1
|
Cao L, Garcia SL, Wurzbacher C. Profiling trace organic chemical biotransformation genes, enzymes and associated bacteria in microbial model communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136811. [PMID: 39662353 DOI: 10.1016/j.jhazmat.2024.136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Microbial biotransformation of trace organic chemicals (TOrCs) is an essential process in wastewater treatment to eliminate environmental pollution. Understanding TOrC biotransformation mechanisms, especially at their original concentrations, is important to optimize treatment performance, whereas our current knowledge is limited. Here, we investigated the biotransformation of seven TOrCs by 24 model communities. The genome-centric analyses unraveled potential biotransformation drivers concerning functional genes, enzymes, and responsible bacteria. We obtained efficient model communities for completely removing ibuprofen, caffeine, and atenolol, with transformation efficiencies between 0 % and 45 % for sulfamethoxazole, carbamazepine, trimethoprim, and gabapentin. Biotransformation performance was not fully reflected by the presence of known biotransformation genes and enzymes in the metagenomes of the communities. Functional similar homologs to existing biotransformation genes and enzymes (e.g., long-chain-fatty-acid-CoA ligase encoded by fadD and fadD13 gene) could play critical roles in TOrC metabolism. Finally, we identified previously undescribed degrading strains, e.g., Rhodococcus qingshengii for caffeine, carbamazepine, sulfamethoxazole, and ibuprofen biotransformation, and potential transformation enzymes, e.g., SDR family oxidoreductase targeting sulfamethoxazole and putative hypothetical proteins for caffeine, atenolol and gabapentin biotransformation. This study provides fundamental insights into naturally assembled low-complexity degrader communities that can help to identify and tackle the current research gaps on biotransformation.
Collapse
Affiliation(s)
- Lijia Cao
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Rasmussen AN, Tolar BB, Bargar JR, Boye K, Francis CA. Metagenome-Assembled Genomes for Oligotrophic Nitrifiers From a Mountainous Gravelbed Floodplain. Environ Microbiol 2025; 27:e70060. [PMID: 40103293 DOI: 10.1111/1462-2920.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 03/20/2025]
Abstract
Riparian floodplains are important regions for biogeochemical cycling, including nitrogen. Here, we present MAGs from nitrifying microorganisms, including ammonia-oxidising archaea (AOA) and comammox bacteria from Slate River (SR) floodplain sediments (Crested Butte, CO, US). Additionally, we explore MAGs from potential nitrite-oxidising bacteria (NOB) from the Nitrospirales. AOA diversity in SR is lower than observed in other western US floodplain sediments and Nitrosotalea-like lineages such as the genus TA-20 are the dominant AOA. No ammonia-oxidising bacteria (AOB) MAGs were recovered. Microorganisms from the Palsa-1315 genus (clade B comammox) are the most abundant ammonia-oxidizers in SR floodplain sediments. Established NOB are conspicuously absent; however, we recovered MAGs from uncultured lineages of the NS-4 family (Nitrospirales) and Nitrospiraceae that we propose as putative NOB. Nitrite oxidation may be carried out by organisms sister to established Nitrospira NOB lineages based on the genomic content of uncultured Nitrospirales clades. Nitrifier MAGs recovered from SR floodplain sediments harbour genes for using alternative sources of ammonia, such as urea, cyanate, biuret, triuret and nitriles. The SR floodplain therefore appears to be a low ammonia flux environment that selects for oligotrophic nitrifiers.
Collapse
Affiliation(s)
- Anna N Rasmussen
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Bradley B Tolar
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - John R Bargar
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin Boye
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Oceans Department, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Wang YC, Ni JJ. Plant-soil hydraulic interaction and rhizosphere bacterial community under biochar and CO 2 enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174943. [PMID: 39047824 DOI: 10.1016/j.scitotenv.2024.174943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The increasing atmospheric CO2 concentration is a global concern that affects the plant-bacteria-soil system. Previous studies have investigated plant growth and bacteria activity under CO2 enrichment. However, the effects of coupled elevated CO2 and biochar amendment on the interactions of soil and medicinal plants are not well understood. This study aims to investigate the medicinal plant-soil hydraulic interactions and rhizosphere bacteria communities under coupled CO2 enrichment and biochar conditions. Two levels of CO2 concentration (400, 1000 ppm) and two biochar dosages (3%, 5% by mass) were considered. Pseudostellaria heterophylla was used as the tested medicinal plant. During plant growth, coupled CO2 enrichment and biochar at 3% and 5% dosage increased the volumetric water content at a matric suction of 33 kPa by 97% and 82% respectively, which indicates enhanced water retention. The transpiration rate of P. heterophylla was slightly reduced by 11-30% with an increase in biochar dosage due to higher total suction, while it was significantly reduced by up to 57% due to CO2 enrichment. In the rhizosphere of P. heterophylla, elevated CO2 (1000 ppm) coupled with 3% biochar dramatically increase the relative abundance of Thaumarchaeota, which played an important role in C and N cycles. Moreover, coupled CO2 enrichment and biochar addition resulted in the highest bacterial richness, while 3% biochar at ambient CO2 induced the highest bacterial diversity. This study provides a basis for understanding the medicinal plant-bacteria-soil system under CO2 enrichment and biochar conditions.
Collapse
Affiliation(s)
- Yu Chen Wang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Jun Jun Ni
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Lee S, Hazard C, Nicol GW. Activity of novel virus families infecting soil nitrifiers is concomitant with host niche differentiation. THE ISME JOURNAL 2024; 18:wrae205. [PMID: 39413229 PMCID: PMC11849493 DOI: 10.1093/ismejo/wrae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
Chemolithoautotrophic nitrifiers are model groups for linking phylogeny, evolution, and ecophysiology. Ammonia-oxidizing bacteria (AOB) typically dominate the first step of ammonia oxidation at high ammonium supply rates, ammonia-oxidizing archaea (AOA) and complete ammonia-oxidizing Nitrospira (comammox) are often active at lower supply rates or during AOB inactivity, and nitrite-oxidizing bacteria (NOB) complete canonical nitrification. Soil virus communities are dynamic but contributions to functional processes are largely undetermined. In addition, characterizing viruses infecting hosts with low relative abundance, such as nitrifiers, may be constrained by vast viral diversity, partial genome recovery, and difficulties in host linkage. Here, we describe a targeted incubation study that aimed to determine whether growth of different nitrifier groups in soil is associated with active virus populations and if process-focused analyses facilitate characterization of high-quality virus genomes. dsDNA viruses infecting different nitrifier groups were enriched in situ via differential host inhibition. Growth of each nitrifier group was consistent with predicted inhibition profiles and concomitant with the abundance of their viruses. These included 61 high-quality/complete virus genomes 35-173 kb in length with minimal similarity to validated families. AOA viruses lacked ammonia monooxygenase sub-unit C (amoC) genes found in marine AOA viruses but some encoded AOA-specific multicopper oxidase type 1 (MCO1), previously implicated in copper acquisition, and suggesting a role in supporting energy metabolism of soil AOA. Findings demonstrate focused incubation studies facilitate characterization of active host-virus interactions associated with specific processes and viruses of soil AOA, AOB, and NOB are dynamic and potentially influence nitrogen cycling processes.
Collapse
Affiliation(s)
- Sungeun Lee
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, Ecully 69134, France
| | - Christina Hazard
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, Ecully 69134, France
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, Ecully 69134, France
| |
Collapse
|
5
|
Gubry-Rangin C, Aigle A, Herrera-Alsina L, Lancaster LT, Prosser JI. Niche breadth specialization impacts ecological and evolutionary adaptation following environmental change. THE ISME JOURNAL 2024; 18:wrae183. [PMID: 39325971 PMCID: PMC11630254 DOI: 10.1093/ismejo/wrae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Ecological theory predicts that organismal distribution and abundance depend on the ability to adapt to environmental change. It also predicts that eukaryotic specialists and generalists will dominate in extreme environments or following environmental change, respectively. This theory has attracted little attention in prokaryotes, especially in archaea, which drive major global biogeochemical cycles. We tested this concept in Thaumarchaeota using pH niche breadth as a specialization factor. Responses of archaeal growth and activity to pH disturbance were determined empirically in manipulated, long-term, pH-maintained soil plots. The distribution of specialists and generalists was uneven over the pH range, with specialists being more limited to the extreme range. Nonetheless, adaptation of generalists to environmental change was greater than that of specialists, except for environmental changes leading to more extreme conditions. The balance of generalism and specialism over longer timescales was further investigated across evolutionary history. Specialists and generalists diversified at similar rates, reflecting balanced benefits of each strategy, but a higher transition rate from generalists to specialists than the reverse was demonstrated, suggesting that metabolic specialism is more easily gained than metabolic versatility. This study provides evidence for a crucial ecological concept in prokaryotes, significantly extending our understanding of archaeal adaptation to environmental change.
Collapse
Affiliation(s)
- Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - Axel Aigle
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
- Present address: Mexbrain, Villeurbanne, France
| | - Leonel Herrera-Alsina
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - James I Prosser
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| |
Collapse
|
6
|
Williams TA, Davin AA, Szánthó LL, Stamatakis A, Wahl NA, Woodcroft BJ, Soo RM, Eme L, Sheridan PO, Gubry-Rangin C, Spang A, Hugenholtz P, Szöllősi GJ. Phylogenetic reconciliation: making the most of genomes to understand microbial ecology and evolution. THE ISME JOURNAL 2024; 18:wrae129. [PMID: 39001714 PMCID: PMC11293204 DOI: 10.1093/ismejo/wrae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Adrian A Davin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Lénárd L Szánthó
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Alexandros Stamatakis
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Noah A Wahl
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Eme
- Unité d’Ecologie, Systématique et Evolution, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul O Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gergely J Szöllősi
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
- Institute of Evolution, HUN REN Centre for Ecological Research, 1121 Budapest, Hungary
| |
Collapse
|
7
|
Zheng Y, Wang B, Gao P, Yang Y, Xu B, Su X, Ning D, Tao Q, Li Q, Zhao F, Wang D, Zhang Y, Li M, Winkler MKH, Ingalls AE, Zhou J, Zhang C, Stahl DA, Jiang J, Martens-Habbena W, Qin W. Novel order-level lineage of ammonia-oxidizing archaea widespread in marine and terrestrial environments. THE ISME JOURNAL 2024; 18:wrad002. [PMID: 38365232 PMCID: PMC10811736 DOI: 10.1093/ismejo/wrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.
Collapse
Affiliation(s)
- Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Baozhan Wang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Gao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Bu Xu
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - Xiaoquan Su
- College of Computer Science and Technology, Qingdao University , Qingdao 266101, China
| | - Daliang Ning
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qing Tao
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qian Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - Jizhong Zhou
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Department of Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Willm Martens-Habbena
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, United States
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| |
Collapse
|
8
|
Abiola C, Gwak JH, Lee UJ, Awala SI, Jung MY, Park W, Rhee SK. Growth of soil ammonia-oxidizing archaea on air-exposed solid surface. ISME COMMUNICATIONS 2024; 4:ycae129. [PMID: 39544964 PMCID: PMC11561398 DOI: 10.1093/ismeco/ycae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), Nitrososphaera viennensis EN76 and "Nitrosotenuis chungbukensis" MY2, and a soil ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces. Interestingly, ammonia oxidation activities of N. viennensis EN76 and "N. chungbukensis" MY2 were significantly repressed on floating filters compared to the freely suspended cells in liquid media. Conversely, the ammonia oxidation activity of N. europaea ATCC 19718 was comparable on floating filters and liquid media. N. viennensis EN76 and N. europaea ATCC 19718 developed microcolonies on floating filters. Transcriptome analysis of N. viennensis EN76 floating filter-grown cells revealed upregulation of unique sets of genes for cell wall and extracellular polymeric substance biosynthesis, ammonia oxidation (including ammonia monooxygenase subunit C (amoC3) and multicopper oxidases), and defense against H2O2-induced oxidative stress. These genes may play a pivotal role in adapting AOA to air-exposed solid surfaces. Furthermore, the floating filter technique resulted in the enrichment of distinct soil AOA communities dominated by the "Ca. Nitrosocosmicus" clade. Overall, this study sheds light on distinct adaptive mechanisms governing AOA growth on air-exposed solid surfaces.
Collapse
Affiliation(s)
- Christiana Abiola
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Ui-Ju Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Department of Science Education, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong, Seungbuk-Ku, Seoul 02841, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|