1
|
van Rheede JJ, Sharott A. Tailoring deep brain stimulation for sleep: using actigraphy to understand the relationship between Parkinsonian brain activity and behavioral state. Sleep 2025; 48:zsaf066. [PMID: 40088453 PMCID: PMC12163122 DOI: 10.1093/sleep/zsaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Indexed: 03/17/2025] Open
Affiliation(s)
- Joram J van Rheede
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Gobeil M, Guillemette A, Silhadi M, Charbonneau L, Bergeron D, Dominguez‐Vargas A, Dancause N, Jodoin N, Assi E, Amzica F, Obaid S, Fournier‐Gosselin M. Local Field Potential Biomarkers of Non-Motor Symptoms in Parkinson's Disease: Insights From the Subthalamic Nucleus in Deep Brain Stimulation. Eur J Neurosci 2025; 61:e70046. [PMID: 40040306 PMCID: PMC11880747 DOI: 10.1111/ejn.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Non-motor symptoms can severely affect the quality of life of Parkinson's disease-afflicted patients, with the most common ones being pain, sleep impairments, and neuropsychiatric manifestations. In advanced cases, complex fluctuations of motor and non-motor symptoms can occur despite optimal medication. Research on deep brain stimulation of the subthalamic nucleus suggests that it may provide benefits for treating non-motor symptoms in addition to improving motor symptoms. With recent advancements in deep brain stimulation technology, simultaneous recording of local field potentials and delivery of therapeutic stimulation is possible. This opens new possibilities for better understanding the pathophysiology of non-motor symptoms in Parkinson's disease and for identifying potential electrophysiological biomarkers that accurately represent these symptoms. Specifically, this review aims to highlight potential local field potential biomarkers of non-motor symptoms in the subthalamic nucleus. The main findings indicate that activities in the beta frequency band are associated with nociception and sleep impairments such as insomnia and rapid eye movement sleep behavior disorders. Additionally, activities in the theta and alpha frequency bands seem to reflect neurocognitive manifestations, including depression and impulse control disorders. A better understanding of these biomarkers could improve the clinical management of non-motor symptoms in Parkinson's disease. They hold promise for adjusting deep brain stimulation parameters in open-loop settings and might eventually be applied in closed-loop deep brain stimulation systems, though their true impact remains uncertain.
Collapse
Affiliation(s)
- Marc‐Antoine Gobeil
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
| | - Albert Guillemette
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
| | - Meziane Silhadi
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
| | - Laurence Charbonneau
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
- Department of SurgeryUniversity of MontrealMontrealQuebecCanada
| | - David Bergeron
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
- Department of SurgeryUniversity of MontrealMontrealQuebecCanada
- Department of NeurosciencesUniversity of MontrealMontrealQuebecCanada
| | - Adan‐Ulises Dominguez‐Vargas
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Department of NeurosciencesUniversity of MontrealMontrealQuebecCanada
| | - Numa Dancause
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Department of NeurosciencesUniversity of MontrealMontrealQuebecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontrealQuebecCanada
| | - Nicolas Jodoin
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
- Department of NeurosciencesUniversity of MontrealMontrealQuebecCanada
- Division of NeurologyCentre Hospitalier de l'Université de Montréal (CHUM)MontrealQuebecCanada
| | - Elie Bou Assi
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
- Department of NeurosciencesUniversity of MontrealMontrealQuebecCanada
| | - Florin Amzica
- Department of NeurosciencesUniversity of MontrealMontrealQuebecCanada
- Department of StomatologyUniversity of MontrealMontrealQuebecCanada
| | - Sami Obaid
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
- Department of SurgeryUniversity of MontrealMontrealQuebecCanada
- Service of Neurosurgery, Centre Hospitalier de l'Université de Montréal (CHUM)MontrealQuebecCanada
| | - Marie‐Pierre Fournier‐Gosselin
- Department of MedicineUniversity of MontrealMontrealQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQuebecCanada
- Department of SurgeryUniversity of MontrealMontrealQuebecCanada
- Service of Neurosurgery, Centre Hospitalier de l'Université de Montréal (CHUM)MontrealQuebecCanada
| |
Collapse
|
4
|
Guan L, Yu H, Chen Y, Gong C, Hao H, Guo Y, Xu S, Zhang Y, Yuan X, Yin G, Zhang J, Tan H, Li L. Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients. Mov Disord 2025; 40:456-467. [PMID: 39707598 PMCID: PMC7617463 DOI: 10.1002/mds.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Abnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM-specific neuromodulation interventions. OBJECTIVE This study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients. METHODS Ten PD patients implanted with bilateral subthalamic nucleus-deep brain stimulation (STN-DBS) were included in this study, of whom 4 were diagnosed with RBD. Sleep monitoring was conducted 1 month after surgery. Subthalamic local field potentials (LFP) were recorded through sensing-enabled DBS. The neurophysiological features of subthalamic LFP during phasic and tonic microstates of REM sleep and their correlation with REM sleep fragmentation and RBD were analyzed. RESULTS Differences in subthalamic γ oscillation between phasic and tonic REM correlated positively with the severity of REM sleep fragmentation. Patients with RBD also exhibited stronger γ oscillations during REM sleep compared with non-RBD patients, and both increased β and γ were found before the onset of RBD episodes. Stimulation changes in simulated γ-triggered feedback modulation followed more closely with phasic REM density, whereas an opposite trend was found in simulated β-triggered feedback modulation. CONCLUSION Excess subthalamic γ oscillations may contribute to REM instability and RBD, suggesting that γ oscillation could serve as a feedback signal for adaptive DBS for REM sleep disorders. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lingxiao Guan
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yue Chen
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Chen Gong
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Hongwei Hao
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yi Guo
- Department of NeurosurgeryPeking Union Medical College HospitalBeijingChina
| | - Shujun Xu
- Department of NeurosurgeryQilu Hospital of Shandong University (Qingdao)QingdaoChina
| | - Yuhuan Zhang
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tsinghua Changgung HospitalBeijingChina
| | - Xuemei Yuan
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tsinghua Changgung HospitalBeijingChina
| | - Guoping Yin
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tsinghua Changgung HospitalBeijingChina
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Martinez-Nunez AE, Rozell CJ, Little S, Tan H, Schmidt SL, Grill WM, Pajic M, Turner DA, de Hemptinne C, Machado A, Schiff ND, Holt-Becker AS, Raike RS, Malekmohammadi M, Pathak YJ, Himes L, Greene D, Krinke L, Arlotti M, Rossi L, Robinson J, Bahners BH, Litvak V, Milosevic L, Ghatan S, Schaper FLWVJ, Fox MD, Gregg NM, Kubu C, Jordano JJ, Cascella NG, Nho Y, Halpern CH, Mayberg HS, Choi KS, Song H, Cha J, Alagapan S, Dosenbach NUF, Gordon EM, Ren J, Liu H, Kalia LV, Hescham SA, Kusyk DM, Ramirez-Zamora A, Foote KD, Okun MS, Wong JK. Proceedings of the 12th annual deep brain stimulation think tank: cutting edge technology meets novel applications. Front Hum Neurosci 2025; 19:1544994. [PMID: 40070487 PMCID: PMC11893992 DOI: 10.3389/fnhum.2025.1544994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
The Deep Brain Stimulation (DBS) Think Tank XII was held on August 21st to 23rd. This year we showcased groundbreaking advancements in neuromodulation technology, focusing heavily on the novel uses of existing technology as well as next-generation technology. Our keynote speaker shared the vision of using neuro artificial intelligence to predict depression using brain electrophysiology. Innovative applications are currently being explored in stroke, disorders of consciousness, and sleep, while established treatments for movement disorders like Parkinson's disease are being refined with adaptive stimulation. Neuromodulation is solidifying its role in treating psychiatric disorders such as depression and obsessive-compulsive disorder, particularly for patients with treatment-resistant symptoms. We estimate that 300,000 leads have been implanted to date for neurologic and neuropsychiatric indications. Magnetoencephalography has provided insights into the post-DBS physiological changes. The field is also critically examining the ethical implications of implants, considering the long-term impacts on clinicians, patients, and manufacturers.
Collapse
Affiliation(s)
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, United States
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stephen L. Schmidt
- Departments of Biomedical Engineering, Electrical and Computer Engineering, Neurobiology and Neurosurgery, Duke University and Duke University Medical Center, Durham, NC, United States
| | - Warren M. Grill
- Departments of Biomedical Engineering, Electrical and Computer Engineering, Neurobiology and Neurosurgery, Duke University and Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Miroslav Pajic
- Departments of Biomedical Engineering, Electrical and Computer Engineering, Neurobiology and Neurosurgery, Duke University and Duke University Medical Center, Durham, NC, United States
| | - Dennis A. Turner
- Departments of Biomedical Engineering, Electrical and Computer Engineering, Neurobiology and Neurosurgery, Duke University and Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Andre Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Nicholas D. Schiff
- Weill Cornell Medical College, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Abbey S. Holt-Becker
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, CA, United States
- Boston Scientific Neuromodulation, Valencia, CA, United States
| | | | - Lyndahl Himes
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Lothar Krinke
- Newronika SpA, Milan, Italy
- West Virginia University, Morgantown, WV, United States
| | | | | | - Jacob Robinson
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Bahne H. Bahners
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Center for Brain Circuit Therapeutics, Boston, MA, United States
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Luka Milosevic
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), University Tübingen, Tübingen, Germany
| | - Saadi Ghatan
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
- Department of Neurosurgery, Maria Fareri Children's Hospital, Westchester Medical Center, Valhalla, NY, United States
| | - Frederic L. W. V. J. Schaper
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Center for Brain Circuit Therapeutics, Boston, MA, United States
| | - Michael D. Fox
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Center for Brain Circuit Therapeutics, Boston, MA, United States
| | | | - Cynthia Kubu
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - James J. Jordano
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, United States
- Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, United States
| | - Nicola G. Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - YoungHoon Nho
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Casey H. Halpern
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Haneul Song
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Nico U. F. Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
- Program in Occupational Therapy, Washington University, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Evan M. Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Hesheng Liu
- Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Lorraine V. Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarah-Anna Hescham
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Dorian M. Kusyk
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D. Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Wiest C, Simpson TG, Pogosyan A, Hasegawa H, He S, Plazas FR, Wehmeyer L, Yassine S, Guo X, Shah R, Merla A, Perera A, Raslan A, O'Keeffe A, Hart MG, Morgante F, Pereira EA, Ashkan K, Tan H. Stimulation-Evoked Resonant Neural Activity in the Subthalamic Nucleus Is Modulated by Sleep. Mov Disord 2025; 40:351-356. [PMID: 39560163 PMCID: PMC11832792 DOI: 10.1002/mds.30063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Deep brain stimulation is a treatment for advanced Parkinson's disease and currently tuned to target motor symptoms during daytime. Parkinson's disease is associated with multiple nocturnal symptoms such as akinesia, insomnia, and sleep fragmentation, which may require adjustments of stimulation during sleep for best treatment outcome. OBJECTIVES There is a need for a robust biomarker to guide stimulation titration across sleep stages. This study aimed to investigate whether evoked resonant neural activity (ERNA) is modulated by sleep. METHODS We recorded local field potentials from the subthalamic nucleus of four Parkinson's patients with externalized electrodes while applying single stimulation pulses to investigate the effect of sleep on ERNA. RESULTS We found that ERNA features change with wakefulness and sleep stages and are correlated with canonical frequency bands and heart rate. CONCLUSIONS Given that ERNA modulates with sleep, it could be used as a robust marker for automatic stimulation titration during sleep. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christoph Wiest
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Thomas G. Simpson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Harutomo Hasegawa
- Department of NeurosurgeryKing's College HospitalLondonUnited Kingdom
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Fernando Rodriguez Plazas
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Laura Wehmeyer
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Sahar Yassine
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Xuanjun Guo
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Rahul Shah
- St George's, University of London and St. George's University Hospitals NHS Foundation Trust, Neuroscience and Cell Biology Research InstituteLondonUnited Kingdom
| | - Anca Merla
- Department of NeurosurgeryKing's College HospitalLondonUnited Kingdom
| | - Andrea Perera
- Department of NeurosurgeryKing's College HospitalLondonUnited Kingdom
| | - Ahmed Raslan
- Department of NeurosurgeryKing's College HospitalLondonUnited Kingdom
| | - Andrew O'Keeffe
- Department of NeurosurgeryKing's College HospitalLondonUnited Kingdom
| | - Michael G. Hart
- St George's, University of London and St. George's University Hospitals NHS Foundation Trust, Neuroscience and Cell Biology Research InstituteLondonUnited Kingdom
| | - Francesca Morgante
- St George's, University of London and St. George's University Hospitals NHS Foundation Trust, Neuroscience and Cell Biology Research InstituteLondonUnited Kingdom
| | - Erlick A. Pereira
- St George's, University of London and St. George's University Hospitals NHS Foundation Trust, Neuroscience and Cell Biology Research InstituteLondonUnited Kingdom
| | - Keyoumars Ashkan
- Department of NeurosurgeryKing's College HospitalLondonUnited Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2025; 62:2292-2313. [PMID: 39103716 PMCID: PMC11772535 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Chikermane M, Weerdmeester L, Rajamani N, Köhler RM, Merk T, Vanhoecke J, Horn A, Neumann WJ. Cortical beta oscillations map to shared brain networks modulated by dopamine. eLife 2024; 13:RP97184. [PMID: 39630501 PMCID: PMC11616991 DOI: 10.7554/elife.97184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Brain rhythms can facilitate neural communication for the maintenance of brain function. Beta rhythms (13-35 Hz) have been proposed to serve multiple domains of human ability, including motor control, cognition, memory, and emotion, but the overarching organisational principles remain unknown. To uncover the circuit architecture of beta oscillations, we leverage normative brain data, analysing over 30 hr of invasive brain signals from 1772 channels from cortical areas in epilepsy patients, to demonstrate that beta is the most distributed cortical brain rhythm. Next, we identify a shared brain network from beta-dominant areas with deeper brain structures, like the basal ganglia, by mapping parametrised oscillatory peaks to whole-brain functional and structural MRI connectomes. Finally, we show that these networks share significant overlap with dopamine uptake as indicated by positron emission tomography. Our study suggests that beta oscillations emerge in cortico-subcortical brain networks that are modulated by dopamine. It provides the foundation for a unifying circuit-based conceptualisation of the functional role of beta activity beyond the motor domain and may inspire an extended investigation of beta activity as a feedback signal for closed-loop neurotherapies for dopaminergic disorders.
Collapse
Affiliation(s)
- Meera Chikermane
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Liz Weerdmeester
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Nanditha Rajamani
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Richard M Köhler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Timon Merk
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Jojo Vanhoecke
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham and Women’s HospitalBostonUnited States
- Departments of Neurology and Neurosurgery, Massachusetts General HospitalBostonUnited States
| | - Wolf Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin BerlinBerlinGermany
- Einstein Center for Neurosciences Berlin, Humboldt UniversitatBerlinGermany
| |
Collapse
|
9
|
Yan H, Coughlin C, Smolin L, Wang J. Unraveling the Complexity of Parkinson's Disease: Insights into Pathogenesis and Precision Interventions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405309. [PMID: 39301889 PMCID: PMC11558075 DOI: 10.1002/advs.202405309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, leading to motor and non-motor symptoms. Early detection before symptom onset is crucial but challenging. This study presents a framework integrating circuit modeling, non-equilibrium dynamics, and optimization to understand PD pathogenesis and enable precision interventions. Neuronal firing patterns, particularly oscillatory activity, play a critical role in PD pathology. The basal ganglia network, specifically the subthalamic nucleus-external globus pallidus (STN-GPe) circuitry, exhibits abnormal activity associated with motor dysfunction. The framework leverages the non-equilibrium landscape and flux theory to identify key connections generating pathological activity, providing insights into disease progression and potential intervention points. The intricate STN-GPe interplay is highlighted, shedding light on compensatory mechanisms within this circuitry may initially counteract changes but later contribute to pathological alterations as disease progresses. The framework addresses the need for comprehensive evaluation methods to assess intervention outcomes. Cross-correlations between state variables provide superior early warning signals compared to traditional indicators relying on critical slowing down. By elucidating compensatory mechanisms and circuit dynamics, the framework contributes to improved management, early detection, risk assessment, and potential prevention/delay of PD development. This pioneering research paves the way for precision medicine in neurodegenerative disorders.
Collapse
Affiliation(s)
- Han Yan
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Cole Coughlin
- Perimeter Institute for Theoretical Physics31 Caroline Street North, WaterlooOntarioN2J 2Y5Canada
| | - Lee Smolin
- Perimeter Institute for Theoretical Physics31 Caroline Street North, WaterlooOntarioN2J 2Y5Canada
| | - Jin Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
- Department of Chemistry and PhysicsState University of New York at Stony BrookStony BrookNY11790USA
| |
Collapse
|
10
|
Liu J, Chen S, Chen J, Wang B, Zhang Q, Xiao L, Zhang D, Cai X. Structural Brain Connectivity Guided Optimal Contact Selection for Deep Brain Stimulation of the Subthalamic Nucleus. World Neurosurg 2024; 188:e546-e554. [PMID: 38823445 DOI: 10.1016/j.wneu.2024.05.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy in ameliorating the motor symptoms of Parkinson disease. However, postoperative optimal contact selection is crucial for achieving the best outcome of deep brain stimulation of the subthalamic nucleus surgery, but the process is currently a trial-and-error and time-consuming procedure that relies heavily on surgeons' clinical experience. METHODS In this study, we propose a structural brain connectivity guided optimal contact selection method for deep brain stimulation of the subthalamic nucleus. Firstly, we reconstruct the DBS electrode location and estimate the stimulation range using volume of tissue activated from each DBS contact. Then, we extract the structural connectivity features by concatenating fractional anisotropy and the number of streamlines features of activated regions and the whole brain regions. Finally, we use a convolutional neural network with convolutional block attention module to identify the structural connectivity features for the optimal contact selection. RESULTS We review the data of 800 contacts from 100 patients with Parkinson disease for the experiment. The proposed method achieves promising results, with the average accuracy of 97.63%, average precision of 94.50%, average recall of 94.46%, and average specificity of 98.18%, respectively. Our method can provide the suggestion for optimal contact selection. CONCLUSIONS Our proposed method can improve the efficiency and accuracy of DBS optimal contact selection, reduce the dependence on surgeons' experience, and has the potential to facilitate the development of advanced DBS technology.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shouxuan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianwei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bo Wang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qiusheng Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Linxia Xiao
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Center for High Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
11
|
Cagle JN, de Araujo T, Johnson KA, Yu J, Fanty L, Sarmento FP, Little S, Okun MS, Wong JK, de Hemptinne C. Chronic intracranial recordings in the globus pallidus reveal circadian rhythms in Parkinson's disease. Nat Commun 2024; 15:4602. [PMID: 38816390 PMCID: PMC11139908 DOI: 10.1038/s41467-024-48732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.
Collapse
Affiliation(s)
- Jackson N Cagle
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Tiberio de Araujo
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kara A Johnson
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - John Yu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Lauren Fanty
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Filipe P Sarmento
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Joshua K Wong
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Coralie de Hemptinne
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Yin Z, Yu H, Yuan T, Smyth C, Anjum MF, Zhu G, Ma R, Xu Y, An Q, Gan Y, Merk T, Qin G, Xie H, Zhang N, Wang C, Jiang Y, Meng F, Yang A, Neumann WJ, Starr P, Little S, Li L, Zhang J. Generalized sleep decoding with basal ganglia signals in multiple movement disorders. NPJ Digit Med 2024; 7:122. [PMID: 38729977 PMCID: PMC11087561 DOI: 10.1038/s41746-024-01115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany.
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Clay Smyth
- Department of Bioengineering, University of California, San Francisco, UCSF Byers Hall Box 2520, 1700 Fourth St Ste 203, San Francisco, CA, 94143, USA
| | - Md Fahim Anjum
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Campus Mitte, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Philip Starr
- Department of Neurosurgery, University of California, San Francisco, Eighth Floor, 400 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA.
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
13
|
Anjum MF, Smyth C, Zuzuárregui R, Dijk DJ, Starr PA, Denison T, Little S. Multi-night cortico-basal recordings reveal mechanisms of NREM slow-wave suppression and spontaneous awakenings in Parkinson's disease. Nat Commun 2024; 15:1793. [PMID: 38413587 PMCID: PMC10899224 DOI: 10.1038/s41467-024-46002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Sleep disturbance is a prevalent and disabling comorbidity in Parkinson's disease (PD). We performed multi-night (n = 57) at-home intracranial recordings from electrocorticography and subcortical electrodes using sensing-enabled Deep Brain Stimulation (DBS), paired with portable polysomnography in four PD participants and one with cervical dystonia (clinical trial: NCT03582891). Cortico-basal activity in delta increased and in beta decreased during NREM (N2 + N3) versus wakefulness in PD. DBS caused further elevation in cortical delta and decrease in alpha and low-beta compared to DBS OFF state. Our primary outcome demonstrated an inverse interaction between subcortical beta and cortical slow-wave during NREM. Our secondary outcome revealed subcortical beta increases prior to spontaneous awakenings in PD. We classified NREM vs. wakefulness with high accuracy in both traditional (30 s: 92.6 ± 1.7%) and rapid (5 s: 88.3 ± 2.1%) data epochs of intracranial signals. Our findings elucidate sleep neurophysiology and impacts of DBS on sleep in PD informing adaptive DBS for sleep dysfunction.
Collapse
Affiliation(s)
- Md Fahim Anjum
- Movement Disorders and Neuromodulation Centre, University California San Francisco, San Francisco, CA, USA.
| | - Clay Smyth
- Movement Disorders and Neuromodulation Centre, University California San Francisco, San Francisco, CA, USA
| | - Rafael Zuzuárregui
- Movement Disorders and Neuromodulation Centre, University California San Francisco, San Francisco, CA, USA
- Parkinson's Disease Research Education and Clinical Center, San Francisco Veteran's Affairs Medical Center, San Francisco, CA, USA
| | - Derk Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and The University of Surrey, Guildford, UK
| | - Philip A Starr
- Movement Disorders and Neuromodulation Centre, University California San Francisco, San Francisco, CA, USA
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Slow-wave sleep dysfunction in mild parkinsonism is associated with excessive beta and reduced delta oscillations in motor cortex. Front Neurosci 2024; 18:1338624. [PMID: 38449736 PMCID: PMC10915200 DOI: 10.3389/fnins.2024.1338624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence suggests slow-wave sleep (SWS) dysfunction in Parkinson's disease (PD) is associated with faster disease progression, cognitive impairment, and excessive daytime sleepiness. Beta oscillations (8-35 Hz) in the basal ganglia thalamocortical (BGTC) network are thought to play a role in the development of cardinal motor signs of PD. The role cortical beta oscillations play in SWS dysfunction in the early stage of parkinsonism is not understood, however. To address this question, we used a within-subject design in a nonhuman primate (NHP) model of PD to record local field potentials from the primary motor cortex (MC) during sleep across normal and mild parkinsonian states. The MC is a critical node in the BGTC network, exhibits pathological oscillations with depletion in dopamine tone, and displays high amplitude slow oscillations during SWS. The MC is therefore an appropriate recording site to understand the neurophysiology of SWS dysfunction in parkinsonism. We observed a reduction in SWS quantity (p = 0.027) in the parkinsonian state compared to normal. The cortical delta (0.5-3 Hz) power was reduced (p = 0.038) whereas beta (8-35 Hz) power was elevated (p = 0.001) during SWS in the parkinsonian state compared to normal. Furthermore, SWS quantity positively correlated with delta power (r = 0.43, p = 0.037) and negatively correlated with beta power (r = -0.65, p < 0.001). Our findings support excessive beta oscillations as a mechanism for SWS dysfunction in mild parkinsonism and could inform the development of neuromodulation therapies for enhancing SWS in people with PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bharadwaj Nandakumar
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Fan JM, De B, Frank AC, Basich-Pease G, Norbu T, Morrison MA, Larson P, Starr PA, Krystal AD, Lee AM. Intracranial beta activity is a biomarker of circadian and stimulation-induced arousal in obsessive compulsive disorder. Brain Stimul 2024; 17:29-31. [PMID: 38097012 PMCID: PMC11539915 DOI: 10.1016/j.brs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Joline M Fan
- Department of Neurology, University of California, San Francisco, USA
| | - Bianca De
- School of Medicine, University of California, San Francisco, USA
| | - Adam C Frank
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine of USC, USA
| | - Genevieve Basich-Pease
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - Tenzin Norbu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Paul Larson
- Department of Neurosurgery, University of Arizona, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - A Moses Lee
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA.
| |
Collapse
|
16
|
Anjum MF, Smyth C, Dijk DJ, Starr P, Denison T, Little S. Multi-night cortico-basal recordings reveal mechanisms of NREM slow wave suppression and spontaneous awakenings at high-temporal resolution in Parkinson's disease. RESEARCH SQUARE 2023:rs.3.rs-3484527. [PMID: 37986864 PMCID: PMC10659541 DOI: 10.21203/rs.3.rs-3484527/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Sleep disturbance is a prevalent and highly disabling comorbidity in individuals with Parkinson's disease (PD) that leads to worsening of daytime symptoms, reduced quality of life and accelerated disease progression. Objectives We aimed to record naturalistic overnight cortico-basal neural activity in people with PD, in order to determine the neurophysiology of spontaneous awakenings and slow wave suppression in non-rapid eye movement (NREM) sleep, towards the development of novel sleep-targeted neurostimulation therapies. Methods Multi-night (n=58) intracranial recordings were performed at-home, from chronic electrocorticography and subcortical electrodes, with sensing-enabled Deep Brain Stimulation (DBS), paired with portable polysomnography. Four participants with PD and one participant with cervical dystonia were evaluated to determine the neural structures, signals and functional connectivity modulated during NREM sleep and prior to spontaneous awakenings. Intracranial recordings were performed both ON and OFF DBS to evaluate the impact of stimulation. Sleep staging was then classified with machine-learning models using intracranial cortico-basal signals on classical (30 s) and rapid (5 s) timescales. Results We demonstrate an increase in cortico-basal slow wave delta (1-4 Hz) activity and a decrease in beta (13-31 Hz) activity during NREM (N2 and N3) versus wakefulness in PD. Cortical-basal ganglia coherence was also found to be higher in the delta range and lower in the beta range during NREM. DBS stimulation resulted in a further elevation in cortical delta and a decrease in alpha (8-13 Hz) and low beta (13-15 Hz) power compared to the OFF stimulation state. Within NREM sleep, we observed a strong inverse interaction between subcortical beta and cortical slow wave activity and found that subcortical beta increases prior to spontaneous awakenings at high-temporal resolution (5s). Our machine-learning models trained on intracranial cortical or subcortical power features achieved high accuracy in both traditional (30s) and rapid (5s) time windows for NREM vs. wakefulness classification (30s: 92.6±1.7%; 5s: 88.3±2.1%). Conclusions Chronic, multi-night recordings in PD reveal increased cortico-basal slow wave, decreased beta activity, and changes in functional connectivity in NREM vs wakefulness, effects that are enhanced in the presence of DBS. Within NREM, subcortical beta and cortical delta are strongly inversely correlated and subcortical beta power increases prior to spontaneous awakenings. Our findings elucidate the network-level neurophysiology of sleep dysfunction in PD and the mechanistic impact of conventional DBS. Additionally, through accurate machine-learning classification of spontaneous awakenings, this study also provides a foundation for future personalized adaptive DBS therapies for sleep dysfunction in PD.
Collapse
Affiliation(s)
- Md Fahim Anjum
- Movement Disorders and Neuromodulation Centre, University California San Francisco, CA, USA
| | - Clay Smyth
- Movement Disorders and Neuromodulation Centre, University California San Francisco, CA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, United Kingdom
| | - Philip Starr
- Movement Disorders and Neuromodulation Centre, University California San Francisco, CA, USA
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, United Kingdom
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University California San Francisco, CA, USA
| |
Collapse
|
17
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Excessive cortical beta oscillations are associated with slow-wave sleep dysfunction in mild parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564524. [PMID: 37961389 PMCID: PMC10634920 DOI: 10.1101/2023.10.28.564524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Increasing evidence associates slow-wave sleep (SWS) dysfunction with neurodegeneration. Using a within-subject design in the nonhuman primate model of Parkinson's disease (PD), we found that reduced SWS quantity in mild parkinsonism was accompanied by elevated beta and reduced delta power during SWS in the motor cortex. Our findings support excessive beta oscillations as a mechanism for SWS dysfunction and will inform development of neuromodulation therapies for enhancing SWS in PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|