1
|
Nühn MM, Bosman K, Huisman T, Staring WH, Gharu L, De Jong D, De Kort TM, Buchholtz NV, Tesselaar K, Pandit A, Arends J, Otto SA, Lucio De Esesarte E, Hoepelman AI, De Boer RJ, Symons J, Borghans JA, Wensing AM, Nijhuis M. Selective decline of intact HIV reservoirs during the first decade of ART followed by stabilization in memory T cell subsets. AIDS 2025; 39:798-811. [PMID: 39964317 PMCID: PMC12077340 DOI: 10.1097/qad.0000000000004160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To investigate the short- and long-term dynamics of intact and defective proviral HIV DNA during ART. DESIGN We evaluated viral reservoir dynamics in a cohort of nine individuals with chronic HIV-1 subtype B who initiated first-line ART and were followed for 20 years while continuing ART. METHODS PBMCs were obtained before ART ( n = 5), during the first year, and after 8.5 and 20 years of treatment. T cell subsets (naive, central-memory, transitional-memory and effector-memory) were sorted at 8.5 and 20 years. DNA was isolated and analyzed using the intact proviral DNA assay (IPDA). Deep-sequencing of the viral env region enabled analysis of viral evolution and cellular mechanisms underlying HIV persistence. RESULTS Initially, defective and intact proviral DNA in PBMCs declined with half-lives of 3.6 and 5.4 weeks, respectively. Over the following 8.5 years, the intact reservoir continued to decrease, with a half-life of 18.8 months in PBMCs, while defective proviral DNA levels stabilized. After 8.5 and 20 years of ART, the intact reservoir showed no further decline, with most intact proviral DNA residing in memory T cell subsets. Phylogenetic analysis revealed no signs of viral evolution over time, both within and between T cell subsets. CONCLUSIONS PBMCs containing intact proviral DNA are selectively lost during the first decade of suppressive ART, followed by a decade of stabilization of this reservoir in the memory T cell subsets. In the absence of clear signs of viral evolution and massive clonal expansion, homeostatic proliferation might be an important driver of HIV persistence during long-term ART.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kobus Bosman
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Terry Huisman
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Wouter H.A. Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Dorien De Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Theun M. De Kort
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Ninée V.E.J. Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Aridaman Pandit
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Joop Arends
- Faculty of Health, Medicine and Life Sciences, Maastricht UMC (MUMC), Maastricht
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | - Sigrid A. Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | | | - Andy I.M. Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | | | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Annemarie M.J. Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
- Translational Virology, Department of Global Public Health & Bioethics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| |
Collapse
|
2
|
Katusiime MG, Neer V, Guo S, Patro SC, Wang W, Luke B, Capoferri AA, Wu X, Horner AM, Rausch JW, Chahroudi A, Mavigner M, Kearney MF. Divergent populations of HIV-infected naive and memory CD4+ T cell clones in children on antiretroviral therapy. J Clin Invest 2025; 135:e188533. [PMID: 40048262 PMCID: PMC12043081 DOI: 10.1172/jci188533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUNDNaive cells comprise 90% of the CD4+ T cell population in neonates and exhibit distinct age-specific capacities for proliferation and activation. We hypothesized that HIV-infected naive CD4+ T cell populations in children on long-term antiretroviral therapy (ART) would thus be distinct from infected memory cells.METHODSPeripheral blood naive and memory CD4+ T cells from 8 children with perinatal HIV on ART initiated at age 1.7-17 months were isolated by FACS. DNA was extracted from sorted cells, and HIV proviruses were counted, evaluated for intactness, and subjected to integration site analysis (ISA).RESULTSNaive CD4+ T cells containing HIV proviruses were detected in children with 95% statistical confidence. A median 4.7% of long terminal repeat-containing naive CD4+ T cells also contained HIV genetic elements consistent with intactness. Full-length proviral sequencing confirmed intactness of 1 provirus. In the participant with the greatest degree of naive cell infection, ISA revealed infected expanded cell clones in both naive and memory T cells, with no common HIV integration sites detected between subsets. Divergent integration site profiles reflected differential gene expression patterns of naive and memory T cells.CONCLUSIONThese results demonstrate that HIV persisted in both naive and memory CD4+ T cells that underwent clonal expansion and harbored intact proviruses, and suggest that infected memory T cell clones do not frequently arise from naive cell differentiation in children with perinatal HIV on long-term ART.FUNDINGCenter for Cancer Research, NCI; Office of AIDS Research; NCI FLEX; Children's and Emory Junior Faculty Focused Award.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Victoria Neer
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | | | | | | | - Brian Luke
- Advanced Biomedical Computational Science, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam A. Capoferri
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | | | - Anna M. Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| |
Collapse
|
3
|
Reeves DB, Litchford M, Fish CS, Farrell-Sherman A, Poindexter M, Ahmed N, Cassidy NAJ, Neary J, Wamalwa D, Langat A, Chebet D, Moraa H, Antar AAR, Slyker J, Benki-Nugent S, Cohn LB, Schiffer JT, Overbaugh J, John-Stewart G, Lehman DA. Intact HIV DNA decays in children with and without complete viral load suppression. PLoS Pathog 2025; 21:e1013003. [PMID: 40184428 PMCID: PMC12002518 DOI: 10.1371/journal.ppat.1013003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 02/21/2025] [Indexed: 04/06/2025] Open
Abstract
To inform cure in children living with HIV (CWH), we elucidated the dynamics and mechanisms underlying HIV persistence during antiretroviral therapy (ART). In 120 Kenyan CWH who initiated ART between 1-12 months of age, 55 had durable viral load suppression, and 65 experienced ART interruptions. We measured plasma HIV RNA levels, CD4+ T cell count, and levels of intact and defective HIV DNA proviruses via the cross-subtype intact proviral DNA assay (CS-IPDA). By modeling data from the durably suppressed subset, we found that during early ART (year 0-1 on ART), plasma RNA levels decayed rapidly and biphasically and intact and defective HIV DNA decayed with mean 3 and 9 month half-lives, respectively. After viral suppression was achieved (years 1-8 on ART), intact HIV DNA decay slowed to a mean 22 month half-life, whilst defective HIV DNA no longer decayed. In five CWH, we found individual CD4+ TCRβ clones wax and wane, but average kinetics resembled those of defective DNA and CD4 count, suggesting that differential decay of intact HIV DNA arises from selective pressures overlaying normal CD4+ T cell kinetics. Finally, by modeling HIV RNA and DNA in CWH with treatment interruptions, we linked temporary viremia to transient rises in HIV DNA, but long-term intact reservoirs were not strongly influenced, suggesting brief treatment interruptions may not significantly increase HIV reservoirs in children.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Global Health, University of Washington, Seattle, Washington, United States of America
| | - Morgan Litchford
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Carolyn S Fish
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Anna Farrell-Sherman
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Makayla Poindexter
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nashwa Ahmed
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Noah A J Cassidy
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jillian Neary
- Global Health, University of Washington, Seattle, Washington, United States of America
| | - Dalton Wamalwa
- Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Agnes Langat
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Daisy Chebet
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Hellen Moraa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer Slyker
- Global Health, University of Washington, Seattle, Washington, United States of America
| | - Sarah Benki-Nugent
- Global Health, University of Washington, Seattle, Washington, United States of America
| | - Lillian B Cohn
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Joshua T Schiffer
- Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Grace John-Stewart
- Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Dara A Lehman
- Global Health, University of Washington, Seattle, Washington, United States of America
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Xu Q, Zhang Q, Xu P, Zhang T, Wu H, Zhang X, Moog C, Su B. Impaired immune reconstitution in HIV infection: the role of CD4 + T-cell-associated NKG2D ligands, CD4 + T-cell subsets imbalance, and immune function deficiency. Front Immunol 2025; 16:1541574. [PMID: 40061947 PMCID: PMC11885256 DOI: 10.3389/fimmu.2025.1541574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
Objective The role of natural killer (NK) cells, which mediate innate immunity, in the immune reconstitution of people living with HIV (PLWH) remains unclear. Our previous research indicated that early activation of CD56dimCD16dim/- NK cells plays an important role in the recovery of CD4+ T cells in immunological non-responders (INRs) after ART. This study mainly focuses on the profiles of cell receptors and their relative ligands for NK cells and CD4+ T cells exhibited on INRs and immunological responders (IRs) in order to analyze the impact of differential immune status on immune reconstitution in PLWH receiving ART. Methods This study included 66 PLWH who had been on ART for 4 years, comprising 32 INRs and 34 IRs. Using flow cytometry, we examined the expression of cell receptors and ligands for NK cells and CD4+ T cells in PBMCs, as well as the differentiation of CD4+ T cells. Results The expression of NKG2D ligands, including MICA/B and ULBP2-5, on CD4+ T cells in INRs is elevated prior to ART. Further research found that the expression of CD95 on MICA/B+CD4+ T cells and ULBP2-5+CD4+ T cells was higher in INRs before ART compared to IRs. Simultaneously, the percentages of death receptor CD95 expression on MICA/B+CD4+ T cells and on ULBP2-5+CD4+ T cells before ART were negatively correlated with CD4+ T-cell counts and ΔCD4. Among the CD4+ T-cell subsets, an imbalance persists in the CD4+ Tcm and CD4+ Temra subsets in both INRs and IRs, before or after ART. CD4+ T cells exhibit elevated levels of activation, proliferation, exhaustion, and apoptosis prior to ART initiation. However, CD4+ T-cell activation and proliferation normalize post-ART, while apoptosis and exhaustion levels remain significantly elevated. Regardless of ART, the anti-apoptotic capacity of CD4+ T cells in INRs is still lower than that of IRs and healthy controls (HCs). Before ART, the frequency of CD31 expression on naive CD4+ T cells in INRs is lower than that in IRs and HCs. Following ART, the amounts of CD31+ Tn from CD4+ T cells remain impaired in both INRs and IRs compared to HCs. Conclusion The upregulation of related ligands for the NKG2D receptor on CD4+ T cells in INRs is associated with increased susceptibility of CD4+ T cells to NK cell-mediated killing. CD95 may plays an important role in poor recovery of CD4+ T cells co-expressing NKG2D-related ligands. The imbalance in CD4+ Tcm and CD4+ Temra subset homeostasis and impaired CD31 expression on naive CD4+ T cells in INRs are associated with poor immune reconstitution outcomes.
Collapse
Affiliation(s)
- Qianqian Xu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Zhang
- Department of Immunity and Infectious Diseases, Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Peng Xu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Johnson SD, Pino M, Acharya A, Clain JA, Bose D, Nguyen K, Harper J, Villinger F, Paiardini M, Byrareddy SN. IL-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques. JCI Insight 2025; 10:e184491. [PMID: 39903521 PMCID: PMC11949015 DOI: 10.1172/jci.insight.184491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Furthermore, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized that combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points after ATI. Additionally, following ATI, dual-treated RMs showed immunological benefits, including T cell preservation and lower PD-1+ central memory T cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) after ATI. Finally, 16S rRNA-Seq revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julien A. Clain
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, and
- Department of Biochemistry and Molecular Biology, UNMC, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Chen W, Berkhout B, Pasternak AO. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr HIV/AIDS Rep 2025; 22:15. [PMID: 39903363 PMCID: PMC11794352 DOI: 10.1007/s11904-025-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist in various cell types and tissues and reignite active replication if therapy is stopped. Persistence of the viral reservoirs in people with HIV-1 (PWH) is the main obstacle to achieving a cure. Identification and characterization of cellular and tissue HIV-1 reservoirs is thus central to the cure research. Here, we discuss emerging insights into the phenotype of HIV-1 reservoir cells. RECENT FINDINGS HIV-1 persists in multiple tissues, anatomic locations, and cell types. Although contributions of different CD4 + T-cell subsets to the HIV-1 reservoir are not equal, all subsets harbor a part of the viral reservoir. A number of putative cellular markers of the HIV-1 reservoir have been proposed, such as immune checkpoint molecules, integrins, and pro-survival factors. CD32a expression was shown to be associated with a very prominent enrichment in HIV-1 DNA, although this finding has been challenged. Recent technological advances allow unbiased single-cell phenotypic analyses of cells harbouring total or intact HIV-1 proviruses. A number of phenotypic markers have been reported by several independent studies to be enriched on HIV-1 reservoir cells. Expression of some of these markers could be mechanistically linked to the reservoir persistence, as they could for instance shield the reservoir cells from the immune recognition or promote their survival. However, so far no single phenotypic marker, or combination of markers, can effectively distinguish HIV-infected from uninfected cells or identify all reservoir cells.
Collapse
Affiliation(s)
- Wenxuan Chen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
8
|
Atehortua L, Sean Davidson W, Chougnet CA. Interactions Between HDL and CD4+ T Cells: A Novel Understanding of HDL Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2024; 44:1191-1201. [PMID: 38660807 PMCID: PMC11111342 DOI: 10.1161/atvbaha.124.320851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Several studies in animal models and human cohorts have recently suggested that HDLs (high-density lipoproteins) not only modulate innate immune responses but also adaptative immune responses, particularly CD4+ T cells. CD4+ T cells are central effectors and regulators of the adaptive immune system, and any alterations in their homeostasis contribute to the pathogenesis of cardiovascular diseases, autoimmunity, and inflammatory diseases. In this review, we focus on how HDLs and their components affect CD4+ T-cell homeostasis by modulating cholesterol efflux, immune synapsis, proliferation, differentiation, oxidative stress, and apoptosis. While the effects of apoB-containing lipoproteins on T cells have been relatively well established, this review focuses specifically on new connections between HDL and CD4+ T cells. We present a model where HDL may modulate T cells through both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Laura Atehortua
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| | - W. Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
9
|
Lancien M, Lichterfeld M. Proliferation of HIV-1 reservoir cells: The delusion of infinite growth. J Exp Med 2024; 221:e20232321. [PMID: 38345557 PMCID: PMC10866147 DOI: 10.1084/jem.20232321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Proliferation of HIV-1-infected cells contributes to viral persistence despite antiretroviral therapy. A new study by Kufera et al. (https://doi.org/10.1084/jem.20231511) demonstrates that proliferative growth of cells infected with genome-intact HIV-1 is not limitless; rather, these cells seem to be at least partially refractory to TCR stimulation, restricting their ability to proliferate in response to antigenic challenge.
Collapse
Affiliation(s)
- Melanie Lancien
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The complex nature and distribution of the HIV reservoir in tissue of people with HIV remains one of the major obstacles to achieve the elimination of HIV persistence. Challenges include the tissue-specific states of latency and viral persistence, which translates into high levels of reservoir heterogeneity. Moreover, the best strategies to reach and eliminate these reservoirs may differ based on the intrinsic characteristics of the cellular and anatomical reservoir to reach. RECENT FINDINGS While major focus has been undertaken for lymphoid tissues and follicular T helper cells, evidence of viral persistence in HIV and non-HIV antigen-specific CD4 + T cells and macrophages resident in multiple tissues providing long-term protection presents new challenges in the quest for an HIV cure. Considering the microenvironments where these cellular reservoirs persist opens new venues for the delivery of drugs and immunotherapies to target these niches. New tools, such as single-cell RNA sequencing, CRISPR screenings, mRNA technology or tissue organoids are quickly developing and providing detailed information about the complex nature of the tissue reservoirs. SUMMARY Targeting persistence in tissue reservoirs represents a complex but essential step towards achieving HIV cure. Combinatorial strategies, particularly during the early phases of infection to impact initial reservoirs, capable of reaching and reactivating multiple long-lived reservoirs in the body may lead the path.
Collapse
Affiliation(s)
- Daan K J Pieren
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | |
Collapse
|
11
|
Reeves DB, Rigau DN, Romero A, Zhang H, Simonetti FR, Varriale J, Hoh R, Zhang L, Smith KN, Montaner LJ, Rubin LH, Gange SJ, Roan NR, Tien PC, Margolick JB, Peluso MJ, Deeks SG, Schiffer JT, Siliciano JD, Siliciano RF, Antar AAR. Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302704. [PMID: 38405967 PMCID: PMC10888981 DOI: 10.1101/2024.02.13.24302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRβ) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRβ and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.
Collapse
|