1
|
Lippolis A, Hollebrands B, Acierno V, de Jong C, Pouvreau L, Paulo J, Gezan SA, Trindade LM. GWAS Identifies SNP Markers and Candidate Genes for Off-Flavours and Protein Content in Faba Bean ( Vicia faba L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:193. [PMID: 39861546 PMCID: PMC11768279 DOI: 10.3390/plants14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Faba bean (Vicia faba L.) is a valuable ingredient in plant-based foods such as meat and dairy analogues. However, its typical taste and aroma are considered off-flavours in these food applications, representing a bottleneck during processing. Breeding is needed to develop varieties with minimal off-flavours and high protein content. The genetic regulation of these traits is underexplored. To dissect their genetic architecture, we performed a genome-wide association study (GWAS). A total of 245 faba bean accessions (the CGN population) were genotyped using the 90K-SPET targeted assay. These accessions were phenotyped in 2021 and 2022 in the Netherlands for protein, oil, fatty acids, lipid-derived products, phenolic acids, flavonoids, and tannins. The CGN population showed large phenotypic variation and moderate-to-high narrow-sense heritability for most traits. The growing environment significantly affected all traits, with trait-specific genotype-by-year (GxY) interactions. Condensed tannins and fatty acids were the most stable across the two years and had the highest heritability estimates (h2 > 0.6). GWAS identified a total of 148 single nucleotide polymorphisms (SNPs) loci in 2021 and 167 in 2022. Key candidate regulators included genes involved in lipid biosynthesis (ATS2, KAS, LPP), amino acid transport (CAT4) for protein storage, zero tannins locus-1 (zt-1), and regulators of the phenylpropanoid pathway, such as a shikimate kinase gene and transcription factors bHLH137-like and MYB. These results pave the way for validation studies and biotechnological applications to improve the quality of faba bean-based foods.
Collapse
Affiliation(s)
- Antonio Lippolis
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Boudewijn Hollebrands
- Unilever Foods Innovation Centre—Hive, Bronland 14, 6708 WH Wageningen, The Netherlands;
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Valentina Acierno
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (V.A.); (C.d.J.); (L.P.)
| | - Catrienus de Jong
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (V.A.); (C.d.J.); (L.P.)
| | - Laurice Pouvreau
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (V.A.); (C.d.J.); (L.P.)
| | - João Paulo
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | | | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
2
|
Cheng L, Lian J, Wang X, Munir MAM, Huang X, He Z, Xu C, Tong W, Yang X. Evaluating a Soil Amendment for Cadmium Mitigation and Enhanced Nutritional Quality in Faba Bean Genotypes: Implications for Food Safety. PLANTS (BASEL, SWITZERLAND) 2025; 14:141. [PMID: 39795401 PMCID: PMC11723064 DOI: 10.3390/plants14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans (Vicia faba L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored. This study investigates the impact of a soil amendment (SA) on agronomic traits, seed nutrition, and Cd accumulation in 11 faba bean genotypes grown in acidic soil (1.3 mg·kg-1 Cd, pH 5.39). The SA treatment increased soil pH to 6.0 (an 11.31% increase) and reduced DTPA-Cd by 37.1%. Although the average yield of faba beans decreased marginally by 8.74%, it remained within the 10% national permissible limit. Notably, SA treatment reduced Cd concentration in seeds by 60% and significantly mitigated Mn and Al toxicity. Additionally, SA treatment enhanced levels of essential macronutrients (Ca, Mg, P, S) and micronutrients (Mo, Cu) while lowering Phytate (Phy)/Ca, Phy/Mg, and Phy/P ratios, thus improving mineral nutrient bioavailability. Among the genotypes, F3, F5, and F6 showed the most favorable balance of nutrient quality, and yield following SA application. This study provides valuable insights into the effectiveness of SA for nutrient fortification and Cd contamination mitigation in Cd-contaminated farmland.
Collapse
Affiliation(s)
- Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Mehr Ahmed Mujtaba Munir
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida—IFAS, Fort Pierce, FL 34945, USA;
| | - Chengjian Xu
- Qujiang District Agricultural Technology Extension Center, Quzhou 324022, China;
| | - Wenbin Tong
- Qujiang District Agricultural Technology Extension Center, Quzhou 324022, China;
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| |
Collapse
|
3
|
Debnath S, Rai M, Tyagi W, Majumder S, Meetei NT. Lower vicine content reduces the reproductive yield performance in faba bean (Vicia faba L.). Sci Rep 2025; 15:311. [PMID: 39747376 PMCID: PMC11696712 DOI: 10.1038/s41598-024-83488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Faba bean is a nutritionally and medicinally rich popular legume crop. However, vicine-convicine remain as potential threats for "favism" in human beings. In this study, 189 diverse faba bean accessions have been evaluated for yield component traits and vicine content in seeds followed by a correlation study. Combined genetic variability analysis shows that traits like days to pod initiation (DPI), pod length (PL), test weight (TW) and grain yield have minimally been influenced by the environment. PCA revealed that TW, PL and PW were the primary indicators for deciding yield performance. LC-MS/MS confirms that vicine concentration varied in between 3.489 and 10.025 g/kg and a significant positive correlation (0.40***) was observed between vicine conc. and grain yield of faba bean. Thus, present study demonstrated that the faba bean genotypes containing lower vicine were mostly poor yielding, which might be regulated by vicine in faba bean. Therefore, complete elimination of vicine or development of near-zero vicine faba bean could drastically reduce the yield potential of the crop, hence one has to be very cautious and follow efficient selection strategies while optimizing lower concentration of vicine for development of low vicine varieties. This study shows that faba bean genotypes containing 4.0-5.5 g/kg vicine were fairly productive and also have considerably lower vicine.
Collapse
Affiliation(s)
- Sadhan Debnath
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, CAU (Imphal), Umiam, Meghalaya, India.
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, CAU (Imphal), Umiam, Meghalaya, India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, CAU (Imphal), Umiam, Meghalaya, India
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India
| | - Sujan Majumder
- Indian Council of Agricultural Research- Indian Institute of Vegetable Research, Varanasi, India
| | - Ng Tombisana Meetei
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, CAU (Imphal), Umiam, Meghalaya, India.
| |
Collapse
|
4
|
Wen X, Liu C, Yang F, Wei Z, Li L, Chen H, Han X, Jiao C, Sha A. Accurate Long-Read RNA Sequencing Analysis Reveals the Key Pathways and Candidate Genes under Drought Stress in the Seed Germination Stage in Faba Bean. Int J Mol Sci 2024; 25:8875. [PMID: 39201560 PMCID: PMC11354372 DOI: 10.3390/ijms25168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Faba bean is an important pulse. It provides proteins for the human diet and is used in industrial foodstuffs, such as flours. Drought stress severely reduces the yield of faba bean, and this can be efficiently overcome through the identification and application of key genes in response to drought. In this study, PacBio and Illumina RNA sequencing techniques were used to identify the key pathways and candidate genes involved in drought stress response. During seed germination, a total of 17,927 full-length transcripts and 12,760 protein-coding genes were obtained. There were 1676 and 811 differentially expressed genes (DEGs) between the varieties E1 and C105 at 16 h and 64 h under drought stress, respectively. Six and nine KEGG pathways were significantly enriched at 16 h and 64 h under drought stress, which produced 40 and 184 nodes through protein-protein interaction (PPI) analysis, respectively. The DEGs of the PPI nodes were involved in the ABA (abscisic acid) and MAPK (mitogen-activated protein kinase) pathways, N-glycosylation, sulfur metabolism, and sugar metabolism. Furthermore, the ectopic overexpression of a key gene, AAT, encoding aspartate aminotransferase (AAT), in tobacco, enhanced drought tolerance. The activities of AAT and peroxidase (POD), the contents of cysteine and isoleucine, were increased, and the contents of malonaldehyde (MDA) and water loss decreased in the overexpressed plants. This study provides a novel insight into genetic response to drought stress and some candidate genes for drought tolerance genetic improvements in this plant.
Collapse
Affiliation(s)
- Xin Wen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Changyan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China;
| | - Zhengxin Wei
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Li Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Hongwei Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Xuesong Han
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Aihua Sha
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| |
Collapse
|
5
|
Swamidatta SH, Lichman BR. Beyond co-expression: pathway discovery for plant pharmaceuticals. Curr Opin Biotechnol 2024; 88:103147. [PMID: 38833915 DOI: 10.1016/j.copbio.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Plant natural products have been an important source of medicinal molecules since ancient times. To gain access to the whole diversity of these molecules for pharmaceutical applications, it is important to understand their biosynthetic origins. Whilst co-expression is a reliable tool for identifying gene candidates, a variety of complementary methods can aid in screening or refining candidate selection. Here, we review recently employed plant biosynthetic pathway discovery approaches, and highlight future directions in the field.
Collapse
Affiliation(s)
- Sandesh H Swamidatta
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
6
|
Ohm H, Åstrand J, Ceplitis A, Bengtsson D, Hammenhag C, Chawade A, Grimberg Å. Novel SNP markers for flowering and seed quality traits in faba bean ( Vicia faba L.): characterization and GWAS of a diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1348014. [PMID: 38510437 PMCID: PMC10950902 DOI: 10.3389/fpls.2024.1348014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Faba bean (Vicia faba L.) is a legume crop grown in diverse climates worldwide. It has a high potential for increased cultivation to meet the need for more plant-based proteins in human diets, a prerequisite for a more sustainable food production system. Characterization of diversity panels of crops can identify variation in and genetic markers for target traits of interest for plant breeding. In this work, we collected a diversity panel of 220 accessions of faba bean from around the world consisting of gene bank material and commercially available cultivars. The aims of this study were to quantify the phenotypic diversity in target traits to analyze the impact of breeding on these traits, and to identify genetic markers associated with traits through a genome-wide association study (GWAS). Characterization under field conditions at Nordic latitude across two years revealed a large genotypic variation and high broad-sense heritability for eleven agronomic and seed quality traits. Pairwise correlations showed that seed yield was positively correlated to plant height, number of seeds per plant, and days to maturity. Further, susceptibility to bean weevil damage was significantly higher for early flowering accessions and accessions with larger seeds. In this study, no yield penalty was found for higher seed protein content, but protein content was negatively correlated to starch content. Our results showed that while breeding advances in faba bean germplasm have resulted in increased yields and number of seeds per plant, they have also led to a selection pressure towards delayed onset of flowering and maturity. DArTseq genotyping identified 6,606 single nucleotide polymorphisms (SNPs) by alignment to the faba bean reference genome. These SNPs were used in a GWAS, revealing 51 novel SNP markers significantly associated with ten of the assessed traits. Three markers for days to flowering were found in predicted genes encoding proteins for which homologs in other plant species regulate flowering. Altogether, this work enriches the growing pool of phenotypic and genotypic data on faba bean as a valuable resource for developing efficient breeding strategies to expand crop cultivation.
Collapse
Affiliation(s)
- Hannah Ohm
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
- Lantmännen Agriculture, Plant Breeding, Svalöv, Sweden
| | - Alf Ceplitis
- Lantmännen Agriculture, Plant Breeding, Svalöv, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| |
Collapse
|
7
|
Sergeant K, Goertz S, Halime S, Tietgen H, Heidt H, Minestrini M, Jacquard C, Zimmer S, Renaut J. Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean ( Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra. Molecules 2024; 29:1065. [PMID: 38474577 DOI: 10.3390/molecules29051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
While numerous Fabaceae seeds are a good nutritional source of high-quality protein, the use of some species is hampered by toxic effects caused by exposure to metabolites that accumulate in the seeds. One such species is the faba or broad bean (Vicia faba L.), which accumulates vicine and convicine. These two glycoalkaloids cause favism, the breakdown of red blood cells in persons with a glucose-6-phosphate dehydrogenase deficiency. Because this is the most common enzyme deficiency worldwide, faba bean breeding efforts have focused on developing cultivars with low levels of these alkaloids. Consequently, quantification methods have been developed; however, they quantify vicine and convicine only and not the derivatives of these compounds that potentially generate the same bio-active molecules. Based on the recognition of previously unknown (con)vicine-containing compounds, we screened the fragmentation spectra of LC-MS/MS data from five faba bean cultivars using the characteristic fragments generated by (con)vicine. This resulted in the recognition of more than a hundred derivatives, of which 89 were tentatively identified. (Con)vicine was mainly derivatized through the addition of sugars, hydroxycinnamic acids, and dicarboxylic acids, with a group of compounds composed of two (con)vicine residues linked by dicarboxyl fatty acids. In general, the abundance profiles of the different derivatives in the five cultivars mimicked that of vicine and convicine, but some showed a derivative-specific profile. The description of the (con)vicine diversity will impact the interpretation of future studies on the biosynthesis of (con)vicine, and the content in potentially bio-active alkaloids in faba beans may be higher than that represented by the quantification of vicine and convicine alone.
Collapse
Affiliation(s)
- Kjell Sergeant
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Simon Goertz
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Salma Halime
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
- Université de Reims Champagne-Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Hanna Tietgen
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Hanna Heidt
- Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l (IBLA), 1 Wantergaass, L-7664 Medernach, Luxembourg
| | - Martina Minestrini
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du 11 Sud 4-5/L7.07.03, B-1348 Louvain-la-Neuve, Belgium
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Stephanie Zimmer
- Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l (IBLA), 1 Wantergaass, L-7664 Medernach, Luxembourg
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Rue Bommel, L-4940 Hautcharage, Luxembourg
| |
Collapse
|
8
|
Lippolis A, Roland WSU, Bocova O, Pouvreau L, Trindade LM. The challenge of breeding for reduced off-flavor in faba bean ingredients. FRONTIERS IN PLANT SCIENCE 2023; 14:1286803. [PMID: 37965015 PMCID: PMC10642941 DOI: 10.3389/fpls.2023.1286803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
The growing interest in plant protein sources, such as pulses, is driven by the necessity for sustainable food production and climate change mitigation strategies. Faba bean (Vicia faba L.) is a promising protein crop for temperate climates, owing to its remarkable yield potential (up to 8 tonnes ha-1 in favourable growing conditions) and high protein content (~29% dry matter basis). Nevertheless, the adoption of faba bean protein in plant-based products that aim to resemble animal-derived counterparts is hindered by its distinctive taste and aroma, regarded as "off-flavors". In this review, we propose to introduce off-flavor as a trait in breeding programs by identifying molecules involved in sensory perception and defining key breeding targets. We discuss the role of lipid oxidation in producing volatile and non-volatile compounds responsible for the beany aroma and bitter taste, respectively. We further investigate the contribution of saponin, tannin, and other polyphenols to bitterness and astringency. To develop faba bean varieties with diminished off-flavors, we suggest targeting genes to reduce lipid oxidation, such as lipoxygenases (lox) and fatty acid desaturases (fad), and genes involved in phenylpropanoid and saponin biosynthesis, such as zero-tannin (zt), chalcone isomerase (chi), chalcone synthase (chs), β-amyrin (bas1). Additionally, we address potential challenges, including the need for high-throughput phenotyping and possible limitations that could arise during the genetic improvement process. The breeding approach can facilitate the use of faba bean protein in plant-based food such as meat and dairy analogues more extensively, fostering a transition toward more sustainable and climate-resilient diets.
Collapse
Affiliation(s)
- Antonio Lippolis
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Wibke S. U. Roland
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ornela Bocova
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Laurice Pouvreau
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Majeed A, Kui L, Dong Y, Chen J. Reference genome facilitates trait development for faba beans. Trends Genet 2023; 39:724-727. [PMID: 37563056 DOI: 10.1016/j.tig.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Reference genomes facilitate trait improvement by aiding in the elucidation of causal genetic elements. Thanks to the recent release of a reference sequence for the faba bean, breeders and geneticists are poised to accelerate precision breeding and genetic improvement of this important crop.
Collapse
Affiliation(s)
- Aasim Majeed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Plant Molecular Genetics Laboratory, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Dong
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Bui VH, Rodríguez-López CE, Dang TTT. Integration of discovery and engineering in plant alkaloid research: Recent developments in elucidation, reconstruction, and repurposing biosynthetic pathways. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102379. [PMID: 37182414 DOI: 10.1016/j.pbi.2023.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Plants synthesize tens of thousands of bioactive nitrogen-containing compounds called alkaloids, including some clinically important drugs in modern medicine. The discovery of new alkaloid structures and their metabolism in plants have provided ways to access these rich sources of bioactivities including new-to-nature compounds relevant to therapeutic and industrial applications. This review discusses recent advances in alkaloid biosynthesis discovery, including complete pathway elucidations. Additionally, the latest developments in the production of new and established plant alkaloids based on either biosynthesis or semisynthesis are discussed.
Collapse
Affiliation(s)
- Van-Hung Bui
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Carlos Eduardo Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
11
|
Zhao N, Xue D, Miao Y, Wang Y, Zhou E, Zhou Y, Yao M, Gu C, Wang K, Li B, Wei L, Wang X. Construction of a high-density genetic map for faba bean ( Vicia faba L.) and quantitative trait loci mapping of seed-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1201103. [PMID: 37351218 PMCID: PMC10282779 DOI: 10.3389/fpls.2023.1201103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Faba bean (Vicia faba L.) is a valuable legume crop and data on its seed-related traits is required for yield and quality improvements. However, basic research on faba bean is lagging compared to that of other major crops. In this study, an F2 faba bean population, including 121 plants derived from the cross WY7×TCX7, was genotyped using the Faba_bean_130 K targeted next-generation sequencing genotyping platform. The data were used to construct the first ultra-dense faba bean genetic map consisting of 12,023 single nucleotide polymorphisms markers covering 1,182.65 cM with an average distance of 0.098 cM. The map consisted of 6 linkage groups, which is consistent with the 6 faba bean chromosome pairs. A total of 65 quantitative trait loci (QTL) for seed-related traits were identified (3 for 100-seed weight, 28 for seed shape, 12 for seed coat color, and 22 for nutritional quality). Furthermore, 333 candidate genes that are likely to participate in the regulation of seed-related traits were also identified. Our research findings can provide a basis for future faba bean marker-assisted breeding and be helpful to further modify and improve the reference genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Libin Wei
- *Correspondence: Libin Wei, ; Xuejun Wang,
| | | |
Collapse
|
12
|
Chen J, Zhou H, Yuan X, He Y, Yan Q, Lin Y, Wu R, Liu J, Xue C, Chen X. Homolog of Pea SGR Controls Stay-Green in Faba Bean ( Vicia faba L.). Genes (Basel) 2023; 14:1030. [PMID: 37239389 PMCID: PMC10218623 DOI: 10.3390/genes14051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Faba bean is an important legume crop consumed as a vegetable or snack food, and its green cotyledons could present an attractive color for consumers. A mutation in SGR causes stay-green in plants. In this study, vfsgr was identified from a green-cotyledon-mutant faba bean, SNB7, by homologous blast between the SGR of pea and the transcriptome of faba bean. Sequence analysis revealed that a SNP at position 513 of the CDS of VfSGR caused a pre-stop codon, resulting in a shorter protein in the green-cotyledon faba bean SNB7. A dCaps marker was developed according to the SNP that caused the pre-stop, and this marker was completely associated with the color of the cotyledon of faba bean. SNB7 stayed green during dark treatment, while the expression level of VfSGR increased during dark-induced senescence in the yellow-cotyledon faba bean HST. Transient expression of VfSGR in Nicotiana. benthamiana leaves resulted in chlorophyll degradation. These results indicate that vfsgr is the gene responsible for the stay-green of faba bean, and the dCaps marker developed in this study provides a molecular tool for the breeding of green-cotyledon faba beans.
Collapse
Affiliation(s)
- Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Huimin Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yaming He
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
13
|
Mandour H, Khazaei H, Stoddard FL, Dodd IC. Identifying physiological and genetic determinants of faba bean transpiration response to evaporative demand. ANNALS OF BOTANY 2023; 131:533-544. [PMID: 36655613 PMCID: PMC10072112 DOI: 10.1093/aob/mcad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Limiting maximum transpiration rate (TR) under high vapour pressure deficit (VPD) works as a water conservation strategy. While some breeding programmes have incorporated this trait into some crops to boost yields in water-limited environments, its underlying physiological mechanisms and genetic regulation remain unknown for faba bean (Vicia faba). Thus, we aimed to identify genetic variation in the TR response to VPD in a population of faba bean recombinant inbred lines (RILs) derived from two parental lines with contrasting water use (Mélodie/2 and ILB 938/2). METHODS Plants were grown in well-watered soil in a climate-controlled glasshouse with diurnally fluctuating VPD and light conditions. Whole plant transpiration was measured in a gas exchange chamber that tightly regulated VPD around the shoot under constant light, while whole-plant hydraulic conductance and its components (root and stem hydraulic conductance) were calculated from dividing TR by water potential gradients measured with a pressure chamber. KEY RESULTS Although TR of Mélodie/2 increased linearly with VPD, ILB 938/2 limited its TR above 2.0 kPa. Nevertheless, Mélodie/2 had a higher leaf water potential than ILB 938/2 at both low (1.0 kPa) and high (3.2 kPa) VPD. Almost 90 % of the RILs limited their TR at high VPD with a break-point (BP) range of 1.5-3.0 kPa and about 10 % had a linear TR response to VPD. Thirteen genomic regions contributing to minimum and maximum transpiration, and whole-plant and root hydraulic conductance, were identified on chromosomes 1 and 3, while one locus associated with BP transpiration was identified on chromosome 5. CONCLUSIONS This study provides insight into the physiological and genetic control of transpiration in faba bean and opportunities for marker-assisted selection to improve its performance in water-limited environments.
Collapse
Affiliation(s)
- Hend Mandour
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Genetic Engineering and Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Hamid Khazaei
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Frederick L Stoddard
- Department of Agricultural Sciences, Viikki Plant Science Centre and Helsinki Institute of Sustainability Science, PO Box 27 (Latokartanonkaari 5-7), FI-00014 University of Helsinki, Helsinki, Finland
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
14
|
Lin JL, Fang X, Li JX, Chen ZW, Wu WK, Guo XX, Liu NJ, Huang JF, Chen FY, Wang LJ, Xu B, Martin C, Chen XY, Huang JQ. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. NATURE PLANTS 2023; 9:605-615. [PMID: 36928775 DOI: 10.1038/s41477-023-01376-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Axial chirality of biaryls can generate varied bioactivities. Gossypol is a binaphthyl compound made by cotton plants. Of its two axially chiral isomers, (-)-gossypol is the bioactive form in mammals and has antispermatogenic activity, and its accumulation in cotton seeds poses health concerns. Here we identified two extracellular dirigent proteins (DIRs) from Gossypium hirsutum, GhDIR5 and GhDIR6, which impart the hemigossypol oxidative coupling into (-)- and (+)-gossypol, respectively. To reduce cotton seed toxicity, we disrupted GhDIR5 by genome editing, which eliminated (-)-gossypol but had no effects on other phytoalexins, including (+)-gossypol, that provide pest resistance. Reciprocal mutagenesis identified three residues responsible for enantioselectivity. The (-)-gossypol-forming DIRs emerged later than their enantiocomplementary counterparts, from tandem gene duplications that occurred shortly after the cotton genus diverged. Our study offers insight into how plants control enantiomeric ratios and how to selectively modify the chemical spectra of cotton plants and thereby improve crop quality.
Collapse
Affiliation(s)
- Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Wen-Kai Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xiang Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning-Jing Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Fa Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Yan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, Bednář P, Bornhofen E, Zhang H, Boussageon R, Kaur S, Cheung K, Čížková J, Gundlach H, Hallab A, Imbert B, Keeble-Gagnère G, Koblížková A, Kobrlová L, Krejčí P, Mouritzen TW, Neumann P, Nadzieja M, Nielsen LK, Novák P, Orabi J, Padmarasu S, Robertson-Shersby-Harvie T, Robledillo LÁ, Schiemann A, Tanskanen J, Törönen P, Warsame AO, Wittenberg AHJ, Himmelbach A, Aubert G, Courty PE, Doležel J, Holm LU, Janss LL, Khazaei H, Macas J, Mascher M, Smýkal P, Snowdon RJ, Stein N, Stoddard FL, Stougaard J, Tayeh N, Torres AM, Usadel B, Schubert I, O'Sullivan DM, Schulman AH, Andersen SU. The giant diploid faba genome unlocks variation in a global protein crop. Nature 2023; 615:652-659. [PMID: 36890232 PMCID: PMC10033403 DOI: 10.1038/s41586-023-05791-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/03/2023] [Indexed: 03/10/2023]
Abstract
Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Lavinia I Fechete
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Deepti Angra
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Elesandro Bornhofen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| | - Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Raphaël Boussageon
- Agroécologie, INRAE, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Kwok Cheung
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Asis Hallab
- IBG-4 Bioinformatics Forschungszentrum Jülich, Jülich, Germany
- Bingen Technical University of Applied Sciences, Bingen, Germany
| | - Baptiste Imbert
- Agroécologie, INRAE, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | | | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Lucie Kobrlová
- Department of Botany, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Troels W Mouritzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Laura Ávila Robledillo
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | | | | | - Petri Törönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ahmed O Warsame
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Liisa U Holm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Luc L Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| | - Hamid Khazaei
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Frederick L Stoddard
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland, Córdoba, Spain
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Ana M Torres
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Área de Mejora y Biotecnología, Centro Alameda del Obispo, Córdoba, Spain
| | - Björn Usadel
- IBG-4 Bioinformatics Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Data Science, CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Alan H Schulman
- Natural Resources Institute Finland (Luke), Helsinki, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland, Córdoba, Spain.
| | | |
Collapse
|
16
|
Lovegrove JA, O'Sullivan DM, Tosi P, Millan E, Todman LC, Bishop J, Chatzifragkou A, Clegg ME, Hammond J, Jackson KG, Jones PJ, Lignou S, Macready AL, McMeel Y, Parker J, Rodriguez‐Garcia J, Sharp P, Shaw LJ, Smith LG, Tebbit M. 'Raising the Pulse': The environmental, nutritional and health benefits of pulse-enhanced foods. NUTR BULL 2023; 48:134-143. [PMID: 36649740 PMCID: PMC10947378 DOI: 10.1111/nbu.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Diet is a key modulator of non-communicable diseases, and food production represents a major cause of environmental degradation and greenhouse gas emissions. Yet, 'nudging' people to make better food choices is challenging, as factors including affordability, convenience and taste often take priority over the achievement of health and environmental benefits. The overall 'Raising the Pulse' project aim is to bring about a step change in the nutritional value of the UK consumers' diet, and to do so in a way that leads to improved health and greater sustainability within the UK food system. To achieve our objectives, UK-specific faba bean production systems that optimise both end users' diets and environmental and economic sustainability of production will be implemented in collaboration with key stakeholders (including industry, the retail sector and government). Palatable faba bean flours will be produced and used to develop 'Raising the Pulse' food products with improved nutritional profile and environmental value. Consumer focus groups and workshops will establish attitudes, preferences, drivers of and barriers to increased consumption of such products. They will inform the co-creation of sensory testing and University-wide intervention studies to evaluate the effects of pulses and 'Raising the Pulse' foods on diet quality, self-reported satiety, nutritional knowledge, consumer acceptance and market potential. Nutrient bioavailability and satiety will be evaluated in a randomised-controlled postprandial human study. Finally, a system model will be developed that predicts changes to land use, environment, business viability, nutrition and human health after substitution of existing less nutritionally beneficial and environmentally sustainable ingredients with pulses. Government health and sustainability priorities will be addressed, helping to define policy-relevant solutions with significant beneficial supply chain economic impacts and transformed sustainable food systems to improve consumer diet quality, health and the environment.
Collapse
Affiliation(s)
- Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional SciencesUniversity of ReadingReadingUK
- Institute of Cardiovascular and Metabolic ResearchUniversity of ReadingReadingUK
- Institute of Food, Nutrition and HealthUniversity of ReadingReadingUK
| | | | - Paola Tosi
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Elena Millan
- Institute of Food, Nutrition and HealthUniversity of ReadingReadingUK
- Department of Agri‐Food Economics and MarketingUniversity of ReadingReadingUK
| | - Lindsay C. Todman
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Jacob Bishop
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | | | - Miriam E Clegg
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional SciencesUniversity of ReadingReadingUK
- Institute of Food, Nutrition and HealthUniversity of ReadingReadingUK
| | - John Hammond
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Kim G. Jackson
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional SciencesUniversity of ReadingReadingUK
- Institute of Cardiovascular and Metabolic ResearchUniversity of ReadingReadingUK
- Institute of Food, Nutrition and HealthUniversity of ReadingReadingUK
| | - Philip J. Jones
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
- Department of Agri‐Food Economics and MarketingUniversity of ReadingReadingUK
| | - Stella Lignou
- Department of Food and Nutritional SciencesUniversity of ReadingReadingUK
| | - Anna L. Macready
- Department of Agri‐Food Economics and MarketingUniversity of ReadingReadingUK
| | - Yvonne McMeel
- Institute of Food, Nutrition and HealthUniversity of ReadingReadingUK
| | - Jane Parker
- Department of Food and Nutritional SciencesUniversity of ReadingReadingUK
| | | | - Paul Sharp
- Department of Nutritional SciencesKing College LondonLondonUK
| | - Liz J. Shaw
- Department of Geography and Environmental ScienceUniversity of ReadingReadingUK
| | - Laurence G. Smith
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | | |
Collapse
|
17
|
Liu Y, Nour-Eldin HH, Zhang L, Li Z, Fernie AR, Ren M. Biotechnological detoxification: an unchanging source-sink balance strategy for crop improvement. TRENDS IN PLANT SCIENCE 2023; 28:135-138. [PMID: 36443186 DOI: 10.1016/j.tplants.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The wide occurrence of natural phytotoxins renders many crops unfit for human consumption. To overcome this problem and produce detoxified crop varieties, we propose the use of biotechnological strategies that can enhance the harvest index without the need to increase crop biomass or alter whole plant architecture.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Ling Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhanshuai Li
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany.
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
18
|
Kumar S, DePauw RM, Kumar S, Kumar J, Kumar S, Pandey MP. Breeding and adoption of biofortified crops and their nutritional impact on human health. Ann N Y Acad Sci 2023; 1520:5-19. [PMID: 36479674 DOI: 10.1111/nyas.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Micronutrient malnutrition has affected over two billion people worldwide and continues to be a health risk. A growing human population, poverty, and the prevalence of low dietary diversity are jointly responsible for malnutrition, particularly in developing nations. Inadequate bioavailability of key micronutrients, such as iron (Fe), zinc (Zn), and vitamin A, can be improved through agronomic and/or genetic interventions. The Consultative Group on International Agricultural Research prioritizes developing biofortified food crops that are rich in minerals and vitamins through the HarvestPlus initiative on biofortification. The objective of this review is to provide an overview of biofortified food crops along with evidence supporting their acceptability and adoption. Between 2004 and 2019, 242 biofortified varieties belonging to 11 major crops were released in 30 countries across Asia, Africa, and Latin America. These conventionally bred biofortified crops include Fe-enriched beans, pearl millet, and cowpea; Zn-enriched rice, wheat, and maize; both Fe- and Zn-enriched lentil and sorghum; and varieties with improved vitamin A in orange-fleshed sweet potato, maize, cassava, and banana/plantain. In addition to ongoing efforts, breeding innovations, such as speed breeding and CRISPR-based gene editing technologies, will be necessary for the next decade to reach two billion people with biofortified crops.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Ron M DePauw
- Advancing Wheat Technologies, Calgary, Alberta, Canada
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Jitendra Kumar
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Madhav P Pandey
- Department of Genetics and Plant Breeding, Agriculture and Forestry University (AFU), Rampur, Nepal
| |
Collapse
|
19
|
Nguyen M, Knowling M, Tran NN, Burgess A, Fisk I, Watt M, Escribà-Gelonch M, This H, Culton J, Hessel V. Space farming: Horticulture systems on spacecraft and outlook to planetary space exploration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:708-721. [PMID: 36566710 DOI: 10.1016/j.plaphy.2022.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Successful human space exploration requires more products than can be taken as payload. There is a need, therefore, for in-space circular manufacturing. Requirements for this include limited resource inflow, from either Earth or other planets and the generation of minimal waste. The provision of nutritious food is a clear need for human survival on the Moon or Mars and is one of the most complex to solve. Demand in large quantities, constant and reliable provision of food requires the development of specialist agricultural technologies. Here, we first review the history of space farming over the past five decades. This survey assesses the technologies which have been tested under the harsh conditions of space, identifying which modern horticultural components are applicable for in-space plant growth. We then outline which plants have been grown and under what conditions, and speculate upon the types of plants that could be selected to best nourish astronauts. Current systems are focussed on experimentation and exploration, but do not yet provide turn-key solutions for efficient food production within a long-term space exploration scenario. With that take, this review aims to provide a perspective on how an engineered closed circular environmental life-support system (ECCLES) might be constructed. To exemplify the latter, nutrient auto accumulation by biofortification is proposed through the integration of space farming and space mining, which is uncharted on Earth.
Collapse
Affiliation(s)
- Melinda Nguyen
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, Australia; Andy Thomas Centre of Space Resources, University of Adelaide, Adelaide, Australia; School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Matthew Knowling
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Nam N Tran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, Australia; Department of Chemical Engineering, Can Tho University, Can Tho, Viet Nam
| | - Alexandra Burgess
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Ian Fisk
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Michelle Watt
- Faculty of Sciences, University of Melbourne, Melbourne, Australia
| | | | - Herve This
- INRA Team of Molecular Gastronomy, INRA/ AgroParisTech, Paris, France
| | - John Culton
- Andy Thomas Centre of Space Resources, University of Adelaide, Adelaide, Australia; School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, Australia; Andy Thomas Centre of Space Resources, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
20
|
Zhang H, Mascher M, Abbo S, Jayakodi M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. PLANT & CELL PHYSIOLOGY 2022; 63:1540-1553. [PMID: 35534441 PMCID: PMC9680859 DOI: 10.1093/pcp/pcac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Grain legumes were domesticated in parallel with cereals in several regions of the world and formed the economic basis of early farming cultures. Since then, legumes have played a vital role in human and animal diets and in fostering agrobiodiversity. Increasing grain legume cultivation will be crucial to safeguard nutritional security and the resilience of agricultural ecosystems across the globe. A better understanding of the molecular underpinnings of domestication and crop evolution of grain legumes may be translated into practical approaches in modern breeding programs to stabilize yield, which is threatened by evolving pathogens and changing climates. During recent decades, domestication research in all crops has greatly benefited from the fast progress in genomic technologies. Yet still, many questions surrounding the domestication and diversification of legumes remain unanswered. In this review, we assess the potential of genomic approaches in grain legume research. We describe the centers of origin and the crucial domestication traits of grain legumes. In addition, we survey the effect of domestication on both above-ground and below-ground traits that have economic importance. Finally, we discuss open questions in grain legume domestication and diversification and outline how to bridge the gap between the preservation of historic crop diversity and their utilization in modern plant breeding.
Collapse
Affiliation(s)
- Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| |
Collapse
|
21
|
Validated approach for vicine, convicine and levodopa quantification from faba bean seeds by flow injection analysis high-field asymmetric waveform ion mobility mass spectrometry. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Nyende PW, Wang LF, Zijlstra RT, Beltranena E. Energy, protein, and amino acid digestibility of mid- and zero-tannin faba bean differing in vicine and covicine content fed to growing pigs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Gela TS, Bruce M, Chang W, Stoddard FL, Schulman AH, Vandenberg A, Khazaei H. Genomic regions associated with chocolate spot ( Botrytis fabae Sard.) resistance in faba bean ( Vicia faba L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:35. [PMID: 37312967 PMCID: PMC10248645 DOI: 10.1007/s11032-022-01307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Chocolate spot (CS), caused by Botrytis fabae Sard., is an important threat to global faba bean production. Growing resistant faba bean cultivars is, therefore, paramount to preventing yield loss. To date, there have been no reported quantitative trait loci (QTL) associated with CS resistance in faba bean. The objective of this study was to identify genomic regions associated with CS resistance using a recombinant inbred line (RIL) population derived from resistant accession ILB 938. A total of 165 RILs from the cross Mélodie/2 × ILB 938/2 were genotyped and evaluated for CS reactions under replicated controlled climate conditions. The RIL population showed significant variation in response to CS resistance. QTL analysis identified five loci contributing to CS resistance on faba bean chromosomes 1 and 6, accounting for 28.4% and 12.5%, respectively, of the total phenotypic variance. The results of this study not only provide insight into disease-resistance QTL, but also can be used as potential targets for marker-assisted breeding in faba bean genetic improvement for CS resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01307-7.
Collapse
Affiliation(s)
- Tadesse S. Gela
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Margaret Bruce
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Wei Chang
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Frederick L. Stoddard
- Department of Agricultural Sciences, Viikki Plant Science Centre, and Helsinki Sustainability Science Centre, University of Helsinki, Helsinki, Finland
| | - Alan H. Schulman
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Hamid Khazaei
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
- World Vegetable Center, Tainan, Taiwan
| |
Collapse
|
24
|
Nyende PW, Wang LF, Zijlstra RT, Beltranena E. Effect of feeding mid- or zero-tannin faba bean cultivars differing in vicine and covicine content on diet nutrient digestibility and growth performance of weaned pigs. Transl Anim Sci 2022; 6:txac049. [PMID: 35592096 PMCID: PMC9113422 DOI: 10.1093/tas/txac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
To prioritize what cultivars to grow to feed pigs, 5 faba bean cultivars including 3 zero-tannin, high vicine and covicine cultivars (Snowbird, Snowdrop, Tabasco) and 2 medium-tannin, lower vicine and covicine cultivars (Fabelle, and Malik) were fed to compare effects on diet nutrient digestibility and growth performance of weaned pigs. A total of 260 pigs (8 ± 1.2 kg), weaned at 20 ± 1 d of age housed 2 barrows and 2 gilts/pen were fed 1 of 5 dietary regimens starting 1-week post-weaning for 4 weeks in a randomized complete block design. Diets including each cultivar at 20% or 30% provided 10.2 and 10.1 MJ net energy (NE)/kg and 1.3 and 1.2 g standardized ileal digestible (SID) lysine (Lys)/MJ NE in phase 1 and phase 2, respectively. Digestibility data were analyzed using PROC GLIMMIX and growth performance data were analyzed using PROC MIXED with pen as experimental unit. Fabelle contained the most condensed tannins (CT; 0.53%) but the least vicine (0.04%) and covicine (0.01%). Zero-tannin cultivars contained little CT (< 0.2%) but had the greatest vicine (0.5%) and covicine content (0.4%). For phase 1, diet apparent total tract digestibility (ATTD) of dry mater (DM), gross energy (GE), crude protein (CP), digestible energy (DE), and NE values did not differ among cultivars. For phase 2, diet ATTD of DM and GE were greatest (P < 0.05) for Snowdrop and Tabasco, intermediate for Fabelle, and lowest for Malik; Snowbird was not different from Fabelle or Malik. Diet ATTD of CP was greatest (P < 0.05) for Tabasco, intermediate for Snowbird, and lowest for Malik; Snowdrop was not different from Tabasco or Snowbird, and Fabelle was not different from Snowbird or Malik. Diet DE and NE values were greatest (P < 0.05) for Tabasco, intermediate for Fabelle and Snowdrop, and lowest for Snowbird; Malik was not different from Fabelle or Snowbird. For the entire trial (d 0 to 28), daily feed disappearance and weight gain for pigs fed Fabelle were 10% greater (P < 0.05) than those fed Malik; pigs fed zero-tannin cultivar diets were intermediate. Pigs fed Fabelle were 1.6 kg heavier (P < 0.05) than those fed Malik at the end of the trial; pigs fed zero-tannin cultivar diets were intermediate. In conclusion, growth performance of pigs fed faba bean cultivar diets was more related to feed disappearance than diet nutrient digestibility. Vicine and covicine instead of condensed tannin content of faba bean cultivars seemed more relevant to growth performance in weaned pigs.
Collapse
Affiliation(s)
- Protus W Nyende
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Li Fang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Eduardo Beltranena
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Colinas M, Fitzpatrick TB. Coenzymes and the primary and specialized metabolism interface. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102170. [PMID: 35063913 DOI: 10.1016/j.pbi.2021.102170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In plants, primary and specialized metabolism have classically been distinguished as either essential for growth or required for survival in a particular environment. Coenzymes (organic cofactors) are essential for growth but their importance to specialized metabolism is often not considered. In line with the recent proposal of viewing primary and specialized metabolism as an integrated whole rather than segregated lots with a defined interface, we highlight here the importance of collating information on the regulation of coenzyme supply with metabolic demands using examples of vitamin B derived coenzymes. We emphasize that coenzymes can have enormous influence on the outcome of metabolic as well as engineered pathways and should be taken into account in the era of synthetic biology.
Collapse
Affiliation(s)
- Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 80, D-07745 Jena, Germany.
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
26
|
Méndez-López LF, Sosa de León D, López-Cabanillas Lomelí M, González-Martínez BE, Vázquez-Rodríguez JA. Phytochemicals From Vicia faba Beans as Ligands of the Aryl Hydrocarbon Receptor to Regulate Autoimmune Diseases. Front Nutr 2022; 9:790440. [PMID: 35308285 PMCID: PMC8931403 DOI: 10.3389/fnut.2022.790440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Legumes are associated with gut health benefits, and increasing evidence indicates that their consumption reduces the risk of chronic diseases that include autoimmunity. Beans are rich sources of compounds with health-promoting effects, and recent metabolomic approaches have enabled the comprehensive characterization of the chemical composition of Vicia faba L. This article reviewed whether the phytocompounds in broad beans might modulate the aryl hydrocarbon receptor (AhR), which plays an essential role in autoantigen tolerance as a potential dietary strategy for autoimmune disease management. Therefore, thirty molecules present in Vicia faba of the chemical classes of flavonoids, chalcones, stilbenes, jasmonates, alkaloids, and amino acids, and either a human- or microbiome-derived product of biotransformation, retrieved from the literature or predicted in silico were evaluated by docking for affinity against the ligand-binding domain of AhR. Most analyzed compounds showed high affinity even after their metabolism which indicate that some AhR modulators remain active despite several steps in their biotransformation. Hence, our results suggest that in similitude with the gut metabolism of the tryptophan, phytocompounds mainly polyphenols also lead to metabolites that induce the AhR pathway. Furthermore, wyerone acid, wyerone epoxide, jasmonic acid, stizolamine, vicine, and convicine and their metabolite derivatives are reported for the first time as potential AhR ligands. Overall, chronic consumption of phytochemicals in Vicia faba L. and their gut biotransformation may protect against autoimmune disease pathogenesis by AhR modulation.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | | | - Jesús Alberto Vázquez-Rodríguez
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
27
|
Scharff LB, Saltenis VLR, Jensen PE, Baekelandt A, Burgess AJ, Burow M, Ceriotti A, Cohan J, Geu‐Flores F, Halkier BA, Haslam RP, Inzé D, Klein Lankhorst R, Murchie EH, Napier JA, Nacry P, Parry MAJ, Santino A, Scarano A, Sparvoli F, Wilhelm R, Pribil M. Prospects to improve the nutritional quality of crops. Food Energy Secur 2021. [DOI: 10.1002/fes3.327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Vandasue L. R. Saltenis
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Frederiksberg Denmark
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | - Meike Burow
- DynaMo Center Copenhagen Plant Science Centre Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | | | - Fernando Geu‐Flores
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Barbara Ann Halkier
- DynaMo Center Copenhagen Plant Science Centre Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | | | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | | | - Philippe Nacry
- BPMPUniv MontpellierINRAECNRSMontpellier SupAgro Montpellier France
| | | | - Angelo Santino
- Institute of Sciences of Food Production (ISPA) National Research Council (CNR) Lecce Italy
| | - Aurelia Scarano
- Institute of Sciences of Food Production (ISPA) National Research Council (CNR) Lecce Italy
| | - Francesca Sparvoli
- DynaMo Center Copenhagen Plant Science Centre Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology Julius Kühn‐Institut – Federal Research Centre for Cultivated Plants Quedlinburg Germany
| | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| |
Collapse
|
28
|
Adhikari KN, Khazaei H, Ghaouti L, Maalouf F, Vandenberg A, Link W, O'Sullivan DM. Conventional and Molecular Breeding Tools for Accelerating Genetic Gain in Faba Bean ( Vicia Faba L.). FRONTIERS IN PLANT SCIENCE 2021; 12:744259. [PMID: 34721470 PMCID: PMC8548637 DOI: 10.3389/fpls.2021.744259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 05/11/2023]
Abstract
Faba bean is a cool-season grain legume crop, which is grown worldwide for food and feed. Despite a decrease in area under faba bean in the past, the interest in growing faba bean is increasing globally due to its high seed protein content and its excellent ecological service. The crop is, however, exposed to diverse biotic and abiotic stresses causing unstable, low grain yield. Although, sources of resistance to main diseases, such as ascochyta blight (Ascochyta fabae Speg.), rust (Uromyces viciae-fabae (Pers.) Schroet.), chocolate spot (Botrytis fabae Sard.) and gall disease (Physioderma viciae), have been identified, their resistance is only partial and cannot prevent grain yield losses without agronomical practices. Tightly associated DNA markers for host plant resistance genes are needed to enhance the level of resistance. Less progress has been made for abiotic stresses. Different breeding methods are proposed, but until now line breeding, based on the pedigree method, is the dominant practice in breeding programs. Nonetheless, the low seed multiplication coefficient and the requirement for growing under insect-proof enclosures to avoid outcrossing hampers breeding, along with the lack of tools such as double haploid system and cytoplasmic male sterility. This reduces breeding population size and speed of breeding hence the chances of capturing rare combinations of favorable alleles. Availability and use of the DNA markers such as vicine-convicine (vc -) and herbicide tolerance in breeding programs have encouraged breeders and given confidence in marker assisted selection. Closely linked QTL for several biotic and abiotic stress tolerance are available and their verification and conversion in breeder friendly platform will enhance the selection process. Recently, genomic selection and speed breeding techniques together with genomics have come within reach to accelerate the genetic gains in faba bean. Advancements in genomic resources with other breeding tools, methods and platforms will enable to accelerate the breeding process for enhancing genetic gain in this species.
Collapse
Affiliation(s)
- Kedar N. Adhikari
- The University of Sydney, School of Life and Environmental Science, Plant Breeding Institute, Narrabri, NSW, Australia
| | | | - Lamiae Ghaouti
- Institute of Agronomy and Veterinary Medicine Hassan II, Department of Plant Production, Protection and Biotechnology, Rabat, Morocco
| | - Fouad Maalouf
- International Center for Agricultural Research in Dry Areas, Beirut, Lebanon
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Link
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | - Donal M. O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| |
Collapse
|
29
|
Eljounaidi K, Lichman BR. Dreaming of clean bean protein. NATURE PLANTS 2021; 7:860-861. [PMID: 34226691 DOI: 10.1038/s41477-021-00949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Kaouthar Eljounaidi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| |
Collapse
|