1
|
Huppert LA, Wolf D, Yau C, Brown-Swigart L, Hirst GL, Isaacs C, Pusztai L, Pohlmann PR, DeMichele A, Shatsky R, Yee D, Thomas A, Nanda R, Perlmutter J, Heditsian D, Hylton N, Symmans F, Van't Veer LJ, Esserman L, Rugo HS. Pathologic complete response (pCR) rates for patients with HR+/HER2- high-risk, early-stage breast cancer (EBC) by clinical and molecular features in the phase II I-SPY2 clinical trial. Ann Oncol 2025; 36:172-184. [PMID: 39477071 DOI: 10.1016/j.annonc.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative early-stage breast cancer (EBC) is a heterogenous disease. Identification of better clinical and molecular biomarkers is essential to guide optimal therapy for each patient. PATIENTS AND METHODS We analyzed rates of pathologic complete response (pCR) and distant recurrence-free survival (DRFS) for patients with HR+/HER2-negative EBC in eight neoadjuvant arms in the I-SPY2 trial by clinical/molecular features: age, stage, histology, percentage estrogen receptor (ER) positivity, ER/progesterone receptor status, MammaPrint (MP)-High1 (0 to -0.57) versus MP-High2 (<-0.57), BluePrint (BP)-Luminal-type versus BP-Basal-type, and ImPrint immune signature. We quantified the clinical/molecular heterogeneity, assessed overlap among these biomarkers, and evaluated associations with pCR and DRFS. RESULTS Three hundred and seventy-nine patients with HR+/HER2-negative EBC were included in this analysis, with an observed pCR rate of 17% across treatment arms. pCR rates were higher in patients with stage II versus III disease (21% versus 9%, P = 0.0013), ductal versus lobular histology (19% versus 11%, P = 0.049), lower %ER positivity (≤66% versus >66%) (35% versus 9%, P = 3.4E-09), MP-High2 versus MP-High1 disease (31% versus 11%, P = 1.1E-05), BP-Basal-type versus BP-Luminal-type disease (34% versus 10%, P = 1.62E-07), and ImPrint-positive versus -negative disease (38% versus 10%, P = 1.64E-09). Patients with lower %ER were more likely to have MP-High2 and BP-Basal-type disease. At a median follow-up of 4.8 years, patients who achieved pCR had excellent outcomes irrespective of clinical/molecular features. Among patients who did not achieve pCR, DRFS events were more frequent in patients with MP-High2 and BP-Basal-type disease than those with MP-High1 and BP-Luminal-type disease. CONCLUSIONS Among patients with high molecular-risk HR+/HER2-negative EBC, the MP-High2, BP-Basal-type, and ImPrint-positive signatures identified a partially overlapping subset of patients who were more likely to achieve pCR in response to neoadjuvant chemotherapy ± targeted agents or immunotherapy compared to patients with MP-High1, BP-Luminal-type, and ImPrint-negative disease. I-SPY2.2 is incorporating the use of these biomarkers to molecularly define specific patient populations and optimize treatment selection.
Collapse
Affiliation(s)
- L A Huppert
- Department of Medicine, University of California San Francisco, San Francisco, USA.
| | - D Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - C Yau
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - L Brown-Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - G L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - C Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, USA
| | - L Pusztai
- Yale School of Medicine, Yale University, New Haven, USA
| | - P R Pohlmann
- Department of Breast Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - R Shatsky
- Division of Hematology/Oncology, University of California San Diego, San Diego, USA
| | - D Yee
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, USA
| | - A Thomas
- Division of Hematology/Oncology, Duke Cancer Center, Durham, USA
| | - R Nanda
- Section of Hematology/Oncology, University of Chicago, Chicago, USA
| | | | | | - N Hylton
- Department of Radiology, University of California San Francisco, San Francisco, USA
| | - F Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - L J Van't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - L Esserman
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA. https://twitter.com/DrLauraEsserman
| | - H S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, USA. https://twitter.com/hoperugo
| |
Collapse
|
2
|
Massa D, Vernieri C, Nicolè L, Criscitiello C, Boissière-Michot F, Guiu S, Bobrie A, Griguolo G, Miglietta F, Vingiani A, Lobefaro R, Taurelli Salimbeni B, Pinato C, Schiavi F, Brich S, Pescia C, Fusco N, Pruneri G, Fassan M, Curigliano G, Guarneri V, Jacot W, Dieci MV. Immune and gene-expression profiling in estrogen receptor low and negative early breast cancer. J Natl Cancer Inst 2024; 116:1914-1927. [PMID: 39083015 PMCID: PMC11630536 DOI: 10.1093/jnci/djae178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The cutoff of <1% positive cells to define estrogen receptor (ER) negativity by immunohistochemistry (IHC) in breast cancer (BC) is debated. We explored the tumor immune microenvironment and gene-expression profile of patients with early-stage HER2-negative ER-low (ER 1%-9%) BC, comparing them to ER-negative (ER <1%) and ER-intermediate (ER 10%-50%) tumors. METHODS Among 921 patients with early-stage I-III, ER ≤50%, HER2-negative BCs, tumors were classified as ER-negative (n = 712), ER-low (n = 128), or ER-intermediate (n = 81). Tumor-infiltrating lymphocytes (TILs) were evaluated. CD8+, FOXP3+ cells, and PD-L1 status were assessed by IHC and quantified by digital pathology. We analyzed 776 BC-related genes in 116 samples. All tests were 2-sided at a <.05 significance level. RESULTS ER-low and ER-negative tumors exhibited similar median TILs, statistically significantly higher than ER-intermediate tumors. CD8/FOXP3 ratio and PD-L1 positivity rates were comparable between ER-low and ER-negative groups. These groups showed similar enrichment in basal-like intrinsic subtypes and comparable expression of immune-related genes. ER-low and ER-intermediate tumors showed significant transcriptomic differences. High TILs (≥30%) were associated with improved relapse-free survival (RFS) in ER-low (5-year RFS 78.6% vs 66.2%, log-rank P = .033, hazard ratio [HR] 0.37 [95% CI = 0.15 to 0.96]) and ER-negative patients (5-year RFS 85.2% vs 69.8%, log-rank P < .001, HR 0.41 [95% CI = 0.27 to 0.60]). CONCLUSIONS ER-low and ER-negative tumors are similar biological and molecular entities, supporting their comparable clinical outcomes and treatment responses, including to immunotherapy. Our findings contribute to the growing evidence calling for a reevaluation of ER-positive BC classification and management, aligning ER-low and ER-negative tumors more closely.
Collapse
Affiliation(s)
- Davide Massa
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology
| | | | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Séverine Guiu
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Angélique Bobrie
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Gaia Griguolo
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Federica Miglietta
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Pinato
- UOSD Hereditary Tumors, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesca Schiavi
- UOSD Hereditary Tumors, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Silvia Brich
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padova, Italy
- Veneto Institute of Oncology IOV—IRCCS, Padova, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Guarneri
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - William Jacot
- Translational Research Unit, Institut du Cancer de Montpellier, Montpellier, France
- Department of Medical Oncology, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier University, Montpellier, France
| | - Maria Vittoria Dieci
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| |
Collapse
|
3
|
Altman JE, Olex AL, Zboril EK, Walker CJ, Boyd DC, Myrick RK, Hairr NS, Koblinski JE, Puchalapalli M, Hu B, Dozmorov MG, Chen XS, Chen Y, Perou CM, Lehmann BD, Visvader JE, Harrell JC. Single-cell transcriptional atlas of human breast cancers and model systems. Clin Transl Med 2024; 14:e70044. [PMID: 39417215 PMCID: PMC11483560 DOI: 10.1002/ctm2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Breast cancer's complex transcriptional landscape requires an improved understanding of cellular diversity to identify effective treatments. The study of genetic variations among breast cancer subtypes at single-cell resolution has potential to deepen our insights into cancer progression. METHODS In this study, we amalgamate single-cell RNA sequencing data from patient tumours and matched lymph metastasis, reduction mammoplasties, breast cancer patient-derived xenografts (PDXs), PDX-derived organoids (PDXOs), and cell lines resulting in a diverse dataset of 117 samples with 506 719 total cells. These samples encompass hormone receptor positive (HR+), human epidermal growth factor receptor 2 positive (HER2+), and triple-negative breast cancer (TNBC) subtypes, including isogenic model pairs. Herein, we delineated similarities and distinctions across models and patient samples and explore therapeutic drug efficacy based on subtype proportions. RESULTS PDX models more closely resemble patient samples in terms of tumour heterogeneity and cell cycle characteristics when compared with TNBC cell lines. Acquired drug resistance was associated with an increase in basal-like cell proportions within TNBC PDX tumours as defined with SCSubtype and TNBCtype cell typing predictors. All patient samples contained a mixture of subtypes; compared to primary tumours HR+ lymph node metastases had lower proportions of HER2-Enriched cells. PDXOs exhibited differences in metabolic-related transcripts compared to PDX tumours. Correlative analyses of cytotoxic drugs on PDX cells identified therapeutic efficacy was based on subtype proportion. CONCLUSIONS We present a substantial multimodel dataset, a dynamic approach to cell-wise sample annotation, and a comprehensive interrogation of models within systems of human breast cancer. This analysis and reference will facilitate informed decision-making in preclinical research and therapeutic development through its elucidation of model limitations, subtype-specific insights and novel targetable pathways. KEY POINTS Patient-derived xenografts models more closely resemble patient samples in tumour heterogeneity and cell cycle characteristics when compared with cell lines. 3D organoid models exhibit differences in metabolic profiles compared to their in vivo counterparts. A valuable multimodel reference dataset that can be useful in elucidating model differences and novel targetable pathways.
Collapse
Affiliation(s)
- Julia E. Altman
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amy L. Olex
- C. Kenneth and Diane Wright Center for Clinical and Translational ResearchVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Emily K. Zboril
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of BiochemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Carson J. Walker
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - David C. Boyd
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rachel K. Myrick
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Nicole S. Hairr
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jennifer E. Koblinski
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Madhavi Puchalapalli
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Bin Hu
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mikhail G. Dozmorov
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - X. Steven Chen
- Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Yunshun Chen
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Charles M. Perou
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Brian D. Lehmann
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jane E. Visvader
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - J. Chuck Harrell
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Center for Pharmaceutical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
4
|
Signatures of Breast Cancer Progression in the Blood: What Could Be Learned from Circulating Tumor Cell Transcriptomes. Cancers (Basel) 2022; 14:cancers14225668. [PMID: 36428760 PMCID: PMC9688726 DOI: 10.3390/cancers14225668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Gene expression profiling has revolutionized our understanding of cancer biology, showing an unprecedented ability to impact patient management especially in breast cancer. The vast majority of breast cancer gene expression signatures derive from the analysis of the tumor bulk, an experimental approach that limits the possibility to dissect breast cancer heterogeneity thoroughly and might miss the message hidden in biologically and clinically relevant cell populations. During disease progression or upon selective pressures, cancer cells undergo continuous transcriptional changes, which inevitably affect tumor heterogeneity, response to therapy and tendency to disseminate. Therefore, metastasis-associated signatures and transcriptome-wide gene expression measurement at single-cell resolution hold great promise for the future of breast cancer clinical care. Seen from this perspective, transcriptomics of circulating tumor cells (CTCs) represent an attractive opportunity to bridge the knowledge gap and develop novel biomarkers. This review summarizes the current state-of-the-science on CTC gene expression analysis in breast cancer, addresses technical and clinical issues related to the application of CTC-derived signatures, and discusses potential research directions.
Collapse
|
5
|
Kuilman MM, Ellappalayam A, Barcaru A, Haan JC, Bhaskaran R, Wehkamp D, Menicucci AR, Audeh WM, Mittempergher L, Glas AM. BluePrint breast cancer molecular subtyping recognizes single and dual subtype tumors with implications for therapeutic guidance. Breast Cancer Res Treat 2022; 195:263-274. [PMID: 35984580 PMCID: PMC9464757 DOI: 10.1007/s10549-022-06698-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE BluePrint (BP) is an 80-gene molecular subtyping test that classifies early-stage breast cancer (EBC) into Basal, Luminal, and HER2 subtypes. In most cases, breast tumors have one dominant subtype, representative of a single activated pathway. However, some tumors show a statistically equal representation of more than one subtype, referred to as dual subtype. This study aims to identify and examine dual subtype tumors by BP to understand their biology and possible implications for treatment guidance. METHODS The BP scores of over 15,000 tumor samples from EBC patients were analyzed, and the differences between the highest and the lowest scoring subtypes were calculated. Based upon the distribution of the differences between BP scores, a threshold was determined for each subtype to identify dual versus single subtypes. RESULTS Approximately 97% of samples had one single activated BluePrint molecular subtype, whereas ~ 3% of samples were classified as BP dual subtype. The most frequently occurring dual subtypes were the Luminal-Basal-type and Luminal-HER2-type. Luminal-Basal-type displays a distinct biology from the Luminal single type and Basal single type. Burstein's classification of the single and dual Basal samples showed that the Luminal-Basal-type is mostly classified as 'luminal androgen receptor' and 'mesenchymal' subtypes, supporting molecular evidence of AR activation in the Luminal-Basal-type tumors. Tumors classified as Luminal-HER2-type resemble features of both Luminal-single-type and HER2-single-type. However, patients with dual Luminal-HER2-type have a lower pathological complete response after receiving HER2-targeted therapies in addition to chemotherapy in comparison with patients with a HER2-single-type. CONCLUSION This study demonstrates that BP identifies tumors with two active functional pathways (dual subtype) with specific transcriptional characteristics and highlights the added value of distinguishing BP dual from single subtypes as evidenced by distinct treatment response rates.
Collapse
Affiliation(s)
- Midas M Kuilman
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
| | - Architha Ellappalayam
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
| | - Andrei Barcaru
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
| | - Josien C Haan
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
| | - Rajith Bhaskaran
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
| | - Diederik Wehkamp
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands
| | - Andrea R Menicucci
- Department of Medical Affairs, Agendia Inc, 22 Morgan, Irvine, CA, 92618, USA
| | - William M Audeh
- Department of Medical Affairs, Agendia Inc, 22 Morgan, Irvine, CA, 92618, USA
| | - Lorenza Mittempergher
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands.
| | - Annuska M Glas
- Department of Research and Development, Agendia N.V, Radarweg 60, 1043 NT, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Audeh W. Reply to W. Altundag. JCO Precis Oncol 2022; 6:e2200315. [PMID: 35952323 DOI: 10.1200/po.22.00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Vathiotis IA, Trontzas I, Gavrielatou N, Gomatou G, Syrigos NK, Kotteas EA. Immune Checkpoint Blockade in Hormone Receptor-Positive Breast Cancer: Resistance Mechanisms and Future Perspectives. Clin Breast Cancer 2022; 22:642-649. [PMID: 35906130 DOI: 10.1016/j.clbc.2022.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/21/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Anti-programmed cell death protein 1 immunotherapy has been incorporated in the treatment algorithm of triple-negative breast cancer (TNBC). However, clinical trial results for patients with hormone receptor (HR)-positive disease appear less compelling. HR-positive tumors exhibit lower levels of programmed death-ligand 1 expression in comparison with their triple-negative counterparts. Moreover, signaling through estrogen receptor alters the immune microenvironment, rendering such tumors immunologically "cold." To explain differential responses to immune checkpoint blockade, this review interrogates differences between HR-positive and TNBC. Starting from distinct genomic features, we further present disparities concerning the tumor microenvironment and finally, we summarize early-phase clinical trial results on promising novel immunotherapy combinations.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece; Department of Pathology, Yale University School of Medicine, New Haven, CT.
| | - Ioannis Trontzas
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Niki Gavrielatou
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Georgia Gomatou
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Nikolaos K Syrigos
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Elias A Kotteas
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| |
Collapse
|
8
|
Whitworth P, Beitsch PD, Pellicane JV, Baron PL, Lee LA, Dul CL, Nash CH, Murray MK, Richards PD, Gittleman M, Budway R, Rahman RL, Kelemen P, Dooley WC, Rock DT, Cowan K, Lesnikoski BA, Barone JL, Ashikari AY, Dupree B, Wang S, Menicucci AR, Yoder EB, Finn C, Corcoran K, Blumencranz LE, Audeh W. Age-Independent Preoperative Chemosensitivity and 5-Year Outcome Determined by Combined 70- and 80-Gene Signature in a Prospective Trial in Early-Stage Breast Cancer. Ann Surg Oncol 2022; 29:4141-4152. [PMID: 35378634 PMCID: PMC9174138 DOI: 10.1245/s10434-022-11666-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The Neoadjuvant Breast Symphony Trial (NBRST) demonstrated the 70-gene risk of distant recurrence signature, MammaPrint, and the 80-gene molecular subtyping signature, BluePrint, precisely determined preoperative pathological complete response (pCR) in breast cancer patients. We report 5-year follow-up results in addition to an exploratory analysis by age and menopausal status. METHODS The observational, prospective NBRST (NCT01479101) included 954 early-stage breast cancer patients aged 18-90 years who received neoadjuvant chemotherapy and had clinical and genomic data available. Chemosensitivity and 5-year distant metastasis-free survival (DMFS) and overall survival (OS) were assessed. In a post hoc subanalysis, results were stratified by age (≤ 50 vs. > 50 years) and menopausal status in patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) tumors. RESULTS MammaPrint and BluePrint further classified 23% of tumors to a different subtype compared with immunohistochemistry, with more precise correspondence to pCR rates. Five-year DMFS and OS were highest in MammaPrint Low Risk, Luminal A-type and HER2-type tumors, and lowest in MammaPrint High Risk, Luminal B-type and Basal-type tumors. There was no significant difference in chemosensitivity between younger and older patients with Low-Risk (2.2% vs. 3.8%; p = 0.64) or High-Risk tumors (14.5% vs. 11.5%; p = 0.42), or within each BluePrint subtype; this was similar when stratifying by menopausal status. The 5-year outcomes were comparable by age or menopausal status for each molecular subtype. CONCLUSION Intrinsic preoperative chemosensitivity and long-term outcomes were precisely determined by BluePrint and MammaPrint regardless of patient age, supporting the utility of these assays to inform treatment and surgical decisions in early-stage breast cancer.
Collapse
Affiliation(s)
- Pat Whitworth
- Nashville Breast Center, Nashville, TN, USA
- Targeted Medical Education, Cupertino, CA, USA
| | - Peter D Beitsch
- Targeted Medical Education, Cupertino, CA, USA
- Dallas Surgical Group, Dallas, TX, USA
| | | | - Paul L Baron
- Breast and Melanoma Specialist of Charleston, Charleston, SC, USA
- Lenox Hill Hospital/Northwell Health, New York, NY, USA
| | - Laura A Lee
- Comprehensive Cancer Center, Palm Springs, CA, USA
| | - Carrie L Dul
- Ascension St. John Hospital Great Lakes Cancer Management Specialists, Grosse Pointe Woods, MI, USA
| | | | - Mary K Murray
- Akron General Medical Center, Akron, OH, USA
- Cleveland Clinic Akron General, Akron, OH, USA
| | | | | | | | | | - Pond Kelemen
- Ashikari Breast Center, Sleepy Hollow, NY, USA
- Zucker School of Medicine, Hofstra University, Hempstead, NY, USA
| | - William C Dooley
- Breast Institute, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| | - David T Rock
- Regional Breast Care, Fort Myers, FL, USA
- Genesis Care, Fort Myers, FL, USA
| | - Ken Cowan
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Beth-Ann Lesnikoski
- The Breast Institute at JFK Medical Center, Atlantis, FL, USA
- Baptist MD Anderson Cancer Center, Jacksonville, FL, USA
| | - Julie L Barone
- Exempla Saint Joseph Hospital, Denver, CO, USA
- Vail Health, Vail, CO, USA
| | - Andrew Y Ashikari
- Ashikari Breast Center, Sleepy Hollow, NY, USA
- New York Medical College, Valhalla, NY, USA
- Northwell Health Physician Partners, Mount Kisco, NY, USA
- Phelps and Northern Westchester Hospitals, Westchester, NY, USA
| | - Beth Dupree
- St. Mary Medical Alliance Cancer Specialists, Langhorne, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Whitworth PW, Beitsch PD, Pellicane JV, Baron PL, Lee LA, Dul CL, Murray MK, Gittleman MA, Budway RJ, Rahman RL, Kelemen PR, Dooley WC, Rock DT, Cowan KH, Lesnikoski BA, Barone JL, Ashikari AY, Dupree BB, Wang S, Menicucci AR, Yoder EB, Finn C, Corcoran K, Blumencranz LE, Audeh W. Distinct Neoadjuvant Chemotherapy Response and 5-Year Outcome in Patients With Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Tumors That Reclassify as Basal-Type by the 80-Gene Signature. JCO Precis Oncol 2022; 6:e2100463. [PMID: 35476550 PMCID: PMC9200401 DOI: 10.1200/po.21.00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The 80-gene molecular subtyping signature (80-GS) reclassifies a proportion of immunohistochemistry (IHC)-defined luminal breast cancers (estrogen receptor-positive [ER+], human epidermal growth factor receptor 2-negative [HER2-]) as Basal-Type. We report the association of 80-GS reclassification with neoadjuvant treatment response and 5-year outcome in patients with breast cancer. METHODS Neoadjuvant Breast Registry Symphony Trial (NBRST; NCT01479101) is an observational, prospective study that included 1,069 patients with early-stage breast cancer age 18-90 years who received neoadjuvant therapy. Pathologic complete response (pCR) and 5-year distant metastasis-free survival (DMFS) and overall survival (OS) were assessed in 477 patients with IHC-defined ER+, HER2- tumors and in a reference group of 229 patients with IHC-defined triple-negative breast cancer (TNBC). RESULTS 80-GS reclassified 15% of ER+, HER2- tumors (n = 73) as Basal-Type (ER+/Basal), which had similar pCR compared with TNBC/Basal tumors (34% v 38%; P = .52), and significantly higher pCR than ER+/Luminal A (2%; P < .001) and ER+/Luminal B (6%; P < .001) tumors. The 5-year DMFS (%, [95% CI]) was significantly lower for patients with ER+/Basal tumors (66% [52.6 to 77.3]), compared with those with ER+/Luminal A tumors (92.3% [85.2 to 96.1]) and ER+/Luminal B tumors (73.5% [44.5 to 79.3]). Importantly, patients with ER+/Basal or TNBC/Basal tumors that had a pCR exhibited significantly improved DMFS and OS compared with those with residual disease. By contrast, patients with ER+/Luminal B tumors had comparable 5-year DMFS and OS whether or not they achieved pCR. CONCLUSION Significant differences in chemosensitivity and 5-year outcome suggest patients with ER+/Basal molecular subtype may benefit from neoadjuvant regimens optimized for patients with TNBC/Basal tumors compared with patients with ER+/Luminal subtype. These data highlight the importance of identifying this subset of patients to improve treatment planning and long-term survival.
Collapse
Affiliation(s)
- Pat W. Whitworth
- Nashville Breast Center, Nashville, TN
- Targeted Medical Education, Cupertino, CA
| | - Peter D. Beitsch
- Targeted Medical Education, Cupertino, CA
- Dallas Surgical Group, Dallas, TX
| | | | - Paul L. Baron
- Breast and Melanoma Specialist of Charleston, Charleston, SC
- Lenox Hill Hospital/Northwell Health, New York, NY
| | | | - Carrie L. Dul
- Ascension St John Hospital Great Lakes Cancer Management Specialists, Grosse Pointe Woods, MI
| | - Mary K. Murray
- Akron General Medical Center, Akron, OH
- Cleveland Clinic Akron General, Akron, OH
| | | | | | | | - Pond R. Kelemen
- Ashikari Breast Center, Sleepy Hollow, NY
- Zucker School of Medicine, Hofstra University, Hempstead, NY
| | - William C. Dooley
- Breast Institute, University of Oklahoma Health Sciences, Oklahoma City, OK
- Stephenson Cancer Center, Oklahoma City, OK
| | - David T. Rock
- Regional Breast Care, Fort Myers, FL
- Genesis Care, Fort Myers, FL
| | - Kenneth H. Cowan
- Fred and Pamela Buffet Cancer Center and Eppley Institute for Research in Cancer at University of Nebraska Medical Center, Omaha, NE
| | - Beth-Ann Lesnikoski
- The Breast Institute at JFK Medical Center, Atlantis, FL
- Baptist MD Anderson Cancer Center, Jacksonville, FL
| | - Julie L. Barone
- Exempla Saint Joseph Hospital, Denver, CO
- Vail Health, Vail, CO
| | - Andrew Y. Ashikari
- Zucker School of Medicine, Hofstra University, Hempstead, NY
- Northwell Health Physician Partners, Mount Kisco, NY
| | - Beth B. Dupree
- St Mary Medical Alliance Cancer Specialists, Langhorne, PA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Haan JC, Bhaskaran R, Ellappalayam A, Bijl Y, Griffioen CJ, Lujinovic E, Audeh WM, Penault-Llorca F, Mittempergher L, Glas AM. MammaPrint and BluePrint comprehensively capture the cancer hallmarks in early-stage breast cancer patients. Genes Chromosomes Cancer 2021; 61:148-160. [PMID: 34841595 PMCID: PMC9299843 DOI: 10.1002/gcc.23014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
MammaPrint® (MP) is a 70‐gene signature that stratifies early‐stage breast cancer patients into low‐ and high risk of distant relapse. Further stratification of MP risk results identifies four risk subgroups, ultra‐low (UL), low, high 1, and high 2, with specific prognostic and predictive outcomes. BluePrint® (BP) is an 80‐gene signature that classifies breast tumors as basal, luminal, or HER2 molecular subtype. To gain insight into their biological significance, we annotated the MP 70‐ and BP 80‐genes with respect to the 10 hallmarks of cancer (HoC). Furthermore, we related gene expression profiles of the extreme ends of the MP low‐ and high‐risk patients (here called, ultra‐low (UL) and ultra‐high (UH) or High2, respectively), to the 10 HoC per BP subtype by differential gene expression and pathway analysis. MP and BP gene functions reflected all 10 HoCs. Most MP and BP genes were associated with sustaining proliferative signaling, followed by genome instability and mutation categories. Based on the gene expression profiles, UL and UH subgroup pathways were down ‐or upregulated, respectively, reflecting proliferative and metastatic features, such as G2M checkpoint, DNA repair, oxidative phosphorylation, immune invasion, PI3K/AKT/mTOR signaling, and hypoxia pathways. Notably, the UH HER2‐type was enriched in several immune signaling pathways, such as IL2/STAT5 signaling and TNFα signaling via NFκB. Our results show that MP and BP gene signatures represent and capture all 10 HoCs and highlight underlying biological processes of MP extreme samples, which might guide treatment decisions as the signature captures the full spectrum of early breast cancers.
Collapse
Affiliation(s)
- Josien C Haan
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | - Rajith Bhaskaran
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | | | - Yannick Bijl
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | | | | | | | - Frédérique Penault-Llorca
- Department of Pathology and Molecular Pathology, Centre Jean Perrin, Clermont-Ferrand, France.,UMR INSERM 1240, Universite Clermont Auvergne, Clermont-Ferrand, France
| | | | - Annuska M Glas
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kunc M, Popęda M, Biernat W, Senkus E. Lost but Not Least-Novel Insights into Progesterone Receptor Loss in Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13194755. [PMID: 34638241 PMCID: PMC8507533 DOI: 10.3390/cancers13194755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor α (ERα) and progesterone receptor (PgR) are crucial prognostic and predictive biomarkers that are usually co-expressed in breast cancer (BC). However, 12-24% of BCs present ERα(+)/PgR(-) phenotype at immunohistochemical evaluation. In fact, BC may either show primary PgR(-) status (in chemonaïve tumor sample), lose PgR expression during neoadjuvant treatment, or acquire PgR(-) phenotype in local relapse or metastasis. The loss of PgR expression in ERα(+) breast cancer may signify resistance to endocrine therapy and poorer outcomes. On the other hand, ERα(+)/PgR(-) BCs may have a better response to neoadjuvant chemotherapy than double-positive tumors. Loss of PgR expression may be a result of pre-transcriptional alterations (copy number loss, mutation, epigenetic modifications), decreased transcription of the PGR gene (e.g., by microRNAs), and post-translational modifications (e.g., phosphorylation, sumoylation). Various processes involved in the down-regulation of PgR have distinct consequences on the biology of cancer cells. Occasionally, negative PgR status detected by immunohistochemical analysis is paradoxically associated with enhanced transcriptional activity of PgR that might be inhibited by antiprogestin treatment. Identification of the mechanism of PgR loss in each patient seems challenging, yet it may provide important information on the biology of the tumor and predict its responsiveness to the therapy.
Collapse
Affiliation(s)
- Michał Kunc
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (W.B.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (W.B.)
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-214 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-584-4481
| |
Collapse
|
12
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
13
|
Bergeron A, MacGrogan G, Bertaut A, Ladoire S, Arveux P, Desmoulins I, Bonnefoi H, Loustalot C, Auriol S, Beltjens F, Degrolard-Courcet E, Charon-Barra C, Richard C, Boidot R, Arnould L. Triple-negative breast lobular carcinoma: a luminal androgen receptor carcinoma with specific ESRRA mutations. Mod Pathol 2021; 34:1282-1296. [PMID: 33753865 PMCID: PMC8216909 DOI: 10.1038/s41379-021-00742-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Primary triple-negative invasive lobular breast carcinomas (TN-ILCs), which do not express hormone receptors and HER2 at diagnosis, are rare and poorly known. In this study, we analyzed the largest TN-ILC series ever reported in the literature, in comparison to phenotypically similar breast tumor subtypes: triple-negative invasive ductal carcinoma (TN-IDC) and hormone receptor-positive invasive lobular carcinoma (HR + ILC). All primary TN-ILCs registered in our database between 2000 and 2018 (n = 38) were compared to tumors from control groups, matched by stage and Elston/Ellis grade, with regard to clinical, pathologic, and immunohistochemical characteristics. A comparative molecular analysis (whole-exome and RNA sequencing using next-generation technology) was also performed. We found that TN-ILC patients were older than those with HR + ILC (P = 0.002) or TN-IDC (P < 0.001). Morphologically, TN-ILCs had aggressive phenotypes, with more pleomorphism (P = 0.003) and higher nuclear grades than HR + ILCs (P = 0.009). Immunohistochemistry showed that TN-ILCs less frequently expressed basal markers (CK5/6, EGFR and SOX10) than TN-IDCs (P < 0.001), while androgen receptor (AR) positivity was more prevalent (P < 0.001). Survival curves analysis did not show differences between TN-ILC and TN-IDC patients, while overall and distant metastasis-free survival were significantly worse compared to those with HR + ILCs (P = 0.047 and P = 0.039, respectively). At a molecular level, we found that TN-ILCs had particular transcriptomic profiles, characterized by increased AR signaling, and associated with frequent alterations in the PI3K network and ERBB2. Interestingly, whole-exome analysis also identified three specific recurrent ESRRA hotspot mutations in these tumors, which have never been described in breast cancer to date and which were absent in the other two tumor subtypes. Our findings highlight that TN-ILC is a unique aggressive breast cancer associated with elderly age, which belong to the luminal androgen receptor subtype as determined by immunohistochemistry and transcriptomic profiling. Moreover, it harbors specific molecular alterations (PI3K, ERBB2 and ESRRA) which may pave the way for new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Bergeron
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France.
| | - Gaëtan MacGrogan
- Department of Biopathology, Institut Bergonié, Bordeaux, France
- INSERM U1218, Bordeaux, France
| | - Aurélie Bertaut
- Unit of Methodology and Biostatistics, Centre Georges-François Leclerc, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
| | - Patrick Arveux
- Department of Epidemiology, Centre Georges-François Leclerc, Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Hervé Bonnefoi
- INSERM U1218, Bordeaux, France
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | | | - Sophie Auriol
- Department of Surgery, Institut Bergonié, Bordeaux, France
| | - Françoise Beltjens
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Emilie Degrolard-Courcet
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Céline Charon-Barra
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Corentin Richard
- Unit of Molecular Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Romain Boidot
- Unit of Molecular Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Laurent Arnould
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, Dijon, France
| |
Collapse
|
14
|
Bou Zerdan M, Ibrahim M, El Nakib C, Hajjar R, Assi HI. Genomic Assays in Node Positive Breast Cancer Patients: A Review. Front Oncol 2021; 10:609100. [PMID: 33665165 PMCID: PMC7921691 DOI: 10.3389/fonc.2020.609100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023] Open
Abstract
In recent years, developments in breast cancer have allowed yet another realization of individualized medicine in the field of oncology. One of these advances is genomic assays, which are considered elements of standard clinical practice in the management of breast cancer. These assays are widely used today not only to measure recurrence risk in breast cancer patients at an early stage but also to tailor treatment as well and minimize avoidable treatment side effects. At present, genomic tests are applied extensively in node negative disease. In this article, we review the use of these tests in node positive disease, explore their ramifications on neoadjuvant chemotherapy decisions, highlight sufficiently powered recent studies emphasizing their use and review the most recent guidelines.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maryam Ibrahim
- Division of Internal Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Clara El Nakib
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Hajjar
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
15
|
Szymiczek A, Lone A, Akbari MR. Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review. Clin Genet 2020; 99:613-637. [PMID: 33340095 DOI: 10.1111/cge.13900] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer is a heterogeneous disease manifesting diversity at the molecular, histological and clinical level. The development of breast cancer classification was centered on informing clinical decisions. The current approach to the classification of breast cancer, which categorizes this disease into clinical subtypes based on the detection of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and proliferation marker Ki67, is not ideal. This is manifested as a heterogeneity of therapeutic responses and outcomes within the clinical subtypes. The newer classification model, based on gene expression profiling (intrinsic subtyping) informs about transcriptional responses downstream from IHC single markers, revealing deeper appreciation for the disease heterogeneity and capturing tumor biology in a more comprehensive way than an expression of a single protein or gene alone. While accumulating evidences suggest that intrinsic subtypes provide clinically relevant information beyond clinical surrogates, it is imperative to establish whether the current conventional immunohistochemistry-based clinical subtyping approach could be improved by gene expression profiling and if this approach has a potential to translate into clinical practice.
Collapse
Affiliation(s)
- Agata Szymiczek
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Amna Lone
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Mittempergher L, Delahaye LJ, Witteveen AT, Snel MH, Mee S, Chan BY, Dreezen C, Besseling N, Luiten EJ. Performance Characteristics of the BluePrint® Breast Cancer Diagnostic Test. Transl Oncol 2020; 13:100756. [PMID: 32208353 PMCID: PMC7097521 DOI: 10.1016/j.tranon.2020.100756] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
The analytical performance of a multi-gene diagnostic signature depends on many parameters, including precision, repeatability, reproducibility and intra-tumor heterogeneity. Here we study the analytical performance of the BluePrint 80-gene breast cancer molecular subtyping test through determination of these performance characteristics. BluePrint measures the expression of 80 genes that assess functional pathways which determine the intrinsic breast cancer molecular subtypes (i.e. Luminal-type, HER2-type, Basal-type). Knowing a tumor's dominant functional pathway can help allocate effective treatment to appropriate patients. Here we show that BluePrint is a highly precise and highly reproducible test with correlations above 98% based on the generated index and subtype concordance above 99%. Therefore, BluePrint can be used as a robust and reliable tool to identify breast cancer molecular subtypes.
Collapse
Affiliation(s)
- Lorenza Mittempergher
- Research and Development, Agendia N.V., Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Leonie Jmj Delahaye
- Research and Development, Agendia N.V., Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Anke T Witteveen
- Research and Development, Agendia N.V., Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Mireille Hj Snel
- Research and Development, Agendia N.V., Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Sammy Mee
- Product Support, Agendia Inc., 22 Morgan, Irvine, CA 92780, USA
| | - Bob Y Chan
- Product Support, Agendia Inc., 22 Morgan, Irvine, CA 92780, USA
| | - Christa Dreezen
- Research and Development, Agendia N.V., Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Naomi Besseling
- Research and Development, Agendia N.V., Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Ernest Jt Luiten
- Department of Surgery, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands
| |
Collapse
|
17
|
Bertucci F, Finetti P, Goncalves A, Birnbaum D. The therapeutic response of ER+/HER2- breast cancers differs according to the molecular Basal or Luminal subtype. NPJ Breast Cancer 2020; 6:8. [PMID: 32195331 PMCID: PMC7060267 DOI: 10.1038/s41523-020-0151-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
The genomics-based molecular classifications aim at identifying more homogeneous classes than immunohistochemistry, associated with a more uniform clinical outcome. We conducted an in silico analysis on a meta-dataset including gene expression data from 5342 clinically defined ER+/HER2- breast cancers (BC) and DNA copy number/mutational and proteomic data. We show that the Basal (16%) versus Luminal (74%) subtypes as defined using the 80-gene signature differ in terms of response/vulnerability to systemic therapies of BC. The Basal subtype is associated with better chemosensitivity, lesser benefit from adjuvant hormone therapy, and likely better sensitivity to PARP inhibitors, platinum salts and immune therapy, and other targeted therapies under development such as FGFR inhibitors. The Luminal subtype displays potential better sensitivity to CDK4/6 inhibitors and vulnerability to targeted therapies such as PIK3CA, AR and Bcl-2 inhibitors. Expression profiles are very different, showing an intermediate position of the ER+/HER2- Basal subtype between the ER+/HER2- Luminal and ER- Basal subtypes, and let suggest a different cell-of-origin. Our data suggest that the ER+/HER2- Basal and Luminal subtypes should not be assimilated and treated as a homogeneous group.
Collapse
Affiliation(s)
- François Bertucci
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
- Département d’Oncologie Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Anthony Goncalves
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
- Département d’Oncologie Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| |
Collapse
|