1
|
Chiolo I, Altmeyer M, Legube G, Mekhail K. Nuclear and genome dynamics underlying DNA double-strand break repair. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00828-1. [PMID: 40097581 DOI: 10.1038/s41580-025-00828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Changes in nuclear shape and in the spatial organization of chromosomes in the nucleus commonly occur in cancer, ageing and other clinical contexts that are characterized by increased DNA damage. However, the relationship between nuclear architecture, genome organization, chromosome stability and health remains poorly defined. Studies exploring the connections between the positioning and mobility of damaged DNA relative to various nuclear structures and genomic loci have revealed nuclear and cytoplasmic processes that affect chromosome stability. In this Review, we discuss the dynamic mechanisms that regulate nuclear and genome organization to promote DNA double-strand break (DSB) repair, genome stability and cell survival. Genome dynamics that support DSB repair rely on chromatin states, repair-protein condensates, nuclear or cytoplasmic microtubules and actin filaments, kinesin or myosin motor proteins, the nuclear envelope, various nuclear compartments, chromosome topology, chromatin loop extrusion and diverse signalling cues. These processes are commonly altered in cancer and during natural or premature ageing. Indeed, the reshaping of the genome in nuclear space during DSB repair points to new avenues for therapeutic interventions that may take advantage of new cancer cell vulnerabilities or aim to reverse age-associated defects.
Collapse
Affiliation(s)
- Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland.
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chatzifrangkeskou M, Stanly T, Koennig D, Campos-Soares L, Eyres M, Hasson A, Perdiou A, Vendrell I, Fischer R, Das S, Gardner S, Go S, Futcher B, Newton A, Skourides P, Szele F, O’Neill E. ATR-hippo drives force signaling to nuclear F-actin and links mechanotransduction to neurological disorders. SCIENCE ADVANCES 2025; 11:eadr5683. [PMID: 39951537 PMCID: PMC11827640 DOI: 10.1126/sciadv.adr5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
The mechanical environment is sensed through cell-matrix contacts with the cytoskeleton, but how signals transit the nuclear envelope to affect cell fate decisions remains unknown. Nuclear actin coordinates chromatin motility during differentiation and genome maintenance, yet it remains unclear how nuclear actin responds to mechanical force. The DNA-damage kinase ataxia telangiectasia and Rad3-related protein (ATR) translocates to the nuclear envelope to protect the nucleus during cell motility or compression. Here, we show that ATR drives nuclear actin assembly via recruitment of Filamin-A to the inner nuclear membrane through binding of the hippo pathway scaffold and ATR substrate, RASSF1A. Moreover, we demonstrate how germline RASSF1 mutation disables nuclear mechanotransduction resulting in cerebral cortex thinning and associates with common psychological traits. Thus, defective mechanical-regulated pathways may contribute to complex neurological disorders.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Tess Stanly
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Delia Koennig
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Luana Campos-Soares
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Michael Eyres
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alexander Hasson
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alexandra Perdiou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sayoni Das
- PrecisionLife, Bankside, Long Hanborough, Oxford OX29 8LJ, UK
| | - Steve Gardner
- PrecisionLife, Bankside, Long Hanborough, Oxford OX29 8LJ, UK
| | - Simei Go
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ben Futcher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ashley Newton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Paris Skourides
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Francis Szele
- Department Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
Fernandez MK, Sinha M, Zidan M, Renz M. Nuclear actin filaments - a historical perspective. Nucleus 2024; 15:2320656. [PMID: 38384139 PMCID: PMC10885181 DOI: 10.1080/19491034.2024.2320656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
The view on nuclear filaments formed by non-skeletal β-actin has significantly changed over the decades. Initially, filamentous actin was observed in amphibian oocyte nuclei and only under specific cell stress conditions in mammalian cell nuclei. Improved labeling and imaging technologies have permitted insights into a transient but microscopically apparent filament network that is relevant for chromatin organization, biomechanics of the mammalian cell nucleus, gene expression, and DNA damage repair. Here, we will provide a historical perspective on the developing insight into nuclear actin filaments.
Collapse
Affiliation(s)
| | - Molika Sinha
- Gynecologic Oncology Division, School of Medicine Stanford University, Palo Alto, CA, USA
| | - Mia Zidan
- Gynecologic Oncology Division, School of Medicine Stanford University, Palo Alto, CA, USA
| | - Malte Renz
- Gynecologic Oncology Division, School of Medicine Stanford University, Palo Alto, CA, USA
| |
Collapse
|
4
|
Hurst V, Gerhold CB, Tarashev CVD, Challa K, Seeber A, Yamazaki S, Knapp B, Helliwell SB, Bodenmiller B, Harata M, Shimada K, Gasser SM. Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation. Nat Commun 2024; 15:9910. [PMID: 39548059 PMCID: PMC11568269 DOI: 10.1038/s41467-024-54141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Loss of cytosolic actin filaments upon TORC2 inhibition triggers chromosome fragmentation in yeast, which results from altered base excision repair of Zeocin-induced lesions. To find the link between TORC2 kinase and this yeast chromosome shattering (YCS) we performed phosphoproteomics. YCS-relevant phospho-targets included plasma membrane-associated regulators of actin polymerization, such as Las17, the yeast Wiscott-Aldrich Syndrome protein. Induced degradation of Las17 was sufficient to trigger YCS in presence of Zeocin, bypassing TORC2 inhibition. In yeast, Las17 does not act directly at damage, but instead its loss, like TORC2 inhibition, raises nuclear actin levels. Nuclear actin, in complex with Arp4, forms an essential subunit of several nucleosome remodeler complexes, including INO80C, which facilitates DNA polymerase elongation. Here we show that the genetic ablation of INO80C activity leads to partial YCS resistance, suggesting that elevated levels of nuclear G-actin may stimulate INO80C to increase DNA polymerase processivity and convert single-strand lesions into double-strand breaks.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Bühlmann Laboratories AG, Baselstrasse 55, 4124, Schönenbuch, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Transition Bio Inc, 250 Arsenal St, Watertown, 02472, MA, USA
| | - Shota Yamazaki
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Masahiko Harata
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, 1005, Lausanne, Switzerland.
| |
Collapse
|
5
|
Shimada K, Tarashev CVD, Bregenhorn S, Gerhold CB, van Loon B, Roth G, Hurst V, Jiricny J, Helliwell SB, Gasser SM. TORC2 inhibition triggers yeast chromosome fragmentation through misregulated Base Excision Repair of clustered oxidation events. Nat Commun 2024; 15:9908. [PMID: 39548071 PMCID: PMC11568337 DOI: 10.1038/s41467-024-54142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Combinational therapies provoking cell death are of major interest in oncology. Combining TORC2 kinase inhibition with the radiomimetic drug Zeocin results in a rapid accumulation of double-strand breaks (DSB) in the budding yeast genome. This lethal Yeast Chromosome Shattering (YCS) requires conserved enzymes of base excision repair. YCS can be attenuated by eliminating three N-glycosylases or endonucleases Apn1/Apn2 and Rad1, which act to convert oxidized bases into abasic sites and single-strand nicks. Adjacent lesions must be repaired in a step-wise fashion to avoid generating DSBs. Artificially increasing nuclear actin by destabilizing cytoplasmic actin filaments or by expressing a nuclear export-deficient actin interferes with this step-wise repair and generates DSBs, while mutants that impair DNA polymerase processivity reduce them. Repair factors that bind actin include Apn1, RFA and the actin-dependent chromatin remodeler INO80C. During YCS, increased INO80C activity could enhance both DNA polymerase processivity and repair factor access to convert clustered lesions into DSBs.
Collapse
Affiliation(s)
- Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
- Dynamics Group AG., Av. de Rumine 5, Lausanne, Switzerland
| | - Stephanie Bregenhorn
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
- BÜHLMANN Laboratories AG, Baselstrasse 55, Schönenbuch, Switzerland
| | - Barbara van Loon
- Norwegian University of Science and Technology; Department of Clinical and Molecular Medicine, Erling Skjalgssonsgatan, Trondheim, Norway
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Josef Jiricny
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes of Biomedical Research, Novartis Intl. AG, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, Lausanne, Switzerland.
| |
Collapse
|
6
|
Harman A, Bryan TM. Telomere maintenance and the DNA damage response: a paradoxical alliance. Front Cell Dev Biol 2024; 12:1472906. [PMID: 39483338 PMCID: PMC11524846 DOI: 10.3389/fcell.2024.1472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Telomeres are the protective caps at the ends of linear chromosomes of eukaryotic organisms. Telomere binding proteins, including the six components of the complex known as shelterin, mediate the protective function of telomeres. They do this by suppressing many arms of the canonical DNA damage response, thereby preventing inappropriate fusion, resection and recombination of telomeres. One way this is achieved is by facilitation of DNA replication through telomeres, thus protecting against a "replication stress" response and activation of the master kinase ATR. On the other hand, DNA damage responses, including replication stress and ATR, serve a positive role at telomeres, acting as a trigger for recruitment of the telomere-elongating enzyme telomerase to counteract telomere loss. We postulate that repression of telomeric replication stress is a shared mechanism of control of telomerase recruitment and telomere length, common to several core telomere binding proteins including TRF1, POT1 and CTC1. The mechanisms by which replication stress and ATR cause recruitment of telomerase are not fully elucidated, but involve formation of nuclear actin filaments that serve as anchors for stressed telomeres. Perturbed control of telomeric replication stress by mutations in core telomere binding proteins can therefore cause the deregulation of telomere length control characteristic of diseases such as cancer and telomere biology disorders.
Collapse
Affiliation(s)
| | - Tracy M. Bryan
- Cell Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
7
|
Jahjah T, Singh JK, Gottifredi V, Quinet A. Tolerating DNA damage by repriming: Gap filling in the spotlight. DNA Repair (Amst) 2024; 142:103758. [PMID: 39236419 DOI: 10.1016/j.dnarep.2024.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Timely and accurate DNA replication is critical for safeguarding genome integrity and ensuring cell viability. Yet, this process is challenged by DNA damage blocking the progression of the replication machinery. To counteract replication fork stalling, evolutionary conserved DNA damage tolerance (DDT) mechanisms promote DNA damage bypass and fork movement. One of these mechanisms involves "skipping" DNA damage through repriming downstream of the lesion, leaving single-stranded DNA (ssDNA) gaps behind the advancing forks (also known as post-replicative gaps). In vertebrates, repriming in damaged leading templates is proposed to be mainly promoted by the primase and polymerase PRIMPOL. In this review, we discuss recent advances towards our understanding of the physiological and pathological conditions leading to repriming activation in human models, revealing a regulatory network of PRIMPOL activity. Upon repriming by PRIMPOL, post-replicative gaps formed can be filled-in by the DDT mechanisms translesion synthesis and template switching. We discuss novel findings on how these mechanisms are regulated and coordinated in time to promote gap filling. Finally, we discuss how defective gap filling and aberrant gap expansion by nucleases underlie the cytotoxicity associated with post-replicative gap accumulation. Our increasing knowledge of this repriming mechanism - from gap formation to gap filling - is revealing that targeting the last step of this pathway is a promising approach to exploit post-replicative gaps in anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Tiya Jahjah
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France
| | - Jenny K Singh
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France
| | - Vanesa Gottifredi
- Fundación Instituto Leloir, IIBBA, CONICET, Buenos Aires 1405, Argentina
| | - Annabel Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France.
| |
Collapse
|
8
|
Downs JA, Gasser SM. Chromatin remodeling and spatial concerns in DNA double-strand break repair. Curr Opin Cell Biol 2024; 90:102405. [PMID: 39083951 DOI: 10.1016/j.ceb.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The substrate for the repair of DNA damage in living cells is not DNA but chromatin. Chromatin bears a range of modifications, which in turn bind ligands that compact or open chromatin structure, and determine its spatial organization within the nucleus. In some cases, RNA in the form of RNA:DNA hybrids or R-loops modulates DNA accessibility. Each of these parameters can favor particular pathways of repair. Chromatin or nucleosome remodelers are key regulators of chromatin structure, and a number of remodeling complexes are implicated in DNA repair. We cover novel insights into the impact of chromatin structure, nuclear organization, R-loop formation, nuclear actin, and nucleosome remodelers in DNA double-strand break repair, focusing on factors that alter repair functional upon ablation.
Collapse
Affiliation(s)
- Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Susan M Gasser
- ISREC Foundation, and University of Lausanne, Agora Cancer Research Center, Rue du Bugnon 25a, 1005 Lausanne, Switzerland.
| |
Collapse
|
9
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
10
|
Merigliano C, Palumbieri MD, Lopes M, Chiolo I. Replication forks associated with long nuclear actin filaments in mild stress conditions display increased dynamics. MICROPUBLICATION BIOLOGY 2024; 2024. [PMID: 39149411 PMCID: PMC11325199 DOI: 10.17912/micropub.biology.001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Nuclear actin filaments (F-actin) form during S-phase and in response to replication stress to promote fork remodeling and repair. In mild replication stress conditions, nuclear actin polymerization is required to limit PrimPol recruitment to the fork while promoting fork reversal. Both short and long filaments form during this response, but their function in the nuclear dynamics of replication sites was unclear. Here, we show that replication centers associated with long nuclear actin filaments become more mobile than the rest of the forks, suggesting relocalization of replication sites as a response to prolonged fork stalling and/or fork breakage, even in response to mild replication stress.
Collapse
Affiliation(s)
- Chiara Merigliano
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, United States
| | | | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, United States
| |
Collapse
|
11
|
He X, Brakebusch C. Regulation of Precise DNA Repair by Nuclear Actin Polymerization: A Chance for Improving Gene Therapy? Cells 2024; 13:1093. [PMID: 38994946 PMCID: PMC11240418 DOI: 10.3390/cells13131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.
Collapse
Affiliation(s)
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
| |
Collapse
|
12
|
Ulferts S, Lopes M, Miyamoto K, Grosse R. Nuclear actin dynamics and functions at a glance. J Cell Sci 2024; 137:jcs261630. [PMID: 38563209 DOI: 10.1242/jcs.261630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology I, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology I, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), 79104 Freiburg, Germany
| |
Collapse
|
13
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|