1
|
Shukla V, Iqbal K, Okae H, Arima T, Soares MJ. Effects of an aryl hydrocarbon receptor ligand on human trophoblast cell development. Hum Reprod 2025:deaf075. [PMID: 40294436 DOI: 10.1093/humrep/deaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
STUDY QUESTION How does activation of aryl hydrocarbon receptor (AHR) signaling affect human trophoblast cell development and differentiation? SUMMARY ANSWER AHR activation alters gene expression without impairing the ability of trophoblast cells to maintain a stem cell state or differentiate into essential cell types, such as extravillous trophoblast (EVT) cells or syncytiotrophoblast (ST), while promoting the production of 2-methoxy estradiol (2ME), which may impact placental development. WHAT IS KNOWN ALREADY The placenta serves both as a nutrient delivery system and a protective barrier against environmental toxins. AHR signaling is known to mediate cellular responses to environmental pollutants, potentially affecting trophoblast cell function, but the specific impacts of AHR activation on these cells were not fully understood. STUDY DESIGN, SIZE, DURATION This study utilized an in vitro model of human trophoblast stem (TS) cells to investigate the downstream effects of AHR activation. The study focused on both undifferentiated TS cells and cells undergoing differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS Human TS cells were used as a model system. Researchers examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in TS cells maintained in their stem state and in TS cells induced to differentiate into EVT cells or ST. The study assessed changes in gene expression, particularly focusing on CYP1A1 and CYP1B1, as well as the production of 2ME. MAIN RESULTS AND THE ROLE OF CHANCE AHR activation stimulated the expression of CYP1A1 and CYP1B1, key genes associated with AHR signaling, in both undifferentiated and differentiating trophoblast cells. While AHR activation did not impact the ability of the cell to remain in a stem state or differentiate, it increased the production of 2ME, which may influence placentation. These effects were dependent on AHR signaling. LARGE SCALE DATA n/a. LIMITATIONS, REASONS FOR CAUTION This study was conducted in vitro, which may not fully replicate in vivo conditions. Further research is needed to confirm whether these findings apply to placental development in humans. WIDER IMPLICATIONS OF THE FINDINGS The results suggest that AHR signaling activated by environmental pollutants could have a significant impact on placental development through mechanisms involving AHR activation. These findings may have broader implications for understanding how environmental factors affect fetal development. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the National Institutes of Health: ES028957, HD020676, ES029280, HD105734, HD112559, and the Sosland Foundation. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michael J Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Meinhardt G, Waldhäusl H, Lackner AI, Wächter J, Maxian T, Höbler AL, Vondra S, Kunihs V, Saleh L, Haslinger P, Kiraly P, Szilagyi A, Than NG, Pollheimer J, Haider S, Knöfler M. The multifaceted roles of the transcriptional coactivator TAZ in extravillous trophoblast development of the human placenta. Proc Natl Acad Sci U S A 2025; 122:e2426385122. [PMID: 40228123 PMCID: PMC12037006 DOI: 10.1073/pnas.2426385122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Insights into the molecular processes that drive early development of the human placenta is crucial for our understanding of pregnancy complications such as preeclampsia and fetal growth restriction, since defects in maturation of its epithelial cell, the trophoblast, have been detected in the severe forms of these diseases. However, key regulators specifying the differentiated trophoblast subtypes of the placenta are only slowly emerging. By using diverse trophoblast cell models, we herein show that the transcriptional coactivator of HIPPO signaling, TAZ, plays a pivotal role in the development of invasive extravillous trophoblasts (EVTs), cells that are essential for decidual vessel remodeling and adaption of maternal blood flow to the placenta. Ribonucleic acid sequencing (RNA-seq) or protein analyses upon TAZ gene silencing or CRISPR-Cas9-mediated knockout in differentiating trophoblast stem cells, organoids, primary EVTs, choriocarcinoma cells, or villous explant cultures unraveled that the coactivator promoted expression of genes associated with EVT identity, motility, and survival. Accordingly, depletion or chemical inhibition of TAZ, interacting with TEA domain family member 1 (TEAD1), impaired EVT differentiation, invasion, and migration and triggered apoptosis in the different trophoblast models. Notably, the coactivator also suppressed cell cycle genes and regulators of trophoblast self-renewal and prevented EVTs from cell fusion in organoids and primary cultures. Moreover, TAZ promoted human leukocyte antigen G (HLA-G) surface expression and increased NUAK1 kinase in EVTs thereby maintaining its own expression. In summary, the transcriptional coactivator TAZ plays a multifaceted role in the development of the EVT cell lineage by controlling different biological processes that initiate and preserve differentiation.
Collapse
Affiliation(s)
- Gudrun Meinhardt
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Hanna Waldhäusl
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Andreas I. Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Jasmin Wächter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Anna-Lena Höbler
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sigrid Vondra
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Victoria Kunihs
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Leila Saleh
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Haslinger
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Nandor G. Than
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest1126, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest1088, Hungary
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| |
Collapse
|
3
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevent differentiation and contact inhibition in human trophoblast stem cells. Stem Cell Reports 2025:102481. [PMID: 40280139 DOI: 10.1016/j.stemcr.2025.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
During the first stages of embryonic development, the placenta develops under very low oxygen tension (∼1%-2% O2), so we sought to determine the regulatory role of oxygen in human trophoblast stem cells (hTSCs). We find that low oxygen promotes hTSC self-renewal but inhibits differentiation to syncytiotrophoblast (STB) and extravillous trophoblast (EVT). The transcription factor GCM1 (glial cell missing transcription factor 1) is downregulated in low oxygen, and concordantly, there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC likewise impaired EVT and STB formation. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed binding near key genes upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA; Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, Kansas, USA; Department of Obstetrics and Gynecology, University of Kansas, Kansas City, Kansas, USA
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Rosario GX, Brown S, Karmakar S, Rumi MAK, Nayak NR. Super-Enhancers in Placental Development and Diseases. J Dev Biol 2025; 13:11. [PMID: 40265369 PMCID: PMC12015882 DOI: 10.3390/jdb13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
The proliferation of trophoblast stem (TS) cells and their differentiation into multiple lineages are pivotal for placental development and functions. Various transcription factors (TFs), such as CDX2, EOMES, GATA3, TFAP2C, and TEAD4, along with their binding sites and cis-regulatory elements, have been studied for their roles in trophoblast cells. While previous studies have primarily focused on individual enhancer regions in trophoblast development and differentiation, recent attention has shifted towards investigating the role of super-enhancers (SEs) in different trophoblast cell lineages. SEs are clusters of regulatory elements enriched with transcriptional regulators, forming complex gene regulatory networks via differential binding patterns and the synchronized stimulation of multiple target genes. Although the exact role of SEs remains unclear, they are commonly found near master regulator genes for specific cell types and are implicated in the transcriptional regulation of tissue-specific stem cells and lineage determination. Additionally, super-enhancers play a crucial role in regulating cellular growth and differentiation in both normal development and disease pathologies. This review summarizes recent advances on SEs' role in placental development and the pathophysiology of placental diseases, emphasizing the potential for identifying SE-driven networks in the placenta to provide valuable insights for developing therapeutic strategies to address placental dysfunctions.
Collapse
Affiliation(s)
- Gracy X. Rosario
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| | - Samuel Brown
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Nihar R. Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| |
Collapse
|
5
|
Keding LT, Heselton AR, Ren E, Shaw SA, Koenig MR, Golos TG, Schmidt JK. In vitro differentiation of macaque extravillous trophoblasts in a low oxygen environment. Placenta 2025; 163:16-28. [PMID: 40024139 PMCID: PMC11955297 DOI: 10.1016/j.placenta.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Early primate placental development occurs within a low oxygen (O2) environment, whereas in vitro differentiation of trophoblasts is performed at supraphysiologic O2 levels. Macaque trophoblast stem cells (TSCs) are capable of differentiation to extravillous trophoblasts (EVTs) in vitro, yet the morphological heterogeneity observed across cells lines necessitates evaluation of optimal culture conditions. Our objectives were to determine the impact of oxygen on the in vitro differentiation of macaque TSCs and to refine the molecular characterization of TSC-differentiated EVTs. METHODS Macaque TSCs were differentiated to EVTs in either 20% or 5% O2. Gene and protein expression profiles were compared between TSCs and EVTs and between differentiation conditions. Immunohistochemical analysis was performed on early gestation macaque placental tissues to assess in vivo expression of Ki-67, NCAM1 and monkey chorionic gonadotropin (mCG). RESULTS EVTs differentiated in 20% O2 had significantly higher expression of CGA, CGB and NOTCH2 and decreased HIF1A expression compared to those cultured in 5% O2. Regardless of oxygen condition, nearly all EVTs expressed NCAM1 and Mamu-AG, the macaque-specific homolog of human EVT marker HLA-G. In vivo placental expression of NCAM1 was restricted to EVTs within the trophoblastic shell and endovasculature, revealing a macaque EVT marker within the placenta. DISCUSSION Reduced oxygen minimally impacted macaque EVT differentiation in vitro. Elevated expression of the endovascular EVT marker NOTCH2 potentially suggests that 20% O2 supported differentiation of more mature EVTs. Altogether, a standard 20% O2 environment supports macaque EVT differentiation in vitro and the results further validate the identity of macaque TSC-differentiated EVTs.
Collapse
Affiliation(s)
- Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 202 South Park St, Madison, WI, 53715, USA
| | - Avery R Heselton
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA
| | - Emily Ren
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA
| | - Sarah A Shaw
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA
| | - Michelle R Koenig
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 202 South Park St, Madison, WI, 53715, USA; Department of Comparative Biosciences, School of Veterinary Medicine, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Jenna K Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct, Madison, WI, 53715, USA.
| |
Collapse
|
6
|
Gu B, Ferreira LMR, Herrera S, Brown L, Lieberman J, Sherwood RI, Meissner TB, Strominger JL. The TEA domain transcription factors TEAD1 and TEAD3 and WNT signaling determine HLA-G expression in human extravillous trophoblasts. Proc Natl Acad Sci U S A 2025; 122:e2425339122. [PMID: 40096597 PMCID: PMC11962456 DOI: 10.1073/pnas.2425339122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Maternal-fetal immune tolerance guarantees a successful pregnancy throughout gestation. HLA-G, a nonclassical human leukocyte antigen (HLA) molecule exclusively expressed in extravillous trophoblasts (EVT), is a crucial factor in establishing maternal-fetal immune tolerance by interacting with inhibitory receptors on various maternal immune cells residing in the uterus. While trophoblast-specific cis-regulatory elements impacting HLA-G transcription have been described, the identity of trans-acting factors controlling HLA-G expression in EVT remains poorly understood. Utilizing a genome-wide CRISPR-Cas9 knockout screen, we find that the WNT signaling pathway negatively regulates HLA-G expression in EVT. In addition, we identified two trophoblast-specific transcription factors, TEAD1 and TEAD3, required for HLA-G transcription in EVT in a Yes-associated protein-independent manner. Altogether, we systematically elucidated essential genes and pathways underlying HLA-G expression in EVT, shedding light on the mechanisms of maternal-fetal tolerance and potentially providing insights into controlling HLA-G expression beyond EVT to protect allogeneic cells from immune rejection.
Collapse
Affiliation(s)
- Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC29425
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC29425
- Cancer Biology and Immunology Program, Hollings Cancer Center, Charleston, SC29425
| | - Sebastian Herrera
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Lara Brown
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA02215
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Jack L. Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
7
|
Shukla V, Iqbal K, Okae H, Arima T, Soares MJ. Aryl Hydrocarbon Receptor Activation Drives 2-Methoxy Estradiol Secretion in Human Trophoblast Stem Cell Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.609205. [PMID: 39253430 PMCID: PMC11383004 DOI: 10.1101/2024.08.27.609205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
STUDY QUESTION How does activation of AHR signaling affect human trophoblast cell development and differentiation? SUMMARY ANSWER AHR activation leads to altered gene expression but does not hinder the ability of trophoblast cells to remain in a stem cell state or differentiate into essential cell types, such as extravillous trophoblast cells (EVT) or syncytiotrophoblast (ST). It also promotes the production of 2 methoxy estradiol (2ME), a compound that could influence placental development. WHAT IS KNOWN ALREADY The placenta serves both as a nutrient delivery system and a protective barrier against environmental toxins. AHR signaling is known to mediate cellular responses to environmental pollutants, potentially affecting trophoblast cell functions, but the specific impacts of AHR activation on these cells were not fully understood. STUDY DESIGN SIZE DURATION This study utilized an in vitro model of human trophoblast stem (TS) cells to investigate the downstream effects of AHR activation. The study focused on both undifferentiated TS cells and cells undergoing differentiation. PARTICIPANTS/MATERIALS SETTING METHODS Human trophoblast stem (TS) cells were used as the model system. Researchers examined the effects of TCDD exposure in both TS cells maintained in their stem state and those induced to differentiate into EVT or ST. The study assessed changes in gene expression, particularly focusing on CYP1A1 and CYP1B1, as well as the production of 2ME. MAIN RESULTS AND THE ROLE OF CHANCE AHR activation stimulated the expression of CYP1A1 and CYP1B1, key genes associated with AHR signaling, in both undifferentiated and differentiating trophoblast cells. While AHR activation did not impact the cells ability to remain in a stem state or differentiate, it increased the production of 2ME, which may influence placental function. These effects were dependent on AHR signaling. LIMITATIONS REASONS FOR CAUTION This study was conducted in vitro, which may not fully replicate human conditions. Further research is needed to confirm whether these findings apply to actual placental development in humans. WIDER IMPLICATIONS OF THE FINDINGS The results suggest that AHR signaling activated by environmental pollutants could have a subtle but significant impact on placental development through mechanisms involving AHR activation. These findings may have broader implications for understanding how environmental factors affect fetal development. STUDY FUNDING/COMPETING INTERESTS This work was funded by the National Institutes of Health: ES028957, HD020676, ES029280, HD105734 and the Sosland Foundation. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
8
|
Qin J, Lv B, Yao Y, Han X, Xue Z, Lin CP, Xue J, Ji Y. CTNND1 affects trophoblast proliferation and specification during human embryo implantation. Biol Reprod 2025; 112:46-53. [PMID: 39561119 DOI: 10.1093/biolre/ioae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
The placenta, serving as the crucial link between maternal and infant, plays a pivotal role in maintaining a healthy pregnancy. Placental dysplasia can lead to various complications, underscoring the importance of understanding trophoblast lineage development. During peri-implantation, the trophectoderm undergoes differentiation into cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast. However, the specification and regulation of human trophoblast lineage during embryo implantation, particularly in the peri-implantation phase, remain to be explored. In this study, we employed a co-culture model of human endometrial cells and native embryos and analyzed the single-cell transcriptomic data of 491 human embryonic trophoblasts during E6 to E10 to identify the key regulatory factors and the lineage differentiation process during peri-implantation. Our data identified four cell subpopulations during the implantation, including a specific transitional state toward the differentiation in which the CTNND1, one crucial component of Wnt signaling pathway activated by cadherins, acted as a crucial factor. Knockdown of CTNND1 impacted the proliferative capacity of human trophoblast stem cells, leading to early extravillous trophoblast-like differentiation. Intriguingly, ablation of CTNND1 compromised the terminal differentiation of human trophoblast stem cells toward syncytiotrophoblast or extravillous trophoblast in vitro. These findings contribute valuable insights into trophoblast lineage dynamics and offer a reference for research on placental-related diseases.
Collapse
Affiliation(s)
- Jiaying Qin
- Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Bo Lv
- Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yao Yao
- Department of Reproductive center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xuan Han
- Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhigang Xue
- Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jinfeng Xue
- Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yazhong Ji
- Department of Reproductive center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
9
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. JCI Insight 2024; 10:e186471. [PMID: 39625795 PMCID: PMC11790029 DOI: 10.1172/jci.insight.186471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Transcription factor AP-2 gamma (TFAP2C) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c. In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
Affiliation(s)
- Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Bagchi IC, Bagchi MK. Maternal-fetal mechanisms underlying adaptation to hypoxia during early pregnancy. Trends Endocrinol Metab 2024; 35:1091-1099. [PMID: 39079778 DOI: 10.1016/j.tem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 12/06/2024]
Abstract
During the process of implantation, the embryo first attaches to the uterine epithelium and then invades the underlying stroma, resulting in the transformation of the stroma into a secretory tissue that surrounds the embryo. An intricate dialogue allows the developing embryo and the maternal tissue to be in constant communication with each other. In many mammals, including humans, embryo implantation and early pregnancy events take place in a low-oxygen environment regulated by hypoxia-inducible transcription factors. The mechanisms by which maternal and embryonic tissue compartments adapt to hypoxia are essential for the success of pregnancy outcomes. In this review we highlight recent work describing signaling pathways that operate in the hypoxic uterus to facilitate embryo implantation and promote the successful establishment of pregnancy.
Collapse
Affiliation(s)
- Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Milan K Bagchi
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621324. [PMID: 39554130 PMCID: PMC11565979 DOI: 10.1101/2024.10.31.621324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transcription factor AP-2 gamma ( TFAP2C ) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome-editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c . In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
|
12
|
Toh H, Okae H, Shirane K, Sato T, Hamada H, Kikutake C, Saito D, Arima T, Sasaki H, Suyama M. Epigenetic dynamics of partially methylated domains in human placenta and trophoblast stem cells. BMC Genomics 2024; 25:1050. [PMID: 39506688 PMCID: PMC11542204 DOI: 10.1186/s12864-024-10986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The placenta is essential for nutrient exchange and hormone production between the mother and the developing fetus and serves as an invaluable model for epigenetic research. Most epigenetic studies of the human placenta have used whole placentas from term pregnancies and have identified the presence of partially methylated domains (PMDs). However, the origin of these domains, which are typically absent in most somatic cells, remains unclear in the placental context. RESULTS Using whole-genome bisulfite sequencing and analysis of histone H3 modifications, we generated epigenetic profiles of human cytotrophoblasts during the first trimester and at term, as well as human trophoblast stem cells. Our study focused specifically on PMDs. We found that genomic regions likely to form PMDs are resistant to global DNA demethylation during trophectoderm reprogramming, and that PMDs arise through a slow methylation process within condensed chromatin near the nuclear lamina. In addition, we found significant differences in histone H3 modifications between PMDs in cytotrophoblasts and trophoblast stem cells. CONCLUSIONS Our findings suggest that spatiotemporal genomic features shape megabase-scale DNA methylation patterns, including PMDs, in the human placenta and highlight distinct differences in PMDs between human cytotrophoblasts and trophoblast stem cells. These findings advance our understanding of placental biology and provide a basis for further research into human development and related diseases.
Collapse
Affiliation(s)
- Hidehiro Toh
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan.
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Hirotaka Hamada
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Daisuke Saito
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan.
| |
Collapse
|
13
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-mediated WNT silencing drives extravillous trophoblast cell lineage development. Proc Natl Acad Sci U S A 2024; 121:e2403003121. [PMID: 39325428 PMCID: PMC11459147 DOI: 10.1073/pnas.2403003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first-trimester EVT cells developing in situ and up-regulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial Per-Arnt-Sim (PAS) domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical Wingless-related integration site (WNT) signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Ayelen Moreno-Irusta
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Kaela M. Varberg
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Marija Kuna
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Anna M. Galligos
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - John D. Aplin
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
14
|
Chen EX, Hu SC, Xu JQ, Liu KY, Tang J, Shen XP, Liang X, Xie YL, Ge LX, Luo X, Wang YX, Xiang YL, Ding YB. Suppression of GATA3 promotes epithelial-mesenchymal transition and simultaneous cellular senescence in human extravillous trophoblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119768. [PMID: 38838858 DOI: 10.1016/j.bbamcr.2024.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated β-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.
Collapse
Affiliation(s)
- En-Xiang Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Si-Chen Hu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Qi Xu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Kun-Yan Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xi-Peng Shen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - You-Long Xie
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lu-Xin Ge
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University. Hunan 410219, China
| | - Xin Luo
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying-Xiong Wang
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yun-Long Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-MEDIATED WNT SILENCING DRIVES EXTRAVILLOUS TROPHOBLAST CELL LINEAGE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579974. [PMID: 38405745 PMCID: PMC10888853 DOI: 10.1101/2024.02.13.579974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first trimester EVT cells developing in situ and upregulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial PAS domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical WNT signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kaela M. Varberg
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Marija Kuna
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Anna M. Galligos
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John D. Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
16
|
Kumar RP, Kumar R, Ganguly A, Ghosh A, Ray S, Islam MR, Saha A, Roy N, Dasgupta P, Knowles T, Niloy AJ, Marsh C, Paul S. METTL3 shapes m6A epitranscriptomic landscape for successful human placentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603294. [PMID: 39026770 PMCID: PMC11257629 DOI: 10.1101/2024.07.12.603294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Methyltransferase-like 3 (METTL3), the catalytic enzyme of methyltransferase complex for m6A methylation of RNA, is essential for mammalian development. However, the importance of METTL3 in human placentation remains largely unexplored. Here, we show that a fine balance of METTL3 function in trophoblast cells is essential for successful human placentation. Both loss-of and gain-in METTL3 functions are associated with adverse human pregnancies. A subset of recurrent pregnancy losses and preterm pregnancies are often associated with loss of METTL3 expression in trophoblast progenitors. In contrast, METTL3 is induced in pregnancies associated with fetal growth restriction (FGR). Our loss of function analyses showed that METTL3 is essential for the maintenance of human TSC self-renewal and their differentiation to extravillous trophoblast cells (EVTs). In contrast, loss of METTL3 in human TSCs promotes syncytiotrophoblast (STB) development. Global analyses of RNA m6A modification and METTL3-RNA interaction in human TSCs showed that METTL3 regulates m6A modifications on the mRNA molecules of critical trophoblast regulators, including GATA2, GATA3, TEAD1, TEAD4, WWTR1, YAP1, TFAP2C and ASCL2, and loss of METTL3 leads to depletion of mRNA molecules of these critical regulators. Importantly, conditional deletion of Mettl3 in trophoblast progenitors of an early post-implantation mouse embryo also leads to arrested self-renewal. Hence, our findings indicate that METLL3 is a conserved epitranscriptomic governor in trophoblast progenitors and ensures successful placentation by regulating their self-renewal and dictating their differentiation fate.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajnish Kumar
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Avishek Ganguly
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Ananya Ghosh
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Soma Ray
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Md. Rashedul Islam
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Abhik Saha
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Namrata Roy
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Purbasa Dasgupta
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Taylor Knowles
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Asef Jawad Niloy
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumen Paul
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Derisoud E, Jiang H, Zhao A, Chavatte-Palmer P, Deng Q. Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies. Hum Reprod Update 2024; 30:410-441. [PMID: 38478759 PMCID: PMC11215163 DOI: 10.1093/humupd/dmae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/12/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND With increasing significance of developmental programming effects associated with placental dysfunction, more investigations are devoted to improving the characterization and understanding of placental signatures in health and disease. The placenta is a transitory but dynamic organ adapting to the shifting demands of fetal development and available resources of the maternal supply throughout pregnancy. Trophoblasts (cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts) are placental-specific cell types responsible for the main placental exchanges and adaptations. Transcriptomic studies with single-cell resolution have led to advances in understanding the placenta's role in health and disease. These studies, however, often show discrepancies in characterization of the different placental cell types. OBJECTIVE AND RATIONALE We aim to review the knowledge regarding placental structure and function gained from the use of single-cell RNA sequencing (scRNAseq), followed by comparing cell-type-specific genes, highlighting their similarities and differences. Moreover, we intend to identify consensus marker genes for the various trophoblast cell types across studies. Finally, we will discuss the contributions and potential applications of scRNAseq in studying pregnancy-related diseases. SEARCH METHODS We conducted a comprehensive systematic literature review to identify different cell types and their functions at the human maternal-fetal interface, focusing on all original scRNAseq studies on placentas published before March 2023 and published reviews (total of 28 studies identified) using PubMed search. Our approach involved curating cell types and subtypes that had previously been defined using scRNAseq and comparing the genes used as markers or identified as potential new markers. Next, we reanalyzed expression matrices from the six available scRNAseq raw datasets with cell annotations (four from first trimester and two at term), using Wilcoxon rank-sum tests to compare gene expression among studies and annotate trophoblast cell markers in both first trimester and term placentas. Furthermore, we integrated scRNAseq raw data available from 18 healthy first trimester and nine term placentas, and performed clustering and differential gene expression analysis. We further compared markers obtained with the analysis of annotated and raw datasets with the literature to obtain a common signature gene list for major placental cell types. OUTCOMES Variations in the sampling site, gestational age, fetal sex, and subsequent sequencing and analysis methods were observed between the studies. Although their proportions varied, the three trophoblast types were consistently identified across all scRNAseq studies, unlike other non-trophoblast cell types. Notably, no marker genes were shared by all studies for any of the investigated cell types. Moreover, most of the newly defined markers in one study were not observed in other studies. These discrepancies were confirmed by our analysis on trophoblast cell types, where hundreds of potential marker genes were identified in each study but with little overlap across studies. From 35 461 and 23 378 cells of high quality in the first trimester and term placentas, respectively, we obtained major placental cell types, including perivascular cells that previously had not been identified in the first trimester. Importantly, our meta-analysis provides marker genes for major placental cell types based on our extensive curation. WIDER IMPLICATIONS This review and meta-analysis emphasizes the need for establishing a consensus for annotating placental cell types from scRNAseq data. The marker genes identified here can be deployed for defining human placental cell types, thereby facilitating and improving the reproducibility of trophoblast cell annotation.
Collapse
Affiliation(s)
- Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Pascale Chavatte-Palmer
- INRAE, BREED, Université Paris-Saclay, UVSQ, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
18
|
Wang Y, Li Y, Nie G. HtrA4 is well conserved only in higher primates and functionally important for EVT differentiation. Placenta 2024; 152:53-64. [PMID: 38805949 DOI: 10.1016/j.placenta.2024.05.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION The placenta differs greatly among species, and deep extra-villous trophoblast (EVT) invasion is a unique feature of placentation of higher primates including humans. We reported serine protease HtrA4 being found predominantly in human placentas with aberrant expression linked to preeclampsia. However, it remains unclear where HtrA4 is produced in the placenta, how it is expressed in other species, and whether it is essential for human placentation. METHODS We first compared HtrA4 protein sequences of over 100 species, then scrutinized the key characteristics of HtrA4 in the human, rhesus macaque and mouse, and determined cellular localization in the placenta. We next investigated functional significance of HtrA4 in EVT differentiation using human trophoblast stem cells (TSCs). RESULTS Across broader species HtrA4 is well conserved only in higher primates. In humans, only the placenta expressed HtrA4, localising to trophoblasts of villous as well as extra-villous lineages. Rhesus macaques produced HtrA4 but again only in placentas, whereas mice showed no abundant HtrA4 expression anywhere including the placenta, yet it was an active protease if produced. The functional importance of HtrA4 in human EVT was demonstrated using TSCs, which expressed low levels of HtrA4 but significantly up-regulated it during EVT differentiation, and knockdown of HtrA4 severely inhibited the differentiation process. DISCUSSION HtrA4 is expressed in placentas of humans and macaques but not mice; it is critical for human EVT differentiation. Together with previous reports showing HtrA4 is also indispensable for syncytialization, this study further revealed HtrA4 as a functionally important protease for human placentation.
Collapse
Affiliation(s)
- Yao Wang
- Implantation and Pregnancy Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Ying Li
- Implantation and Pregnancy Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Guiying Nie
- Implantation and Pregnancy Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
19
|
Haider S, Knöfler M, Latos PA. Trophoblast Organoids as a Novel Tool to Study Human Placental Development and Function. Methods Mol Biol 2024; 2728:195-222. [PMID: 38019403 DOI: 10.1007/978-1-0716-3495-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The human placenta provides the site of exchange between the maternal and fetal bloodstreams, acts as an endocrine organ, and has immunological functions. The majority of pregnancy disorders including preeclampsia and fetal growth restriction have their roots in pathological placentation. Yet, the underlying molecular causes of these complications remain largely unknown, not least due to the lack of reliable in vitro models. Recent establishment of 2D human trophoblast stem cells and 3D trophoblast organoids has been a major advancement that opened new avenues for trophoblast research. Here we provide a protocol detailing isolation of cytotrophoblast from the first trimester human placenta, establishment of trophoblast organoids, their culture and differentiation conditions. Overall, we describe an in vitro system that offers an excellent model to study the molecular basis of placental development and disease.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria.
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. Core conserved transcriptional regulatory networks define the invasive trophoblast cell lineage. Development 2023; 150:dev201826. [PMID: 37417811 PMCID: PMC10445752 DOI: 10.1242/dev.201826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, USA
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|