1
|
Zhang Z, Aziati ID, Nipper T, Boon ACM, Mehle A. ANP32 proteins from ticks and vertebrates are key host factors for replication of Bourbon virus across species. J Virol 2025:e0052225. [PMID: 40366164 DOI: 10.1128/jvi.00522-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Bourbon virus (BRBV) is a tick-borne virus in the genus Thogotovirus in the Orthomyxoviridae family. BRBV was initially identified as the presumptive causative agent of a fatal human infection in 2014 and has since been identified in ticks in the Midwest, Northeast, and Southern United States, with occasional spillovers into humans. However, little is known about how virus-host interactions impact their large host range. Here, we show that BRBV polymerase activity in human cells is completely dependent on cellular ANP32 proteins. BRBV polymerase activity was completely lost in cells lacking ANP32A and ANP32B, resulting in failed infections. BRBV polymerase activity was restored in the presence of ANP32 proteins from diverse hosts. Dhori virus and Thogoto virus, other related Thogotovirus members, retained high activity in the absence of ANP32 proteins, showing reduced dependence on these host factors. Interaction studies revealed that the BRBV polymerase trimer binds human ANP32A or ANP32B. Genetic analysis revealed that tick vectors for BRBV encode a single ANP32 locus corresponding to ANP32A. Tick ANP32A produces multiple protein variants through alternative splicing and start-site selection, all of which enhance polymerase activity for Thogotoviruses. Unexpectedly, the BRBV polymerase was highly sensitive to changes at the N-terminus of ANP32, while it was insensitive to changes in the body of ANP32 that restrict the activity of influenza virus polymerases. Thus, ANP32A is a deeply conserved pro-viral cofactor, and Thogotoviruses show remarkable plasticity utilizing ANP32 homologs from different hosts separated by almost 1 billion years of evolution.IMPORTANCEViral polymerases rely on cellular cofactors to support efficient transcription of viral genes and replication of the viral genome. The RNA-dependent RNA polymerase of influenza virus, an orthomyxovirus, requires the cellular ANP32A or ANP32B proteins for genome replication. However, little is known about whether ANP32 proteins are required by other orthomyxovirus family members, like the tick-borne thogotoviruses. We show that thogotoviruses use ANP32 proteins from diverse hosts to enhance polymerase activity, including that encoded by the single ANP32A gene found in ticks. However, thogotovirus polymerase showed varying levels of dependence on ANP32 proteins, with some polymerases functioning at near full activity even in the absence of ANP32 proteins. Thus, ANP32 proteins are deeply conserved viral cofactors, with each virus displaying distinct patterns of ANP32 usage and requirements for function.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ishmael D Aziati
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Thomas Nipper
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Kim S, Kim MA, Kim B, Lee J, Jung SK, Kim J, Chung HY, Lee CY, Jeong S. Machine learning assessment of zoonotic potential in avian influenza viruses using PB2 segment. BMC Genomics 2025; 26:395. [PMID: 40269678 PMCID: PMC12020041 DOI: 10.1186/s12864-025-11589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Influenza A virus (IAV) is a major global health threat, causing seasonal epidemics and occasional pandemics. Particularly, Influenza A viruses from avian species pose significant zoonotic threats, with PB2 adaptation serving as a critical first step in cross-species transmission. A comprehensive risk assessment framework based on PB2 sequences is necessary, which should encompass detailed analyses of specific residues and mutations while maintaining sufficient generality for application to non-PB2 segments. RESULTS In this study, we developed two complementary approaches: a regression-based model for accurately distinguishing among risk groups, and a SHAP-based risk assessment model for more meaningful risk analyses. For the regression-based risk models, we compared various methodologies, including tree ensemble methods, conventional regression models, and deep learning architectures. The optimized regression model, combined with SHAP value analysis, identified and ranked individual residues contributing to zoonotic potential. The SHAP-based risk model enabled intra-class analyses within the zoonotic risk assessment framework and quantified risk yields from specific mutations. CONCLUSION Experimental analyses demonstrated that the Random Forest regression model outperformed other models in most cases, and we validated the target value settings for risk regression through ablation studies. Our SHAP-based analysis identified key residues (271A, 627K, 591R, 588A, 292I, 684S, 684A, 81M, 199S, and 368Q) and mutations (T271A, Q368R/K, E627K, Q591R, A588T/I/V, and I292V/T) critical for zoonotic risk assessment. Using the SHAP-based risk assessment model, we found that influenza A viruses from Phasianidae showed elevated zoonotic risk scores compared to those from other avian species. Additionally, mutations I292V/T, Q368R, A588T/I, V598A/I/T, and E/V627K were identified as significant mutations in the Phasianidae. These PB2-focused quantitative methods provide a robust and generalizable framework for both rapid screening of avians' zoonotic potential and analytical quantification of risks associated with specific residues or mutations.
Collapse
Affiliation(s)
- Sangwook Kim
- Bio-medical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Min-Ah Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Bitgoeul Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jisu Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Se-Kyung Jung
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jonghong Kim
- Department of Neurology, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Ho-Young Chung
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, South Korea.
| | - Sungmoon Jeong
- Department of Medical Informatics, School of Medicine, Kyungpook National University, Daegu, South Korea.
- Research Center for Artificial Intelligence in Medicine, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
3
|
Peacock TP, Moncla L, Dudas G, VanInsberghe D, Sukhova K, Lloyd-Smith JO, Worobey M, Lowen AC, Nelson MI. The global H5N1 influenza panzootic in mammals. Nature 2025; 637:304-313. [PMID: 39317240 DOI: 10.1038/s41586-024-08054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Influenza A viruses have caused more documented global pandemics in human history than any other pathogen1,2. High pathogenicity avian influenza viruses belonging to the H5N1 subtype are a leading pandemic risk. Two decades after H5N1 'bird flu' became established in poultry in Southeast Asia, its descendants have resurged3, setting off a H5N1 panzootic in wild birds that is fuelled by: (1) rapid intercontinental spread, reaching South America and Antarctica for the first time4,5; (2) fast evolution via genomic reassortment6; and (3) frequent spillover into terrestrial7,8 and marine mammals9. The virus has sustained mammal-to-mammal transmission in multiple settings, including European fur farms10,11, South American marine mammals12-15 and US dairy cattle16-19, raising questions about whether humans are next. Historically, swine are considered optimal intermediary hosts that help avian influenza viruses adapt to mammals before jumping to humans20. However, the altered ecology of H5N1 has opened the door to new evolutionary pathways. Dairy cattle, farmed mink or South American sea lions may have the potential to serve as new mammalian gateways for transmission of avian influenza viruses to humans. In this Perspective, we explore the molecular and ecological factors driving the sudden expansion in H5N1 host range and assess the likelihood of different zoonotic pathways leading to an H5N1 pandemic.
Collapse
Affiliation(s)
- Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, UK
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Louise Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gytis Dudas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Ksenia Sukhova
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Hutchinson EC, Amorim MJ, Yamauchi Y. Understanding Influenza. Methods Mol Biol 2025; 2890:1-26. [PMID: 39890719 DOI: 10.1007/978-1-0716-4326-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease, and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This chapter briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we currently understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Maria João Amorim
- Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Embry A, Gammon DB. Abortive Infection of Animal Cells: What Goes Wrong. Annu Rev Virol 2024; 11:193-213. [PMID: 38631917 PMCID: PMC11427174 DOI: 10.1146/annurev-virology-100422-023037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
6
|
Arragain B, Krischuns T, Pelosse M, Drncova P, Blackledge M, Naffakh N, Cusack S. Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase. Nat Commun 2024; 15:6910. [PMID: 39160148 PMCID: PMC11333492 DOI: 10.1038/s41467-024-51007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Replication of influenza viral RNA depends on at least two viral polymerases, a parental replicase and an encapsidase, and cellular factor ANP32. ANP32 comprises an LRR domain and a long C-terminal low complexity acidic region (LCAR). Here we present evidence suggesting that ANP32 is recruited to the replication complex as an electrostatic chaperone that stabilises the encapsidase moiety within apo-polymerase symmetric dimers that are distinct for influenza A and B polymerases. The ANP32 bound encapsidase, then forms the asymmetric replication complex with the replicase, which is embedded in a parental ribonucleoprotein particle (RNP). Cryo-EM structures reveal the architecture of the influenza A and B replication complexes and the likely trajectory of the nascent RNA product into the encapsidase. The cryo-EM map of the FluB replication complex shows extra density attributable to the ANP32 LCAR wrapping around and stabilising the apo-encapsidase conformation. These structures give new insight into the various mutations that adapt avian strain polymerases to use the distinct ANP32 in mammalian cells.
Collapse
Affiliation(s)
- Benoît Arragain
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France
| | - Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology of Influenza Virus, Paris, France
- Heidelberg University, Department of Infectious Diseases, Virology, Schaller Research Group, Heidelberg, Germany
| | - Martin Pelosse
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France
| | - Petra Drncova
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble-Alpes-CEA-CNRS UMR5075, Grenoble, France
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology of Influenza Virus, Paris, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, Cedex 9, France.
| |
Collapse
|
7
|
Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. Int J Mol Sci 2024; 25:8550. [PMID: 39126117 PMCID: PMC11312817 DOI: 10.3390/ijms25158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
8
|
Matoušková M, Plachý J, Kučerová D, Pecnová Ľ, Reinišová M, Geryk J, Karafiát V, Hron T, Hejnar J. Rapid adaptive evolution of avian leukosis virus subgroup J in response to biotechnologically induced host resistance. PLoS Pathog 2024; 20:e1012468. [PMID: 39146367 PMCID: PMC11349186 DOI: 10.1371/journal.ppat.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
Collapse
Affiliation(s)
- Magda Matoušková
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ľubomíra Pecnová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Geryk
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Vít Karafiát
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Xue L, Chang T, Li Z, Wang C, Zhao H, Li M, Tang P, Wen X, Yu M, Wu J, Bao X, Wang X, Gong P, He J, Chen X, Xiong X. Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses. Nat Commun 2024; 15:4620. [PMID: 38816392 PMCID: PMC11139864 DOI: 10.1038/s41467-024-48848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5' end sequences derived from cap-snatching in influenza virus mRNA. Here, we report cryo-EM structures to characterize THOV polymerase RNA synthesis initiation and elongation. The structures demonstrate that THOV RNA transcription and replication are able to start with short dinucleotide primers and that the polymerase cap-snatching machinery is likely non-functional. Triggered by RNA synthesis, asymmetric THOV polymerase dimers can form without the involvement of host factors. We confirm that, distinctive from influenza viruses, THOV-polymerase RNA synthesis is weakly dependent of the host factors ANP32A/B/E in human cells. This study demonstrates varied mechanisms in RNA synthesis and host factor utilization among orthomyxoviruses, providing insights into the mechanisms behind thogotoviruses' broad-infectivity range.
Collapse
Affiliation(s)
- Lu Xue
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancai Chang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Chenchen Wang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heyu Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Li
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Peng Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Wen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xichen Bao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Staller E, Carrique L, Swann OC, Fan H, Keown JR, Sheppard CM, Barclay WS, Grimes JM, Fodor E. Structures of H5N1 influenza polymerase with ANP32B reveal mechanisms of genome replication and host adaptation. Nat Commun 2024; 15:4123. [PMID: 38750014 PMCID: PMC11096171 DOI: 10.1038/s41467-024-48470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Avian influenza A viruses (IAVs) pose a public health threat, as they are capable of triggering pandemics by crossing species barriers. Replication of avian IAVs in mammalian cells is hindered by species-specific variation in acidic nuclear phosphoprotein 32 (ANP32) proteins, which are essential for viral RNA genome replication. Adaptive mutations enable the IAV RNA polymerase (FluPolA) to surmount this barrier. Here, we present cryo-electron microscopy structures of monomeric and dimeric avian H5N1 FluPolA with human ANP32B. ANP32B interacts with the PA subunit of FluPolA in the monomeric form, at the site used for its docking onto the C-terminal domain of host RNA polymerase II during viral transcription. ANP32B acts as a chaperone, guiding FluPolA towards a ribonucleoprotein-associated FluPolA to form an asymmetric dimer-the replication platform for the viral genome. These findings offer insights into the molecular mechanisms governing IAV genome replication, while enhancing our understanding of the molecular processes underpinning mammalian adaptations in avian-origin FluPolA.
Collapse
Affiliation(s)
- Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Olivia C Swann
- Section of Molecular Virology, Imperial College London, London, UK
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- School of Basic Medical Sciences, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jeremy R Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Carol M Sheppard
- Section of Molecular Virology, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Molecular Virology, Imperial College London, London, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Zhirnov OP, Lvov DK. Avian flu: «for whom the bell tolls»? Vopr Virusol 2024; 69:101-118. [PMID: 38843017 DOI: 10.36233/10.36233/0507-4088-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/14/2024]
Abstract
The family Orthomyxoviridae consists of 9 genera, including Alphainfluenzavirus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus». The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.
Collapse
Affiliation(s)
- O P Zhirnov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
- The Russian-German Academy of Medical-Social and Biotechnological Sciences, Skolkovo Innovation Center
| | - D K Lvov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
| |
Collapse
|
12
|
Edwards SJ, Luczo JM. Editorial: Zoonotic negative-sense RNA viruses. Front Vet Sci 2024; 11:1384858. [PMID: 38496315 PMCID: PMC10940540 DOI: 10.3389/fvets.2024.1384858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Affiliation(s)
- Sarah J. Edwards
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Jasmina M. Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| |
Collapse
|
13
|
Krischuns T, Arragain B, Isel C, Paisant S, Budt M, Wolff T, Cusack S, Naffakh N. The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome. Nat Commun 2024; 15:1064. [PMID: 38316757 PMCID: PMC10844641 DOI: 10.1038/s41467-024-45205-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.
Collapse
Affiliation(s)
- Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| | | | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Matthias Budt
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, France.
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| |
Collapse
|