin organization maps and 1D datasets. This visualization method integrates data from genomic assays directly into the chromatin contact map by coloring interactions according to 1D signal. HiCrayon is implemented using R shiny and python to create a graphical user interface application, available in both web and containerized format to promote accessibility. We demonstrate the utility of HiCrayon in visualizing the effectiveness of compartment calling and the relationship between ChIP-seq and various features of chromatin organization. We also demonstrate the improved visualization of other 3D genomic phenomena, such as differences between loops associated with CTCF/cohesin versus those associated with H3K27ac. We then demonstrate HiCrayon's visualization of organizational changes that occur during differentiation and use HiCrayon to detect compartment patterns that cannot be assigned to either A or B compartments, revealing a distinct third chromatin compartment.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| |
Collapse
|
23
|
Korsak S, Banecki K, Plewczynski D. Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome. Comput Struct Biotechnol J 2024; 23:3537-3548. [PMID: 39435339 PMCID: PMC11492436 DOI: 10.1016/j.csbj.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Motivation: We present a user-friendly 3D chromatin simulation model for the human genome based on OpenMM, addressing the challenges posed by existing models with use-specific implementations. Our approach employs a multi-scale energy minimization strategy, capturing chromatin's hierarchical structure. Initiating with a Hilbert curve-based structure, users can input files specifying nucleosome positioning, loops, compartments, or subcompartments. Results: The model utilizes an energy minimization approach with a large choice of numerical integrators, providing the entire genome's structure within minutes. Output files include the generated structures for each chromosome, offering a versatile and accessible tool for chromatin simulation in bioinformatics studies. Furthermore, MultiMM is capable of producing nucleosome-resolution structures by making simplistic geometric assumptions about the structure and the density of nucleosomes on the DNA. Code availability: Open-source software and the manual are freely available on https://github.com/SFGLab/MultiMM or via pip https://pypi.org/project/MultiMM/.
Collapse
Affiliation(s)
- Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Fursova NA, Larson DR. Transcriptional machinery as an architect of genome structure. Curr Opin Struct Biol 2024; 89:102920. [PMID: 39306948 PMCID: PMC11602364 DOI: 10.1016/j.sbi.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024]
Abstract
Chromatin organization, facilitated by compartmentalization and loop extrusion, is crucial for proper gene expression and cell viability. Transcription has long been considered important for shaping genome architecture due to its pervasive activity across the genome and impact on the local chromatin environment. Although earlier studies suggested a minimal contribution of transcription to shaping global genome structure, recent insights from high-resolution chromatin contact mapping, polymer simulations, and acute perturbations have revealed its critical role in dynamic chromatin organization at the level of active genes and enhancer-promoter interactions. In this review, we discuss these latest advances, highlighting the direct interplay between transcriptional machinery and loop extrusion. Finally, we explore how transcription of genes and non-coding regulatory elements may contribute to the specificity of gene regulation, focusing on enhancers as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Fosseprez O, Cuvier O. Uncovering the functions and mechanisms of regulatory elements-associated non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195059. [PMID: 39226990 DOI: 10.1016/j.bbagrm.2024.195059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to regulate proper development, cellular programming, transcription or genomic stability. Here, we review the mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post-transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating to 3D nuclear organization.
Collapse
Affiliation(s)
- Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| |
Collapse
|
26
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
27
|
Longo GMC, Sayols S, Stefanova ME, Xie T, Elsayed W, Panagi A, Stavridou AI, Petrosino G, Ing-Simmons E, Melo US, Gothe HJ, Vaquerizas JM, Kotini AG, Papantonis A, Mundlos S, Roukos V. Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils. Mol Cell 2024; 84:4267-4281.e8. [PMID: 39486417 DOI: 10.1016/j.molcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells. Acute TOP2 depletion led to the emergence of new, large-scale contacts at the boundaries between active, positively supercoiled, and lamina-associated domains. TOP2-dependent changes at the higher-order chromatin folding were accompanied by remodeling of chromatin-nuclear lamina interactions and of gene expression, while at the chromatin loop level, TOP2 depletion predominantly remodeled transcriptionally anchored, positively supercoiled loops. We propose that TOP2s act as a fine regulator of chromosome folding at multiple scales.
Collapse
Affiliation(s)
- Gabriel M C Longo
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sergi Sayols
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maria E Stefanova
- Charité-Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Ting Xie
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Waheba Elsayed
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Anastasia Panagi
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Amalia I Stavridou
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Giuseppe Petrosino
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Elizabeth Ing-Simmons
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Henrike J Gothe
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Andriana G Kotini
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Vassilis Roukos
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece.
| |
Collapse
|
28
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Nolan B, Reznicek TE, Cummings CT, Rowley MJ. The chromatin tapestry as a framework for neurodevelopment. Genome Res 2024; 34:1477-1486. [PMID: 39472026 PMCID: PMC11529992 DOI: 10.1101/gr.278408.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The neuronal nucleus houses a meticulously organized genome. Within this structure, genetic material is not simply compacted but arranged into a precise and functional 3D chromatin landscape essential for cellular regulation. This mini-review highlights the importance of this chromatin landscape in healthy neurodevelopment, as well as the diseases that occur with aberrant chromatin architecture. We discuss insights into the fundamental mechanistic relationship between histone modifications, DNA methylation, and genome organization. We then discuss findings that reveal how these epigenetic features change throughout normal neurodevelopment. Finally, we highlight single-gene neurodevelopmental disorders that illustrate the interdependence of epigenetic features, showing how disruptions in DNA methylation or genome architecture can ripple across the entire epigenome. As such, we emphasize the importance of measuring multiple chromatin architectural aspects, as the disruption of one mechanism can likely impact others in the intricate epigenetic network. This mini-review underscores the vast gaps in our understanding of chromatin structure in neurodevelopmental diseases and the substantial research needed to understand the interplay between chromatin features and neurodevelopment.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA;
| |
Collapse
|
30
|
Hristov BH, Noble WS, Bertero A. Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories. Genome Res 2024; 34:1610-1623. [PMID: 39322282 PMCID: PMC11529845 DOI: 10.1101/gr.278327.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans- interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.
Collapse
Affiliation(s)
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
31
|
Rahman S, Roussos P. The 3D Genome in Brain Development: An Exploration of Molecular Mechanisms and Experimental Methods. Neurosci Insights 2024; 19:26331055241293455. [PMID: 39494115 PMCID: PMC11528596 DOI: 10.1177/26331055241293455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
The human brain contains multiple cell types that are spatially organized into functionally distinct regions. The proper development of the brain requires complex gene regulation mechanisms in both neurons and the non-neuronal cell types that support neuronal function. Studies across the last decade have discovered that the 3D nuclear organization of the genome is instrumental in the regulation of gene expression in the diverse cell types of the brain. In this review, we describe the fundamental biochemical mechanisms that regulate the 3D genome, and comprehensively describe in vitro and ex vivo studies on mouse and human brain development that have characterized the roles of the 3D genome in gene regulation. We highlight the significance of the 3D genome in linking distal enhancers to their target promoters, which provides insights on the etiology of psychiatric and neurological disorders, as the genetic variants associated with these disorders are primarily located in noncoding regulatory regions. We also describe the molecular mechanisms that regulate chromatin folding and gene expression in neurons. Furthermore, we describe studies with an evolutionary perspective, which have investigated features that are conserved from mice to human, as well as human gained 3D chromatin features. Although most of the insights on disease and molecular mechanisms have been obtained from bulk 3C based experiments, we also highlight other approaches that have been developed recently, such as single cell 3C approaches, as well as non-3C based approaches. In our future perspectives, we highlight the gaps in our current knowledge and emphasize the need for 3D genome engineering and live cell imaging approaches to elucidate mechanisms and temporal dynamics of chromatin interactions, respectively.
Collapse
Affiliation(s)
- Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
32
|
Ferraioli S, Sarigol F, Prakash C, Filipczak D, Foisner R, Naetar N. LAP2alpha facilitates myogenic gene expression by preventing nucleoplasmic lamin A/C from spreading to active chromatin regions. Nucleic Acids Res 2024; 52:11500-11518. [PMID: 39228367 PMCID: PMC11514464 DOI: 10.1093/nar/gkae752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A-type lamins form a filamentous meshwork beneath the nuclear membrane that anchors large heterochromatic genomic regions at the nuclear periphery. A-type lamins also exist as a dynamic, non-filamentous pool in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Both proteins associate with largely overlapping euchromatic genomic regions in the nucleoplasm, but the functional significance of this interaction is poorly understood. Here, we report that LAP2α relocates towards regions containing myogenic genes in the early stages of muscle differentiation, possibly facilitating efficient gene regulation, while lamins A and C mostly associate with genomic regions away from these genes. Strikingly, upon depletion of LAP2α, A-type lamins spread across active chromatin and accumulate at regions of active H3K27ac and H3K4me3 histone marks in the vicinity of myogenic genes whose expression is impaired in the absence of LAP2α. Reorganization of A-type lamins on chromatin is accompanied by depletion of the active chromatin mark H3K27ac and a significantly impaired myogenic differentiation. Thus, the interplay of LAP2α and A-type lamins is crucial for proper positioning of intranuclear lamin A/C on chromatin to allow efficient myogenic differentiation.
Collapse
Affiliation(s)
- Simona Ferraioli
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Fatih Sarigol
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Celine Prakash
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daria Filipczak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Roland Foisner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| | - Nana Naetar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
33
|
Dekker J, Oksuz BA, Zhang Y, Wang Y, Minsk MK, Kuang S, Yang L, Gibcus JH, Krietenstein N, Rando OJ, Xu J, Janssens DH, Henikoff S, Kukalev A, Willemin A, Winick-Ng W, Kempfer R, Pombo A, Yu M, Kumar P, Zhang L, Belmont AS, Sasaki T, van Schaik T, Brueckner L, Peric-Hupkes D, van Steensel B, Wang P, Chai H, Kim M, Ruan Y, Zhang R, Quinodoz SA, Bhat P, Guttman M, Zhao W, Chien S, Liu Y, Venev SV, Plewczynski D, Azcarate II, Szabó D, Thieme CJ, Szczepińska T, Chiliński M, Sengupta K, Conte M, Esposito A, Abraham A, Zhang R, Wang Y, Wen X, Wu Q, Yang Y, Liu J, Boninsegna L, Yildirim A, Zhan Y, Chiariello AM, Bianco S, Lee L, Hu M, Li Y, Barnett RJ, Cook AL, Emerson DJ, Marchal C, Zhao P, Park P, Alver BH, Schroeder A, Navelkar R, Bakker C, Ronchetti W, Ehmsen S, Veit A, Gehlenborg N, Wang T, Li D, Wang X, Nicodemi M, Ren B, Zhong S, Phillips-Cremins JE, Gilbert DM, Pollard KS, Alber F, Ma J, Noble WS, Yue F. An integrated view of the structure and function of the human 4D nucleome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613111. [PMID: 39484446 PMCID: PMC11526861 DOI: 10.1101/2024.09.17.613111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The dynamic three-dimensional (3D) organization of the human genome (the "4D Nucleome") is closely linked to genome function. Here, we integrate a wide variety of genomic data generated by the 4D Nucleome Project to provide a detailed view of human 3D genome organization in widely used embryonic stem cells (H1-hESCs) and immortalized fibroblasts (HFFc6). We provide extensive benchmarking of 3D genome mapping assays and integrate these diverse datasets to annotate spatial genomic features across scales. The data reveal a rich complexity of chromatin domains and their sub-nuclear positions, and over one hundred thousand structural loops and promoter-enhancer interactions. We developed 3D models of population-based and individual cell-to-cell variation in genome structure, establishing connections between chromosome folding, nuclear organization, chromatin looping, gene transcription, and DNA replication. We demonstrate the use of computational methods to predict genome folding from DNA sequence, uncovering potential effects of genetic variants on genome structure and function. Together, this comprehensive analysis contributes insights into human genome organization and enhances our understanding of connections between the regulation of genome function and 3D genome organization in general.
Collapse
Affiliation(s)
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Betul Akgol Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Ye Wang
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Miriam K. Minsk
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Krietenstein
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | - Derek H. Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Warren Winick-Ng
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Miao Yu
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, La Jolla, CA, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pradeep Kumar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, the Netherlands
| | - Laura Brueckner
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, the Netherlands
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | - Haoxi Chai
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| | - Minji Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijun Ruan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Sofia A. Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shu Chien
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yuan Liu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Ibai Irastorza Azcarate
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Christoph J. Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Teresa Szczepińska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Mattia Conte
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Andrea Esposito
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Alex Abraham
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Ruochi Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Yuchuan Wang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Qiuyang Wu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yang Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lorenzo Boninsegna
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Asli Yildirim
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Yuxiang Zhan
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea Maria Chiariello
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Simona Bianco
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yun Li
- Department of Biostatistics, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - R. Jordan Barnett
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley L. Cook
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J. Emerson
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Peiyao Zhao
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Peter Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Burak H. Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Andrew Schroeder
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Rahi Navelkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Clara Bakker
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - William Ronchetti
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Shannon Ehmsen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Alexander Veit
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Nils Gehlenborg
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Mario Nicodemi
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Bing Ren
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, La Jolla, CA, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jennifer E. Phillips-Cremins
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Frank Alber
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
34
|
Xu S, Egli D. Genome organization and stability in mammalian pre-implantation development. DNA Repair (Amst) 2024; 144:103780. [PMID: 39504608 DOI: 10.1016/j.dnarep.2024.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
35
|
Solovei I, Mirny L. Spandrels of the cell nucleus. Curr Opin Cell Biol 2024; 90:102421. [PMID: 39180905 DOI: 10.1016/j.ceb.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
S.J. Gould and R. Lewontin in their famous "Spandrels paper" (1979) argued that many anatomical elements arise in evolution not due to their "current utility" but rather due to other "reasons for origin", such as other developmental processes, physical constraints and mechanical forces. Here, in the same spirit, we argue that a variety of molecular processes, physical constraints, and mechanical forces, alone or together, generate structures that are detectable in the cell nucleus, yet these structures themselves may not carry any specific function, being a mere reflection of processes that produced them.
Collapse
Affiliation(s)
- Irina Solovei
- Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Banerjee A, Zhang S, Bahar I. Genome structural dynamics: insights from Gaussian network analysis of Hi-C data. Brief Funct Genomics 2024; 23:525-537. [PMID: 38654598 PMCID: PMC11428154 DOI: 10.1093/bfgp/elae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Characterization of the spatiotemporal properties of the chromatin is essential to gaining insights into the physical bases of gene co-expression, transcriptional regulation and epigenetic modifications. The Gaussian network model (GNM) has proven in recent work to serve as a useful tool for modeling chromatin structural dynamics, using as input high-throughput chromosome conformation capture data. We focus here on the exploration of the collective dynamics of chromosomal structures at hierarchical levels of resolution, from single gene loci to topologically associating domains or entire chromosomes. The GNM permits us to identify long-range interactions between gene loci, shedding light on the role of cross-correlations between distal regions of the chromosomes in regulating gene expression. Notably, GNM analysis performed across diverse cell lines highlights the conservation of the global/cooperative movements of the chromatin across different types of cells. Variations driven by localized couplings between genomic loci, on the other hand, underlie cell differentiation, underscoring the significance of the four-dimensional properties of the genome in defining cellular identity. Finally, we demonstrate the close relation between the cell type-dependent mobility profiles of gene loci and their gene expression patterns, providing a clear demonstration of the role of chromosomal 4D features in defining cell-specific differential expression of genes.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, NY 11794, USA
| | - She Zhang
- OpenEye, Cadence Molecular Sciences, Santa Fe, NM 87508, USA
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, NY 11794, USA
- Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| |
Collapse
|
37
|
Jha A, Hristov B, Wang X, Wang S, Greenleaf WJ, Kundaje A, Aiden EL, Bertero A, Noble WS. Prediction and functional interpretation of inter-chromosomal genome architecture from DNA sequence with TwinC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613355. [PMID: 39345598 PMCID: PMC11429679 DOI: 10.1101/2024.09.16.613355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three-dimensional nuclear DNA architecture comprises well-studied intra-chromosomal (cis) folding and less characterized inter-chromosomal (trans) interfaces. Current predictive models of 3D genome folding can effectively infer pairwise cis-chromatin interactions from the primary DNA sequence but generally ignore trans contacts. There is an unmet need for robust models of trans-genome organization that provide insights into their underlying principles and functional relevance. We present TwinC, an interpretable convolutional neural network model that reliably predicts trans contacts measurable through genome-wide chromatin conformation capture (Hi-C). TwinC uses a paired sequence design from replicate Hi-C experiments to learn single base pair relevance in trans interactions across two stretches of DNA. The method achieves high predictive accuracy (AUROC=0.80) on a cross-chromosomal test set from Hi-C experiments in heart tissue. Mechanistically, the neural network learns the importance of compartments, chromatin accessibility, clustered transcription factor binding and G-quadruplexes in forming trans contacts. In summary, TwinC models and interprets trans genome architecture, shedding light on this poorly understood aspect of gene regulation.
Collapse
Affiliation(s)
- Anupama Jha
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Sheng Wang
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University Stanford, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Goel VY, Aboreden NG, Jusuf JM, Zhang H, Mori LP, Mirny LA, Blobel GA, Banigan EJ, Hansen AS. Dynamics of microcompartment formation at the mitosis-to-G1 transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611917. [PMID: 39345388 PMCID: PMC11430094 DOI: 10.1101/2024.09.16.611917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As cells exit mitosis and enter G1, mitotic chromosomes decompact and transcription is reestablished. Previously, Hi-C studies showed that essentially all interphase 3D genome features including A/B-compartments, TADs, and CTCF loops, are lost during mitosis. However, Hi-C remains insensitive to features such as microcompartments, nested focal interactions between cis-regulatory elements (CREs). We therefore applied Region Capture Micro-C to cells from mitosis to G1. Unexpectedly, we observe microcompartments in prometaphase, which further strengthen in ana/telophase before gradually weakening in G1. Loss of loop extrusion through condensin depletion differentially impacts microcompartments and large A/B-compartments, suggesting that they are partially distinct. Using polymer modeling, we show that microcompartment formation is favored by chromatin compaction and disfavored by loop extrusion activity, explaining why ana/telophase likely provides a particularly favorable environment. Our results suggest that CREs exhibit intrinsic homotypic affinity leading to microcompartment formation, which may explain transient transcriptional spiking observed upon mitotic exit.
Collapse
Affiliation(s)
- Viraat Y. Goel
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Nicholas G. Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James M. Jusuf
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Luisa P. Mori
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward J. Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Schooley A, Venev SV, Aksenova V, Navarrete E, Dasso M, Dekker J. Interphase chromosome conformation is specified by distinct folding programs inherited via mitotic chromosomes or through the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613305. [PMID: 39345587 PMCID: PMC11429855 DOI: 10.1101/2024.09.16.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Identity-specific interphase chromosome conformation must be re-established each time a cell divides. To understand how interphase folding is inherited, we developed an experimental approach that physically segregates mediators of G1 folding that are intrinsic to mitotic chromosomes from cytoplasmic factors. Proteins essential for nuclear transport, RanGAP1 and Nup93, were degraded in pro-metaphase arrested DLD-1 cells to prevent the establishment of nucleo-cytoplasmic transport during mitotic exit and isolate the decondensing mitotic chromatin of G1 daughter cells from the cytoplasm. Using this approach, we discover a transient folding intermediate entirely driven by chromosome-intrinsic factors. In addition to conventional compartmental segregation, this chromosome-intrinsic folding program leads to prominent genome-scale microcompartmentalization of mitotically bookmarked and cell type-specific cis-regulatory elements. This microcompartment conformation is formed during telophase and subsequently modulated by a second folding program driven by factors inherited through the cytoplasm in G1. This nuclear import-dependent folding program includes cohesin and factors involved in transcription and RNA processing. The combined and inter-dependent action of chromosome-intrinsic and cytoplasmic inherited folding programs determines the interphase chromatin conformation as cells exit mitosis.
Collapse
Affiliation(s)
- Allana Schooley
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Emily Navarrete
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| |
Collapse
|
40
|
Rossini R, Oshaghi M, Nekrasov M, Bellanger A, Domaschenz R, Dijkwel Y, Abdelhalim M, Collas P, Tremethick D, Paulsen J. Loss of multi-level 3D genome organization during breast cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568711. [PMID: 38076897 PMCID: PMC10705249 DOI: 10.1101/2023.11.26.568711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Breast cancer entails intricate alterations in genome organization and expression. However, how three-dimensional (3D) chromatin structure changes in the progression from a normal to a breast cancer malignant state remains unknown. To address this, we conducted an analysis combining Hi-C data with lamina-associated domains (LADs), epigenomic marks, and gene expression in an in vitro model of breast cancer progression. Our results reveal that while the fundamental properties of topologically associating domains (TADs) are overall maintained, significant changes occur in the organization of compartments and subcompartments. These changes are closely correlated with alterations in the expression of oncogenic genes. We also observe a restructuring of TAD-TAD interactions, coinciding with a loss of spatial compartmentalization and radial positioning of the 3D genome. Notably, we identify a previously unrecognized interchromosomal insertion event, wherein a locus on chromosome 8 housing the MYC oncogene is inserted into a highly active subcompartment on chromosome 10. This insertion is accompanied by the formation of de novo enhancer contacts and activation of MYC, illustrating how structural genomic variants can alter the 3D genome to drive oncogenic states. In summary, our findings provide evidence for the loss of genome organization at multiple scales during breast cancer progression revealing novel relationships between genome 3D structure and oncogenic processes.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Mohammadsaleh Oshaghi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Maxim Nekrasov
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Renae Domaschenz
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasmin Dijkwel
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David Tremethick
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
41
|
Ke W, Fujioka M, Schedl P, Jaynes JB. Stem-loop and circle-loop TADs generated by directional pairing of boundary elements have distinct physical and regulatory properties. eLife 2024; 13:RP94114. [PMID: 39110491 PMCID: PMC11305674 DOI: 10.7554/elife.94114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The chromosomes in multicellular eukaryotes are organized into a series of topologically independent loops called TADs. In flies, TADs are formed by physical interactions between neighboring boundaries. Fly boundaries exhibit distinct partner preferences, and pairing interactions between boundaries are typically orientation-dependent. Pairing can be head-to-tail or head-to-head. The former generates a stem-loop TAD, while the latter gives a circle-loop TAD. The TAD that encompasses the Drosophila even skipped (eve) gene is formed by the head-to-tail pairing of the nhomie and homie boundaries. To explore the relationship between loop topology and the physical and regulatory landscape, we flanked the nhomie boundary region with two attP sites. The attP sites were then used to generate four boundary replacements: λ DNA, nhomie forward (WT orientation), nhomie reverse (opposite of WT orientation), and homie forward (same orientation as WT homie). The nhomie forward replacement restores the WT physical and regulatory landscape: in MicroC experiments, the eve TAD is a 'volcano' triangle topped by a plume, and the eve gene and its regulatory elements are sequestered from interactions with neighbors. The λ DNA replacement lacks boundary function: the endpoint of the 'new' eve TAD on the nhomie side is ill-defined, and eve stripe enhancers activate a nearby gene, eIF3j. While nhomie reverse and homie forward restore the eve TAD, the topology is a circle-loop, and this changes the local physical and regulatory landscape. In MicroC experiments, the eve TAD interacts with its neighbors, and the plume at the top of the eve triangle peak is converted to a pair of 'clouds' of contacts with the next-door TADs. Consistent with the loss of isolation afforded by the stem-loop topology, the eve enhancers weakly activate genes in the neighboring TADs. Conversely, eve function is partially disrupted.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
42
|
Pushkarev O, van Mierlo G, Kribelbauer JF, Saelens W, Gardeux V, Deplancke B. Non-coding variants impact cis-regulatory coordination in a cell type-specific manner. Genome Biol 2024; 25:190. [PMID: 39026229 PMCID: PMC11256678 DOI: 10.1186/s13059-024-03333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Interactions among cis-regulatory elements (CREs) play a crucial role in gene regulation. Various approaches have been developed to map these interactions genome-wide, including those relying on interindividual epigenomic variation to identify groups of covariable regulatory elements, referred to as chromatin modules (CMs). While CM mapping allows to investigate the relationship between chromatin modularity and gene expression, the computational principles used for CM identification vary in their application and outcomes. RESULTS We comprehensively evaluate and streamline existing CM mapping tools and present guidelines for optimal utilization of epigenome data from a diverse population of individuals to assess regulatory coordination across the human genome. We showcase the effectiveness of our recommended practices by analyzing distinct cell types and demonstrate cell type specificity of CRE interactions in CMs and their relevance for gene expression. Integration of genotype information revealed that many non-coding disease-associated variants affect the activity of CMs in a cell type-specific manner by affecting the binding of cell type-specific transcription factors. We provide example cases that illustrate in detail how CMs can be used to deconstruct GWAS loci, assess variable expression of cell surface receptors in immune cells, and reveal how genetic variation can impact the expression of prognostic markers in chronic lymphocytic leukemia. CONCLUSIONS Our study presents an optimal strategy for CM mapping and reveals how CMs capture the coordination of CREs and its impact on gene expression. Non-coding genetic variants can disrupt this coordination, and we highlight how this may lead to disease predisposition in a cell type-specific manner.
Collapse
Affiliation(s)
- Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Judith Franziska Kribelbauer
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
43
|
Dietzen M, Zhai H, Lucas O, Pich O, Barrington C, Lu WT, Ward S, Guo Y, Hynds RE, Zaccaria S, Swanton C, McGranahan N, Kanu N. Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution. Nat Commun 2024; 15:6039. [PMID: 39019871 PMCID: PMC11255325 DOI: 10.1038/s41467-024-50107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
During each cell cycle, the process of DNA replication timing is tightly regulated to ensure the accurate duplication of the genome. The extent and significance of alterations in this process during malignant transformation have not been extensively explored. Here, we assess the impact of altered replication timing (ART) on cancer evolution by analysing replication-timing sequencing of cancer and normal cell lines and 952 whole-genome sequenced lung and breast tumours. We find that 6%-18% of the cancer genome exhibits ART, with regions with a change from early to late replication displaying an increased mutation rate and distinct mutational signatures. Whereas regions changing from late to early replication contain genes with increased expression and present a preponderance of APOBEC3-mediated mutation clusters and associated driver mutations. We demonstrate that ART occurs relatively early during cancer evolution and that ART may have a stronger correlation with mutation acquisition than alterations in chromatin structure.
Collapse
Affiliation(s)
- Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Olivia Lucas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Oriol Pich
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Yanping Guo
- CRUK Flow Cytometry Translational Technology Platform, UCL Cancer Institute, London, UK
| | - Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
44
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Shan L, Li P, Yu H, Chen LL. Emerging roles of nuclear bodies in genome spatial organization. Trends Cell Biol 2024; 34:595-605. [PMID: 37993310 DOI: 10.1016/j.tcb.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Nuclear bodies (NBs) are biomolecular condensates that participate in various cellular processes and respond to cellular stimuli in the nucleus. The assembly and function of these protein- and RNA-rich bodies, such as nucleoli, nuclear speckles, and promyelocytic leukemia (PML) NBs, contribute to the spatial organization of the nucleus, regulating chromatin activities locally and globally. Recent technological advancements, including spatial multiomics approaches, have revealed novel roles of nucleoli in modulating ribosomal DNA (rDNA) and adjacent non-rDNA chromatin activity, nuclear speckles in scaffolding active genome architecture, and PML NBs in maintaining genome stability during stress conditions. In this review, we summarize emerging functions of these important NBs in the spatial organization of the genome, aided by recently developed spatial multiomics approaches toward this direction.
Collapse
Affiliation(s)
- Lin Shan
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Shenzhen, China.
| | - Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
46
|
Pabba MK, Meyer J, Celikay K, Schermelleh L, Rohr K, Cardoso MC. DNA choreography: correlating mobility and organization of DNA across different resolutions from loops to chromosomes. Histochem Cell Biol 2024; 162:109-131. [PMID: 38758428 PMCID: PMC11227476 DOI: 10.1007/s00418-024-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
Collapse
Affiliation(s)
- Maruthi K Pabba
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany.
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
47
|
Huber J, Tanasie NL, Zernia S, Stigler J. Single-molecule imaging reveals a direct role of CTCF's zinc fingers in SA interaction and cluster-dependent RNA recruitment. Nucleic Acids Res 2024; 52:6490-6506. [PMID: 38742641 PMCID: PMC11194110 DOI: 10.1093/nar/gkae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
CTCF is a zinc finger protein associated with transcription regulation that also acts as a barrier factor for topologically associated domains (TADs) generated by cohesin via loop extrusion. These processes require different properties of CTCF-DNA interaction, and it is still unclear how CTCF's structural features may modulate its diverse roles. Here, we employ single-molecule imaging to study both full-length CTCF and truncation mutants. We show that CTCF enriches at CTCF binding sites (CBSs), displaying a longer lifetime than observed previously. We demonstrate that the zinc finger domains mediate CTCF clustering and that clustering enables RNA recruitment, possibly creating a scaffold for interaction with RNA-binding proteins like cohesin's subunit SA. We further reveal a direct recruitment and an increase of SA residence time by CTCF bound at CBSs, suggesting that CTCF-SA interactions are crucial for cohesin stability on chromatin at TAD borders. Furthermore, we establish a single-molecule T7 transcription assay and show that although a transcribing polymerase can remove CTCF from CBSs, transcription is impaired. Our study shows that context-dependent nucleic acid binding determines the multifaceted CTCF roles in genome organization and transcription regulation.
Collapse
Affiliation(s)
- Jonas Huber
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
48
|
Brandani GB, Gu C, Gopi S, Takada S. Multiscale Bayesian simulations reveal functional chromatin condensation of gene loci. PNAS NEXUS 2024; 3:pgae226. [PMID: 38881841 PMCID: PMC11179106 DOI: 10.1093/pnasnexus/pgae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Chromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus. We first demonstrate the capability of this method to accurately reconstruct the structural ensemble and the dynamics of a system from contact information. We then apply the approach to investigate the Sox2, Pou5f1, and Nanog loci of mouse embryonic stem cells using a bottom-up chromatin model at 1 kb resolution. We observe that the studied loci are conformationally heterogeneous and organized as crumpled globules, favoring contacts between distant enhancers and promoters. Using nucleosome-resolution simulations, we then reveal how the Nanog gene is functionally organized across the multiple scales of chromatin. At the local level, we identify diverse tetranucleosome folding motifs with a characteristic distribution along the genome, predominantly open at cis-regulatory elements and compact in between. At the larger scale, we find that enhancer-promoter contacts are driven by the transient condensation of chromatin into compact domains stabilized by extensive internucleosome interactions. Overall, this work highlights the condensed, but dynamic nature of chromatin in vivo, contributing to a deeper understanding of gene structure-function relationships.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
49
|
Martitz A, Schulz EG. Spatial orchestration of the genome: topological reorganisation during X-chromosome inactivation. Curr Opin Genet Dev 2024; 86:102198. [PMID: 38663040 DOI: 10.1016/j.gde.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Genomes are organised through hierarchical structures, ranging from local kilobase-scale cis-regulatory contacts to large chromosome territories. Most notably, (sub)-compartments partition chromosomes according to transcriptional activity, while topologically associating domains (TADs) define cis-regulatory landscapes. The inactive X chromosome in mammals has provided unique insights into the regulation and function of the three-dimensional (3D) genome. Concurrent with silencing of the majority of genes and major alterations of its chromatin state, the X chromosome undergoes profound spatial rearrangements at multiple scales. These include the emergence of megadomains, alterations of the compartment structure and loss of the majority of TADs. Moreover, the Xist locus, which orchestrates X-chromosome inactivation, has provided key insights into regulation and function of regulatory domains. This review provides an overview of recent insights into the control of these structural rearrangements and contextualises them within a broader understanding of 3D genome organisation.
Collapse
Affiliation(s)
- Alexandra Martitz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
50
|
Hayward-Lara G, Fischer MD, Mir M. Dynamic microenvironments shape nuclear organization and gene expression. Curr Opin Genet Dev 2024; 86:102177. [PMID: 38461773 PMCID: PMC11162947 DOI: 10.1016/j.gde.2024.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Live imaging has revealed that the regulation of gene expression is largely driven by transient interactions. For example, many regulatory proteins bind chromatin for just seconds, and loop-like genomic contacts are rare and last only minutes. These discoveries have been difficult to reconcile with our canonical models that are predicated on stable and hierarchical interactions. Proteomic microenvironments that concentrate nuclear factors may explain how brief interactions can still mediate gene regulation by creating conditions where reactions occur more frequently. Here, we summarize new imaging technologies and recent discoveries implicating microenvironments as a potential driver of nuclear function. Finally, we propose that key properties of proteomic microenvironments, such as their size, enrichment, and lifetimes, are directly linked to regulatory function.
Collapse
Affiliation(s)
- Gabriela Hayward-Lara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
| | - Matthew D. Fischer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
| |
Collapse
|