1
|
Liu Y, Li W, Yang Z, Wei M, Yan L, Lv Y, Li Z, Guo Z, Li Z, Zhou W, Huang W. Peptide-based smart nanosystem for spatiotemporal regulation of bone immunity and cartilage repair to alleviate osteoarthritis. Biomaterials 2025; 323:123440. [PMID: 40449082 DOI: 10.1016/j.biomaterials.2025.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/21/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
The key pathological features of osteoarthritis (OA) are cartilage damage and synovial inflammation. However, traditional treatments often fail to mitigate the temporal and spatial progression of inflammation and cartilage damage, leading to limited therapeutic efficacy. In this study, we designed a peptide-based smart nanosystem (COF-1@PFK) that, in its first stage of operation, regulates the inflammatory microenvironment of OA by releasing the anti-inflammatory peptide K23 and promoting synovial macrophage M2 polarization, thereby creating an optimal immune environment for cartilage repair. In the second stage, the system targets damaged cartilage by detecting the negative charge of damaged chondrocytes and enables the sustained release of FGF18, directly promoting cartilage regeneration. OA was induced in rats by anterior cruciate ligament transection (ACLT), followed by four intra-articular injections performed at two-week intervals starting four weeks after surgery. Immunohistochemical staining for MMP13 and COLII in chondrocytes revealed that in both the COF-1@PF and COF-1@PK groups, the proportion of MMP13-positive cells notably decreased, whereas the proportion of COLII-positive cells increased (p < 0.05). COF-1@PFK, which contained both FGF18 and K23, exhibited the most potent cartilage repair effects, as evidenced by a significant decrease in the proportion of MMP13-positive cells and a marked increase in the number of COLII-positive cells in the COF-1@PFK group. In conclusion, COF-1@PFK successfully modulated the temporal and spatial dynamics of synovial inflammation and cartilage damage in the pathological process of OA, significantly increasing therapeutic efficacy and demonstrating promise for clinical translation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China; Graduate School, Bengbu Medical University, Bengbu, 233000, China
| | - Wenwei Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Zhichao Yang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China; Graduate School, Bengbu Medical University, Bengbu, 233000, China
| | - Ming Wei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Liang Yan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Yang Lv
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Zhaoyu Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Zezhong Guo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Zheng Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China.
| | - Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China.
| |
Collapse
|
2
|
Guo L, Li P, Rong X, Wei X. Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin Med J (Engl) 2025; 138:1399-1410. [PMID: 39439390 DOI: 10.1097/cm9.0000000000003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The superficial zone (SFZ) of articular cartilage is an important interface that isolates deeper zones from the microenvironment of the articular cavity and is directly exposed to various biological and mechanical stimuli. The SFZ is not only a crucial structure for maintaining the normal physiological function of articular cartilage but also the earliest site of osteoarthritis (OA) cartilage degeneration and a major site of cartilage progenitor cells, suggesting that the SFZ might represent a key target for the early diagnosis and treatment of OA. However, to date, SFZ research has not received sufficient attention, accounting for only about 0.58% of cartilage tissue research. The structure, biological composition, function, and related mechanisms of the SFZ in the physiological and pathological processes of articular cartilage remain unclear. This article reviews the key role of the SFZ in articular cartilage physiology and pathology and focuses on the characteristics of SFZ in articular cartilage degeneration and regeneration in OA, aiming to provide researchers with a systematic understanding of the current research status of the SFZ of articular cartilage, hoping that scholars will give more attention to the SFZ of articular cartilage in the future.
Collapse
Affiliation(s)
- Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xueqin Rong
- Department of Pain Medicine Center, Central Hospital of Sanya, Sanya, Hainan 572000, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
3
|
Jing X, Fan L, Wang Y, Zhang Y, Xue T, Tian D, Zhang F, Chen Y, Wu B, Wu Y. DNA methylation and transcriptome signatures of the FOXO1 gene in ankylosing spondylitis. Immunol Invest 2025:1-15. [PMID: 40526275 DOI: 10.1080/08820139.2025.2517814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is an inflammatory autoimmune disease with complex etiology. The forkhead box O (FOXO) 1 is an important transcription factor related to proliferation, homeostasis and metabolism. Notably, the involvement of methylation and the expression of mRNA in the promoter region of the FOXO1 gene in relation to AS is still not understood. METHODS A two-stage case-control study enrolled 60 AS patients and 60 healthy controls (HCs) for integrated demographic and clinical evaluation and DNA methylation profiling. Subsequently, FOXO1 mRNA expression was comparatively assessed in 30 AS patients and 30 hCs. RESULTS The methylation levels of 2 islands and 10 sites in the promoter region of FOXO1 gene were significantly different between AS patients and healthy controls. The negative correlation between the mRNA expression and the methylation level of FOXO1 gene was revealed (rs = -0.624, p < .001). Subgroup analyses showed that male and HLA-B27(+) having high methylation level in AS patients (p = .008; p = .036). Moreover, the level of hypermethylation was positively correlated with the clinical features like ASDAS, and negatively correlated with LYM, MON, RDW and disease duration. CONCLUSION DNA methylation and transcription of FOXO1 might be related to AS susceptibility and play an important role in the etiology of AS.
Collapse
Affiliation(s)
- Xiaohan Jing
- Department of Social Medicine and Health Service Management, School of Health Management, Anhui Medical University, Hefei, Anhui, China
| | - Li Fan
- Department of Social Medicine and Health Service Management, School of Health Management, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Wang
- Department of Social Medicine and Health Service Management, School of Health Management, Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Social Medicine and Health Service Management, School of Health Management, Anhui Medical University, Hefei, Anhui, China
| | - Tongbin Xue
- Department of Social Medicine and Health Service Management, School of Health Management, Anhui Medical University, Hefei, Anhui, China
| | - Di Tian
- Department of Medical Service, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feilong Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuting Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Baoming Wu
- Inflammatory Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ye Wu
- Department of Social Medicine and Health Service Management, School of Health Management, Anhui Medical University, Hefei, Anhui, China
- Department of Human Resource, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Wang X, Wang Y, Lei P, Qu X, Qi R, Chen D, Chang Y. IGFBP5 regulates fibrocartilage differentiation and cartilage injury induced by T-2 toxin via blocking IGF-1/IGF-1R signalling. Rheumatology (Oxford) 2025; 64:4051-4060. [PMID: 39932874 DOI: 10.1093/rheumatology/keaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/01/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVES Kashin-Beck disease (KBD) is a form of osteoarthropathy that affects the skeletal and joint systems of children and adolescents. Insulin-like growth factor binding protein 5 (IGFBP5) plays an important role in bone growth and development. This study aimed to investigate the role of IGBFP5 in regulating the function and differentiation of chondrocytes in KBD. METHODS The mRNA and protein expressions of IGFBP5, IGF-1 and IGF-1R were detected by RT-qPCR and western blot assays. Commercial kits were performed to measure the mitochondrial ROS content, calcium loading and ATP synthesis in chondrocytes. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to detect the cell viability of chondrocytes. Co-IP and pull-down assays were conducted to verify the binding activity of IGFBP5 to IGF-1R. The rat KBD model was constructed by a low selenium diet and T-2 toxin. RESULTS The expression of IGFBP5 was upregulated in KBD patient and rat tissues. Further studies showed that interfering with IGFBP5 effectively inhibited T-2-induced chondrocyte damage and mitochondrial stress. IGFBP5 depressed the interaction between IGF-1 and IGF-1R, thereby affecting the regulation of IGF-1/IGF-1R signalling in the repair of chondrocytes. In addition, the fibrous differentiation of cartilage progenitor cells (CPCs) and the activity and migration of CPCs induced by T-2 stimulation were suppressed under IGFBP5 silence treatment. CONCLUSION IGFBP5 was upregulated during the pathological progression of KBD, and IGFBP5 competitively bound with IGF-1R to impede the interactions between IGF-1 and IGF-1R. Knockdown of IGFBP5 inhibited fibrotic differentiation and ameliorated the reduction of CPC function in KBD model.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yinxia Wang
- Department of Nursing, The First People's Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xiaodong Qu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rui Qi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Duanmingyu Chen
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanhai Chang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Basic and Clinical Transformation on Bone and Joint Diseases, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Raut R, Chakraborty A, Neogi T, Albro M, Snyder B, Schaer T, Zhang C, Grinstaff M, Bais M. Constructing a cross-tissue human knee single-cell atlas identified osteoarthritis reduces regenerative tissue stem cells while increasing inflammatory pain macrophages. RESEARCH SQUARE 2025:rs.3.rs-6247502. [PMID: 40386432 PMCID: PMC12083644 DOI: 10.21203/rs.3.rs-6247502/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Osteoarthritis (OA) affects the entire knee joint; however, cross-tissue molecular mechanisms are poorly understood due to a lack of comprehensive, integrated analysis. We constructed the first comprehensive single-cell RNA sequencing knee OA atlas from articular cartilage, meniscus, synovium, and subchondral bone which showed active communication between them. Healthy synovium and meniscus contain the largest populations of tissue stem cells (TSCs) and immune cells that are altered in OA. The regenerative TSCs expressing SDF1, SOX9, CD146, PDGFRB, and CD105 decrease during OA, whereas osteogenic TSCs expressing osteogenic differentiation-related factor NT5E (CD73) are increased. In OA, the balance between regenerative and osteogenic TSCs shifts in the OA state with an increased number of osteogenic TSCs. We also report an increased level of quadruple-positive inflammatory (IL1B-IL6-NOS2-TNF) and pain marker (P2RX7) specific macrophages in OA. Fibroblasts are enriched in OA-synovium and may contribute to fibrosis. Importantly, OA cartilage contains unique MMP13-producing detrimental chondrocytes along with RUNX2-producing chondrocytes that worsen OA pathophysiology. This atlas provides a novel avenue for potential therapeutic applications in human knee OA and other musculoskeletal diseases and injuries, targeting synovium and meniscus to intervene in OA-specific molecular and cellular alterations.
Collapse
Affiliation(s)
| | | | | | | | - Brian Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Thomas Schaer
- University of Pennsylvania School of Veterinary Medicine
| | - Chao Zhang
- Department of Medicine Section of Computational Biomedicine, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118
| | | | | |
Collapse
|
6
|
Gao Y, De S, Brazil DP. The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation. Cells 2025; 14:578. [PMID: 40277903 PMCID: PMC12025430 DOI: 10.3390/cells14080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer remains a leading cause of death globally, characterized by uncontrolled cell proliferation, tumor growth and metastasis. Bone morphogenetic proteins (BMPs) and their growth differentiation factor (GDF) relatives are crucial regulators of developmental processes such as limb, kidney and lung formation, cell fate determination, cell proliferation, and apoptosis. Cancer stem cells (CSCs) are a subpopulation of self-renewing cells within tumors that possess stemness properties and a tumor cell-forming capability. The presence of CSCs in a tumor is linked to growth, metastasis, treatment resistance and cancer recurrence. The tumor microenvironment in which CSCs exist also plays a critical role in the onset, progression and treatment resistance in many cancers. Growth factors such as BMPs and GDFs counterbalance transforming growth factor-beta (TGF-β) in the maintenance of CSC pluripotency and cancer cell differentiation. BMP signaling typically functions in a tumor suppressor role in various cancers by inducing CSC differentiation and suppressing stemness characteristics. This differentiation process is vital, as it curtails the self-renewal capacity that characterizes CSCs, thereby limiting their ability to sustain tumor growth. The interplay between BMPs and their secreted antagonists, such as GREM1, Noggin and Chordin, adds another layer of complexity to CSC regulation. Human cancers such as gastric, colorectal, glioblastoma, and breast cancer are characterized by GREMLIN1 (GREM1) overexpression, leading to inhibition of BMP signaling, facilitating the maintenance of pluripotency in CSCs, thus promoting tumorigenesis. GREM1 overexpression may also contribute to CSC immune evasion, further exacerbating patient prognoses. In addition to BMP inhibition, GREM1 has been implicated as a target of fibroblast growth factor (FGF) → Sonic hedgehog (Shh) signaling, as well as the Wnt/Frizzled pathway, both of which may contribute to the maintenance of CSC stemness. The complex role of BMPs and their antagonists in regulating CSC behavior underscores the importance of a balanced BMP signaling pathway. This article will summarize current knowledge of BMP and GREM1 regulation of CSC function, as well as conflicting data on the exact role of GREM1 in modulating CSC biology, tumor formation and cancer. Targeting this pathway by inhibiting GREM1 using neutralizing antibodies or small molecules may hold early-stage promise for novel therapeutic strategies aimed at reducing CSC burden in cancers and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Derek P. Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK; (Y.G.); (S.D.)
| |
Collapse
|
7
|
Roelofs AJ, McClure JJ, Hay EA, De Bari C. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 2025; 21:211-220. [PMID: 40045009 DOI: 10.1038/s41584-025-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.
Collapse
Affiliation(s)
- Anke J Roelofs
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Elizabeth A Hay
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
8
|
Weldon KC, Longaker MT, Ambrosi TH. Harnessing the diversity and potential of endogenous skeletal stem cells for musculoskeletal tissue regeneration. Stem Cells 2025; 43:sxaf006. [PMID: 39945760 PMCID: PMC11892563 DOI: 10.1093/stmcls/sxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 03/11/2025]
Abstract
In our aging society, the degeneration of the musculoskeletal system and adjacent tissues is a growing orthopedic concern. As bones age, they become more fragile, increasing the risk of fractures and injuries. Furthermore, tissues like cartilage accumulate damage, leading to widespread joint issues. Compounding this, the regenerative capacity of these tissues declines with age, exacerbating the consequences of fractures and cartilage deterioration. With rising demand for fracture and cartilage repair, bone-derived stem cells have attracted significant research interest. However, the therapeutic use of stem cells has produced inconsistent results, largely due to ongoing debates and uncertainties regarding the precise identity of the stem cells responsible for musculoskeletal growth, maintenance and repair. This review focuses on the potential to leverage endogenous skeletal stem cells (SSCs)-a well-defined population of stem cells with specific markers, reliable isolation techniques, and functional properties-in bone repair and cartilage regeneration. Understanding SSC behavior in response to injury, including their activation to a functional state, could provide insights into improving treatment outcomes. Techniques like microfracture surgery, which aim to stimulate SSC activity for cartilage repair, are of particular interest. Here, we explore the latest advances in how such interventions may modulate SSC function to enhance bone healing and cartilage regeneration.
Collapse
Affiliation(s)
- Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
- School of Medicine, University of California, Sacramento, CA 95817, United States
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| |
Collapse
|
9
|
Jahangiri Esfahani S, Ao X, Oveisi A, Diatchenko L. Rare variant association studies: Significance, methods, and applications in chronic pain studies. Osteoarthritis Cartilage 2025; 33:313-321. [PMID: 39725155 DOI: 10.1016/j.joca.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Rare genetic variants, characterized by their low frequency in a population, have emerged as essential components in the study of complex disease genetics. The biology of rare variants underscores their significance, as they can exert profound effects on phenotypic variation and disease susceptibility. Recent advancements in sequencing technologies have yielded the availability of large-scale sequencing data such as the UK Biobank whole-exome sequencing (WES) cohort empowered researchers to conduct rare variant association studies (RVASs). This review paper discusses the significance of rare variants, available methodologies, and applications. We provide an overview of RVASs, emphasizing their relevance in unraveling the genetic architecture of complex diseases with special focus on chronic pain and Arthritis. Additionally, we discuss the strengths and limitations of various rare variant association testing methods, outlining a typical pipeline for conducting rare variant association. This pipeline encompasses crucial steps such as quality control of WES data, rare variant annotation, and association testing. It serves as a comprehensive guide for researchers in the field of chronic pain diseases interested in rare variant association studies in large-scale sequencing datasets like the UK Biobank WES cohort. Lastly, we discuss how the identified variants can be further investigated through detailed experimental studies in animal models to elucidate their functional impact and underlying mechanisms.
Collapse
Affiliation(s)
- Sahel Jahangiri Esfahani
- Faculty of Medicine and Health Sciences, Department of Human Genetics, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Anahita Oveisi
- Department of Neuroscience, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.
| |
Collapse
|
10
|
Xu Z, Liu J, Hu H, Ma J, Yang H, Chen J, Xu H, Hu H, Luo H, Chen G. Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy. Front Bioeng Biotechnol 2025; 13:1539566. [PMID: 40035023 PMCID: PMC11872905 DOI: 10.3389/fbioe.2025.1539566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Osteoarthritis is one of the most common degenerative joint diseases, which seriously affects the life of middle-aged and elderly people. Traditional treatments such as surgical treatment and systemic medication, often do not achieve the expected or optimal results, which leads to severe trauma and a variety of side effects. Therefore, there is an urgent need to develop novel therapeutic options to overcome these problems. Hydrogels are widely used in biomedical tissue repairing as a platform for loading drugs, proteins and stem cells. In recent years, smart-responsive hydrogels have achieved excellent results as novel drug delivery systems in the treatment of osteoarthritis. This review focuses on the recent advances of endogenous stimuli (including enzymes, pH, reactive oxygen species and temperature, etc.) responsive hydrogels and exogenous stimuli (including light, shear, ultrasound and magnetism, etc.) responsive hydrogels in osteoarthritis treatment. Finally, the current limitations of application and future prospects of smart responsive hydrogels are summarized.
Collapse
Affiliation(s)
- Zhuoming Xu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jintao Liu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hanyin Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Ma
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haiyang Yang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongwei Xu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haodong Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Maiese K. Diabetes mellitus and glymphatic dysfunction: Roles for oxidative stress, mitochondria, circadian rhythm, artificial intelligence, and imaging. World J Diabetes 2025; 16:98948. [PMID: 39817214 PMCID: PMC11718455 DOI: 10.4239/wjd.v16.i1.98948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments. These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis. New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States
| |
Collapse
|
12
|
Jenei-Lanzl Z, Zaucke F. Osteoarthritis year in review 2024: Biology. Osteoarthritis Cartilage 2025; 33:58-66. [PMID: 39461410 DOI: 10.1016/j.joca.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Osteoarthritis (OA) research is a fast-growing and extremely wide field, in which a substantial increase in knowledge has been achieved over the last year. It covers many different topics, however, a PubMed search using the terms 'osteoarthritis' and 'biology' resulted in only a limited number of studies that were published between April 2023 and April 2024. In order to identify OA-relevant studies that focus on mechanistic studies of biological processes at the tissue, cellular, and molecular level, the following keywords were included as search terms: tissue interactions, single cell sequencing, transcriptomics, extracellular matrix, signaling, ion channels, and pain. The final selection of publications presented in this 'year in review' was influenced by the personal preferences of the authors, and eventually three larger key themes emerged: 1) Joint tissue interactions covering meniscus, subchondral bone, fat tissue, synovium, and synovial fluid. 2) Degeneration of the cartilage extracellular matrix and generation of bioactive fragments. 3) Receptors, ion channels, signaling pathways, and cellular metabolism. Many of the studies summarized here identified novel potential targets for OA treatment, and promising results were already obtained addressing these targets in different animal models. It will be exciting to see which findings can be translated into future clinical studies and eventually lead to novel treatment approaches for human OA.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Puviindran V, Shimada E, Huang Z, Ma X, Ban GI, Xiang Y, Zhang H, Ou J, Wei X, Nakagawa M, Martin J, Diao Y, Alman BA. Single cell analysis of Idh mutant growth plates identifies cell populations responsible for longitudinal bone growth and enchondroma formation. Sci Rep 2024; 14:26208. [PMID: 39482341 PMCID: PMC11527983 DOI: 10.1038/s41598-024-76539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Enchondromas are a common tumor in bone that can occur as multiple lesions in enchondromatosis, which is associated with deformity of the affected bone. These lesions harbor somatic mutations in IDH and driving expression of a mutant Idh1 in Col2 expressing cells in mice causes an enchondromatosis phenotype. Here we compared growth plates from E18.5 mice expressing a mutant Idh1 with control littermates using single cell RNA sequencing. Data from Col2 expressing cells were analysed using UMAP and RNA pseudo-time analyses. A unique cluster of cells was identified in the mutant growth plates that expressed genes known to be upregulated in enchondromas. There was also a cluster of cells that was underrepresented in the mutant growth plates that expressed genes known to be important in longitudinal bone growth. Immunofluorescence showed that the genes from the unique cluster identified in the mutant growth plates were expressed in multiple growth plate anatomic zones, and pseudo-time analysis also suggested these cells could arise from multiple growth plate chondrocyte subpopulations. This data supports the notion that a subpopulation of chondrocytes become enchondromas at the expense of contributing to longitudinal growth.
Collapse
Affiliation(s)
- Vijitha Puviindran
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Eijiro Shimada
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zeyu Huang
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Xinyi Ma
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
| | - Ga I Ban
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Hongyuan Zhang
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jianhong Ou
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Xiaolin Wei
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Makoto Nakagawa
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - John Martin
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yarui Diao
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin A Alman
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Wang X, Jia Q, Yu L, Huang J, Wang X, Zhou L, Mijiti W, Xie Z, Dong S, Xie Z, Ma H. Filamin B knockdown impairs differentiation and function in mouse pre-osteoblasts via aberrant transcription and alternative splicing. Heliyon 2024; 10:e39334. [PMID: 39498024 PMCID: PMC11533582 DOI: 10.1016/j.heliyon.2024.e39334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells. Methods Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB. Standard transwell, MTT, ALP, qPCR, Western blot, and alizarin red staining assays were used to assess functional changes of FLNB-knockdown MC3T3-E1 cells. Results Analysis of differentially expressed genes (DEGs) in FLNB knockdown cells revealed enrichment for genes related to osteoblast proliferation, differentiation and migration, such as ITGA10, Cebpβ, Grem1, etc. Alternative splicing (AS) analysis showed changes in the predominant mRNA isoforms of skeletal development-related genes, especially Tpx2 and Evc. Functional asslysis indicated that proliferation, migration, and differentiation were all inhibited upon FLNB knockdown in MC3T3-E1 cells compared to that in vector control cells. Conclusions FLNB participates in regulating the transcription and AS of genes required for osteoblast development and function, consequently affecting growth and development in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Jinyong Huang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Lijun Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Wubulikasimu Mijiti
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zhenzi Xie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Shiming Dong
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
15
|
Puviindran V, Shimada E, Huang Z, Ma X, Ban GI, Xiang Y, Zhang H, Ou J, Wei X, Nakagawa M, Martin J, Diao Y, Alman BA. Single-cell transcriptomic analyses of mouse idh1 mutant growth plate chondrocytes reveal distinct cell populations responsible for longitudinal growth and enchondroma formation. RESEARCH SQUARE 2024:rs.3.rs-4451086. [PMID: 38883785 PMCID: PMC11178001 DOI: 10.21203/rs.3.rs-4451086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Enchondromas are a common tumor in bone that can occur as multiple lesions in enchondromatosis, which is associated with deformity of the effected bone. These lesions harbor mutations in IDH and driving expression of a mutant Idh1 in Col2 expressing cells in mice causes an enchondromatosis phenotype. In this study we compared growth plates from E18.5 mice expressing a mutant Idh1 with control littermates using single cell RNA sequencing. Data from Col2 expressing cells were analyzed using UMAP and RNA pseudo-time analyses. A unique cluster of cells was identified in the mutant growth plates that expressed genes known to be upregulated in enchondromas. There was also a cluster of cells that was underrepresented in the mutant growth plates that expressed genes known to be important in longitudinal bone growth. Immunofluorescence showed that the genes from the unique cluster identified in the mutant growth plates were expressed in multiple growth plate anatomic zones, and pseudo-time analysis also suggested these cells could arise from multiple growth plate chondrocyte subpopulations. This data identifies subpopulations of cells in control and mutant growth plates, and supports the notion that a mutant Idh1 alters the subpopulations of growth plate chondrocytes, resulting a subpopulation of cells that become enchondromas at the expense of other populations that contribute to longitudinal growth.
Collapse
Affiliation(s)
| | | | | | - Xinyi Ma
- Duke University School of Medicine
| | - Ga I Ban
- Duke University School of Medicine
| | - Yu Xiang
- Duke University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ignatyeva N, Gavrilov N, Timashev PS, Medvedeva EV. Prg4-Expressing Chondroprogenitor Cells in the Superficial Zone of Articular Cartilage. Int J Mol Sci 2024; 25:5605. [PMID: 38891793 PMCID: PMC11171992 DOI: 10.3390/ijms25115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Joint-resident chondrogenic precursor cells have become a significant therapeutic option due to the lack of regenerative capacity in articular cartilage. Progenitor cells are located in the superficial zone of the articular cartilage, producing lubricin/Prg4 to decrease friction of cartilage surfaces during joint movement. Prg4-positive progenitors are crucial in maintaining the joint's structure and functionality. The disappearance of progenitor cells leads to changes in articular hyaline cartilage over time, subchondral bone abnormalities, and the formation of ectopic ossification. Genetic labeling cell technology has been the main tool used to characterize Prg4-expressing progenitor cells of articular cartilage in vivo through drug injection at different time points. This technology allows for the determination of the origin of progenitor cells and the tracking of their progeny during joint development and cartilage damage. We endeavored to highlight the currently known information about the Prg4-producing cell population in the joint to underline the significance of the role of these cells in the development of articular cartilage and its homeostasis. This review focuses on superficial progenitors in the joint, how they contribute to postnatal articular cartilage formation, their capacity for regeneration, and the consequences of Prg4 deficiency in these cells. We have accumulated information about the Prg4+ cell population of articular cartilage obtained through various elegantly designed experiments using transgenic technologies to identify potential opportunities for further research.
Collapse
Affiliation(s)
- Nadezda Ignatyeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119048, Russia; (N.G.); (P.S.T.); (E.V.M.)
| | | | | | | |
Collapse
|
17
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|