1
|
Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz-Helmer F. High-Resolution Structuring of Silica-Based Nanocomposites for the Fabrication of Transparent Multicomponent Glasses with Adjustable Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407630. [PMID: 39219207 DOI: 10.1002/adma.202407630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Silicate-based multicomponent glasses are of high interest for technical applications due to their tailored properties, such as an adaptable refractive index or coefficient of thermal expansion. However, the production of complex structured parts is associated with high effort, since glass components are usually shaped from high-temperature melts with subsequent mechanical or chemical postprocessing. Here for the first time the fabrication of binary and ternary multicomponent glasses using doped nanocomposites based on silica nanoparticles and photocurable metal oxide precursors as part of the binder matrix is presented. The doped nanocomposites are structured in high resolution using UV-casting and additive manufacturing techniques, such as stereolithography and two-photon lithography. Subsequently, the composites are thermally converted into transparent glass. By incorporating titanium oxide, germanium oxide, or zirconium dioxide into the silicate glass network, multicomponent glasses are fabricated with an adjustable refractive index nD between 1.4584-1.4832 and an Abbe number V of 53.85-61.13. It is further demonstrated that by incorporating 7 wt% titanium oxide, glasses with ultralow thermal expansion can be fabricated with so far unseen complexity. These novel materials enable for the first time high-precision lithographic structuring of multicomponent silica glasses with applications from optics and photonics, semiconductors as well as sensors.
Collapse
Affiliation(s)
- Richard Prediger
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Sebastian Kluck
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Leonhard Hambitzer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Daniel Sauter
- Laboratory for Micro-Optics, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104, Freiburg, Germany
- Glassomer GmbH, In den Kirchenmatten 54, 79110, Freiburg, Germany
| |
Collapse
|
2
|
Khonina SN, Kazanskiy NL, Butt MA. Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review. MICROMACHINES 2024; 15:1321. [PMID: 39597133 PMCID: PMC11596922 DOI: 10.3390/mi15111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Lithography serves as a fundamental process in the realms of microfabrication and nanotechnology, facilitating the transfer of intricate patterns onto a substrate, typically in the form of a wafer or a flat surface. Grayscale lithography (GSL) is highly valued in precision manufacturing and research endeavors because of its unique capacity to create intricate and customizable patterns with varying depths and intensities. Unlike traditional binary lithography, which produces discrete on/off features, GSL offers a spectrum of exposure levels. This enables the production of complex microstructures, diffractive optical elements, 3D micro-optics, and other nanoscale designs with smooth gradients and intricate surface profiles. GSL plays a crucial role in sectors such as microelectronics, micro-optics, MEMS/NEMS manufacturing, and photonics, where precise control over feature depth, shape, and intensity is critical for achieving advanced functionality. Its versatility and capacity to generate tailored structures make GSL an indispensable tool in various cutting-edge applications. This review will delve into several lithographic techniques, with a particular emphasis on masked and maskless GSL methods. As these technologies continue to evolve, the future of 3D micro- and nanostructure manufacturing will undoubtedly assume even greater significance in various applications.
Collapse
|
3
|
Huang PH, Chen S, Hartwig O, Marschner DE, Duesberg GS, Stemme G, Li J, Gylfason KB, Niklaus F. 3D Printing of Hierarchical Structures Made of Inorganic Silicon-Rich Glass Featuring Self-Forming Nanogratings. ACS NANO 2024; 18:29748-29759. [PMID: 39383314 PMCID: PMC11526370 DOI: 10.1021/acsnano.4c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
Hierarchical structures are abundant in nature, such as in the superhydrophobic surfaces of lotus leaves and the structural coloration of butterfly wings. They consist of ordered features across multiple size scales, and their advantageous properties have attracted enormous interest in wide-ranging fields including energy storage, nanofluidics, and nanophotonics. Femtosecond lasers, which are capable of inducing various material modifications, have shown promise for manufacturing tailored hierarchical structures. However, existing methods, such as multiphoton lithography and three-dimensional (3D) printing using nanoparticle-filled inks, typically involve polymers and suffer from high process complexity. Here, we demonstrate the 3D printing of hierarchical structures in inorganic silicon-rich glass featuring self-forming nanogratings. This approach takes advantage of our finding that femtosecond laser pulses can induce simultaneous multiphoton cross-linking and self-formation of nanogratings in hydrogen silsesquioxane. The 3D printing process combines the 3D patterning capability of multiphoton lithography and the efficient generation of periodic structures by the self-formation of nanogratings. We 3D-printed micro-supercapacitors with large surface areas and a high areal capacitance of 1 mF/cm2 at an ultrahigh scan rate of 50 V/s, thereby demonstrating the utility of our 3D printing approach for device applications in emerging fields such as energy storage.
Collapse
Affiliation(s)
- Po-Han Huang
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Shiqian Chen
- Division
of Electronics and Embedded Systems, School of Electrical Engineering
and Computer Science, KTH Royal Institute
of Technology, Kista 16440, Sweden
| | - Oliver Hartwig
- Institute
of Physics, EIT 2, Faculty of Electrical Engineering and Information
Technology, University of the Bundeswehr Munich & SENS Research
Center, Neubiberg 85577, Germany
| | - David E. Marschner
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Georg S. Duesberg
- Institute
of Physics, EIT 2, Faculty of Electrical Engineering and Information
Technology, University of the Bundeswehr Munich & SENS Research
Center, Neubiberg 85577, Germany
| | - Göran Stemme
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Jiantong Li
- Division
of Electronics and Embedded Systems, School of Electrical Engineering
and Computer Science, KTH Royal Institute
of Technology, Kista 16440, Sweden
| | - Kristinn B. Gylfason
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Frank Niklaus
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| |
Collapse
|
4
|
Zhu D, Jiang S, Liao C, Xu L, Wang Y, Liu D, Bao W, Wang F, Huang H, Weng X, Liu L, Qu J, Wang Y. Ultrafast Laser 3D Nanolithography of Fiber-Integrated Silica Microdevices. NANO LETTERS 2024; 24:9734-9742. [PMID: 39047072 DOI: 10.1021/acs.nanolett.4c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.
Collapse
Affiliation(s)
- Dezhi Zhu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shangben Jiang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ying Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Weijia Bao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Famei Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
6
|
Lai LL, Huang PH, Stemme G, Niklaus F, Gylfason KB. 3D Printing of Glass Micro-Optics with Subwavelength Features on Optical Fiber Tips. ACS NANO 2024; 18:10788-10797. [PMID: 38551815 PMCID: PMC11044591 DOI: 10.1021/acsnano.3c11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/24/2024]
Abstract
Integration of functional materials and structures on the tips of optical fibers has enabled various applications in micro-optics, such as sensing, imaging, and optical trapping. Direct laser writing is a 3D printing technology that holds promise for fabricating advanced micro-optical structures on fiber tips. To date, material selection has been limited to organic polymer-based photoresists because existing methods for 3D direct laser writing of inorganic materials involve high-temperature processing that is not compatible with optical fibers. However, organic polymers do not feature stability and transparency comparable to those of inorganic glasses. Herein, we demonstrate 3D direct laser writing of inorganic glass with a subwavelength resolution on optical fiber tips. We show two distinct printing modes that enable the printing of solid silica glass structures ("Uniform Mode") and self-organized subwavelength gratings ("Nanograting Mode"), respectively. We illustrate the utility of our approach by printing two functional devices: (1) a refractive index sensor that can measure the indices of binary mixtures of acetone and methanol at near-infrared wavelengths and (2) a compact polarization beam splitter for polarization control and beam steering in an all-in-fiber system. By combining the superior material properties of glass with the plug-and-play nature of optical fibers, this approach enables promising applications in fields such as fiber sensing, optical microelectromechanical systems (MEMS), and quantum photonics.
Collapse
Affiliation(s)
- Lee-Lun Lai
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Po-Han Huang
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Göran Stemme
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Frank Niklaus
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Kristinn B. Gylfason
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| |
Collapse
|
7
|
Mu H, Smith D, Ng SH, Anand V, Le NHA, Dharmavarapu R, Khajehsaeidimahabadi Z, Richardson RT, Ruther P, Stoddart PR, Gricius H, Baravykas T, Gailevičius D, Seniutinas G, Katkus T, Juodkazis S. Fraxicon for Optical Applications with Aperture ∼1 mm: Characterisation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:287. [PMID: 38334558 PMCID: PMC10856946 DOI: 10.3390/nano14030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Emerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.
Collapse
Affiliation(s)
- Haoran Mu
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Daniel Smith
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Soon Hock Ng
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
- Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | - Vijayakumar Anand
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Nguyen Hoai An Le
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Raghu Dharmavarapu
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Zahra Khajehsaeidimahabadi
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Rachael T. Richardson
- Bionics Institute, East Melbourne, VIC 3002, Australia;
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany;
- BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Paul R. Stoddart
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Henrikas Gricius
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (H.G.); (D.G.)
| | | | - Darius Gailevičius
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (H.G.); (D.G.)
| | - Gediminas Seniutinas
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
- Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | - Tomas Katkus
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
| | - Saulius Juodkazis
- Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (H.M.); (D.S.); (N.H.A.L.); (R.D.); (Z.K.); (P.R.S.); (G.S.); (T.K.); (S.J.)
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (H.G.); (D.G.)
- WRH Program International Research Frontiers Initiative (IRFI) Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
8
|
Gao S, Li J, Lei Q, Chen Y, Huang H, Yan F, Xiao L, Zhang T, Wang L, Wei R, Hu C. Calcium sulfate-Cu 2+ delivery system improves 3D-Printed calcium silicate artificial bone to repair large bone defects. Front Bioeng Biotechnol 2023; 11:1224557. [PMID: 37954016 PMCID: PMC10634439 DOI: 10.3389/fbioe.2023.1224557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
There are still limitations in artificial bone materials used in clinical practice, such as difficulty in repairing large bone defects, the mismatch between the degradation rate and tissue growth, difficulty in vascularization, an inability to address bone defects of various shapes, and risk of infection. To solve these problems, our group designed stereolithography (SLA) 3D-printed calcium silicate artificial bone improved by a calcium sulfate-Cu2+ delivery system. SLA technology endows the scaffold with a three-dimensional tunnel structure to induce cell migration to the center of the bone defect. The calcium sulfate-Cu2+ delivery system was introduced to enhance the osteogenic activity of calcium silicate. Rapid degradation of calcium sulfate (CS) induces early osteogenesis in the three-dimensional tunnel structure. Calcium silicate (CSi) which degrades slowly provides mechanical support and promotes bone formation in bone defect sites for a long time. The gradient degradation of these two components is perfectly matched to the rate of repair in large bone defects. On the other hand, the calcium sulfate delivery system can regularly release Cu2+ in the temporal and spatial dimensions, exerting a long-lasting antimicrobial effect and promoting vascular growth. This powerful 3D-printed calcium silicate artificial bone which has rich osteogenic activity is a promising material for treating large bone defects and has excellent potential for clinical application.
Collapse
Affiliation(s)
- Shijie Gao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawen Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tie Zhang
- Wuhan QISIDA Technology Development Co., Ltd., Wuhan, Hubei, China
| | - Linlong Wang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Hu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|