1
|
DeCasien AR, Tsai K, Liu S, Thomas A, Raznahan A. Evolutionary divergence between homologous X-Y chromosome genes shapes sex-biased biology. Nat Ecol Evol 2025; 9:448-463. [PMID: 39856216 DOI: 10.1038/s41559-024-02627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025]
Abstract
Sex chromosomes are a fundamental aspect of sex-biased biology, but the extent to which homologous X-Y gene pairs ('the gametologs') contribute to sex-biased phenotypes remains hotly debated. Although these genes tend to exhibit large sex differences in expression throughout the body (XX females can express both X members, and XY males can express one X and one Y member), there is conflicting evidence regarding the degree of functional divergence between the X and Y members. Here we develop and apply co-expression fingerprint analysis to characterize functional divergence between the X and Y members of 17 gametolog gene pairs across >40 human tissues. Gametolog pairs exhibit functional divergence between the sexes that is driven by divergence between the X versus Y members (assayed in males), and this within-pair divergence is greatest among pairs with evolutionarily distant X and Y members. These patterns reflect that X versus Y gametologs show coordinated patterns of asymmetric coupling with large sets of autosomal genes, which are enriched for functional pathways and gene sets implicated in sex-biased biology and disease. Our findings suggest that the X versus Y gametologs have diverged in function and prioritize specific gametolog pairs for future targeted experimental studies.
Collapse
Affiliation(s)
- Alex R DeCasien
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA.
- Computational and Evolutionary Neurogenomics Unit, Laboratory of Neurogenetics, NIA IRP, NIH, Bethesda, MD, USA.
| | - Kathryn Tsai
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA
| | - Adam Thomas
- Data Science and Sharing Team, NIMH IRP, NIH, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Baker EC, Riley DG, Cardoso RC, Hairgrove TB, Long CR, Randel RD, Welsh TH. Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves. BIOLOGY 2024; 13:915. [PMID: 39596870 PMCID: PMC11592456 DOI: 10.3390/biology13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
As the amygdala is associated with fear and anxiety, it is important to determine the potential effects of gestational stressors on behavior and stress responses in offspring. The objective of this study was to investigate the effects of prenatal transportation stress on amygdala gene expression in 25-day-old Brahman calves, focusing on sex-specific differences. Amygdala tissue samples from prenatally stressed (PNS) and control bull and heifer calves were analyzed using RNA sequencing. A thorough outlier detection process, utilizing visual inspection of multidimensional scaling plots, robust principal component analysis, and PCAGrid methods, led to the exclusion of 5 of 32 samples from subsequent analyses. Differential expression analysis revealed no significant treatment differences between the control and PNS groups within either sex. However, sex-specific differences in gene expression were identified in both the control and PNS groups. The control group showed seven differentially expressed genes between sexes, while ten were identified between PNS males and females, with seven located on the X chromosome. Among these was the ubiquitin-specific peptidase 9 X-linked gene, which plays a role in neurodevelopmental pathways. When comparing males to females, regardless of treatment, a total of 58 genes were differentially expressed, with 45 showing increased expression in females. Gene enrichment analysis indicated that many differentially expressed genes are associated with infectious disease-related pathways. Future research should explore amygdala size and functional responses to various postnatal stimuli.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Thomas B. Hairgrove
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Extension, College Station, TX 77843, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, Overton, TX 75684, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (D.G.R.); (R.C.C.); (T.B.H.); (C.R.L.); (R.D.R.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
3
|
Ben-Mahmoud A, Gupta V, Abdelaleem A, Thompson R, Aden A, Mbarek H, Saad C, Tolefat M, Alshaban F, Stanton LW, Kim HG. Genome Sequencing Identifies 13 Novel Candidate Risk Genes for Autism Spectrum Disorder in a Qatari Cohort. Int J Mol Sci 2024; 25:11551. [PMID: 39519104 PMCID: PMC11547081 DOI: 10.3390/ijms252111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication, restricted interests, and repetitive behaviors. Despite considerable research efforts, the genetic complexity of ASD remains poorly understood, complicating diagnosis and treatment, especially in the Arab population, with its genetic diversity linked to migration, tribal structures, and high consanguinity. To address the scarcity of ASD genetic data in the Middle East, we conducted genome sequencing (GS) on 50 ASD subjects and their unaffected parents. Our analysis revealed 37 single-nucleotide variants from 36 candidate genes and over 200 CGG repeats in the FMR1 gene in one subject. The identified variants were classified as uncertain, likely pathogenic, or pathogenic based on in-silico algorithms and ACMG criteria. Notably, 52% of the identified variants were homozygous, indicating a recessive genetic architecture to ASD in this population. This finding underscores the significant impact of high consanguinity within the Qatari population, which could be utilized in genetic counseling/screening program in Qatar. We also discovered single nucleotide variants in 13 novel genes not previously associated with ASD: ARSF, BAHD1, CHST7, CUL2, FRMPD3, KCNC4, LFNG, RGS4, RNF133, SCRN2, SLC12A8, USP24, and ZNF746. Our investigation categorized the candidate genes into seven groups, highlighting their roles in cognitive development, including the ubiquitin pathway, transcription factors, solute carriers, kinases, glutamate receptors, chromatin remodelers, and ion channels.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
| | - Alice Abdelaleem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 8854, Egypt
| | - Richard Thompson
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
| | - Abdi Aden
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha 5825, Qatar; (H.M.); (C.S.)
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha 5825, Qatar; (H.M.); (C.S.)
| | - Mohamed Tolefat
- Shafallah Center for Children with Disabilities, Doha 2713, Qatar;
| | - Fouad Alshaban
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
| | - Lawrence W. Stanton
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 5825, Qatar; (A.B.-M.); (V.G.); (A.A.); (R.T.); (A.A.); (F.A.)
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| |
Collapse
|
4
|
Furtado CLM, Soares MR, Verruma CG, de Oliveira Gennaro FG, da Silva LECM, Ferriani RA, Dos Reis RM. BCORL1, POF1B, and USP9X copy number variation in women with idiopathic diminished ovarian reserve. J Assist Reprod Genet 2024; 41:2279-2288. [PMID: 38995507 PMCID: PMC11405560 DOI: 10.1007/s10815-024-03185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To analyze the copy number variation (CNV) in the X-linked genes BCORL1, POF1B, and USP9X in idiopathic diminished ovarian reserve (DOR). METHODS This case-control study included 47 women, 26 with DOR and 21 in the control group. Age, weight, height, BMI, and FSH level were evaluated, as well as antral follicle count (AFC), oocyte retrieval after controlled ovarian stimulation, and metaphase II (MII) oocytes. The CNVs of BCORL1, USP9X, and POF1B genes were measured by quantitative real time PCR (qPCR) using two reference genes, the HPRT1 (X-linked) and MFN2 (autosomal). Protein-protein interaction network and functional enrichment analysis were performed using the STRING database. RESULTS The mean age was 36.52 ± 4.75 in DOR women and 35.38 ± 4.14 in control. Anthropometric measures did not differ between the DOR and control groups. DOR women presented higher FSH (p = 0.0025) and lower AFC (p < .0001), oocyte retrieval after COS (p = 0.0004), and MII oocytes (p < .0001) when compared to the control group. BCORL1 and POF1B did not differ in copy number between DOR and control. However, DOR women had more copies of USP9X than the control group (p = 0.028). CONCLUSION The increase in the number of copies of the USP9X gene may lead to overexpression in idiopathic DOR and contribute to altered folliculogenesis and oocyte retrieval.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Graduate Program in Medical Sciences, Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil.
| | - Murilo Racy Soares
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flavia Gaona de Oliveira Gennaro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
6
|
Ebstein F, Latypova X, Hung KYS, Prado MA, Lee BH, Möller S, Zieba BA, Florenceau L, Vignard V, Poirier L, Moroni I, Dubucs C, Chassaing N, Horvath J, Prokisch H, Küry S, Bézieau S, Paulo JA, Finley D, Krüger E, Ghezzi D, Isidor B. Biallelic USP14 variants cause a syndromic neurodevelopmental disorder. Genet Med 2024; 26:101120. [PMID: 38469793 PMCID: PMC11241549 DOI: 10.1016/j.gim.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
PURPOSE Imbalances in protein homeostasis affect human brain development, with the ubiquitin-proteasome system (UPS) and autophagy playing crucial roles in neurodevelopmental disorders (NDD). This study explores the impact of biallelic USP14 variants on neurodevelopment, focusing on its role as a key hub connecting UPS and autophagy. METHODS Here, we identified biallelic USP14 variants in 4 individuals from 3 unrelated families: 1 fetus, a newborn with a syndromic NDD and 2 siblings affected by a progressive neurological disease. Specifically, the 2 siblings from the latter family carried 2 compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330∗), whereas the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs∗24) variant, and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs∗11) variant. Functional studies were conducted using sodium dodecyl-sulfate polyacrylamide gel electrophoresis, western blotting, and mass spectrometry analyses in both patient-derived and CRISPR-Cas9-generated cells. RESULTS Our investigations indicated that the USP14 variants correlated with reduced N-terminal methionine excision, along with profound alterations in proteasome, autophagy, and mitophagy activities. CONCLUSION Biallelic USP14 variants in NDD patients perturbed protein degradation pathways, potentially contributing to disorder etiology. Altered UPS, autophagy, and mitophagy activities underscore the intricate interplay, elucidating their significance in maintaining proper protein homeostasis during brain development.
Collapse
Affiliation(s)
- Frédéric Ebstein
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | | | - Miguel A. Prado
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Byung-Hoon Lee
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
- Dept of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Sophie Möller
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Barbara A. Zieba
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Laëtitia Florenceau
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
| | - Virginie Vignard
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Léa Poirier
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Charlotte Dubucs
- Département anatomie et cytologie pathologiques, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Sébastien Küry
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Stéphane Bézieau
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Joao A. Paulo
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
| | - Daniel Finley
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
| | - Elke Krüger
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| |
Collapse
|
7
|
Reis LM, Amor DJ, Haddad RA, Nowak CB, Keppler-Noreuil KM, Chisholm SA, Semina EV. Alternative Genetic Diagnoses in Axenfeld-Rieger Syndrome Spectrum. Genes (Basel) 2023; 14:1948. [PMID: 37895297 PMCID: PMC10606241 DOI: 10.3390/genes14101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Axenfeld-Rieger anomaly (ARA) is a specific ocular disorder that is frequently associated with other systemic abnormalities. PITX2 and FOXC1 variants explain the majority of individuals with Axenfeld-Rieger syndrome (ARS) but leave ~30% unsolved. Here, we present pathogenic/likely pathogenic variants in nine families with ARA/ARS or similar phenotypes affecting five different genes/regions. USP9X and JAG1 explained three families each. USP9X was recently linked with syndromic cognitive impairment that includes hearing loss, dental defects, ventriculomegaly, Dandy-Walker malformation, skeletal anomalies (hip dysplasia), and other features showing a significant overlap with FOXC1-ARS. Anterior segment anomalies are not currently associated with USP9X, yet our cases demonstrate ARA, congenital glaucoma, corneal neovascularization, and cataracts. The identification of JAG1 variants, linked with Alagille syndrome, in three separate families with a clinical diagnosis of ARA/ARS highlights the overlapping features and high variability of these two phenotypes. Finally, intragenic variants in CDK13, BCOR, and an X chromosome deletion encompassing HCCS and AMELX (linked with ocular and dental anomalies, correspondingly) were identified in three additional cases with ARS. Accurate diagnosis has important implications for clinical management. We suggest that broad testing such as exome sequencing be applied as a second-tier test for individuals with ARS with normal results for PITX2/FOXC1 sequencing and copy number analysis, with attention to the described genes/regions.
Collapse
Affiliation(s)
- Linda M. Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.M.R.); (S.A.C.)
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - David J. Amor
- Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Raad A. Haddad
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Catherine B. Nowak
- Division of Genetics and Metabolism, MassGeneral Hospital for Children, Boston, MA 02114, USA;
| | - Kim M. Keppler-Noreuil
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Smith Ann Chisholm
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.M.R.); (S.A.C.)
| | - Elena V. Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.M.R.); (S.A.C.)
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Sisoudiya SD, Mishra P, Li H, Schraw JM, Scheurer ME, Salvi S, Doddapaneni H, Muzny D, Mitchell D, Taylor O, Sabo A, Lupo PJ, Plon SE. Identification of USP9X as a leukemia susceptibility gene. Blood Adv 2023; 7:4563-4575. [PMID: 37289514 PMCID: PMC10425687 DOI: 10.1182/bloodadvances.2023009814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
We recently reported that children with multiple birth defects have a significantly higher risk of childhood cancer. We performed whole-genome sequencing on a cohort of probands from this study with birth defects and cancer and their parents. Structural variant analysis identified a novel 5 kb de novo heterozygous inframe deletion overlapping the catalytic domain of USP9X in a female proband with multiple birth defects, developmental delay, and B-cell acute lymphoblastic leukemia (B-ALL). Her phenotype was consistent with female-restricted X-linked syndromic intellectual developmental disorder-99 (MRXS99F). Genotype-phenotype analysis including previously reported female probands (n = 42) demonstrated that MRXS99F probands with B-ALL (n = 3) clustered with subjects with loss-of-function (LoF) USP9X variants and multiple anomalies. The cumulative incidence of B-ALL among these female probands (7.1%) was significantly higher than an age- and sex-matched cohort (0.003%) from the Surveillance, Epidemiology, and End Results database (P < .0001, log-rank test). There are no reports of LoF variants in males. Males with hypomorphic missense variants have neurodevelopmental disorders without birth defects or leukemia risk. In contrast, in sporadic B-ALL, somatic LoF USP9X mutations occur in both males and females, and expression levels are comparable in leukemia samples from both sexes (P = .54), with the highest expressors being female patients with extra copies of the X-chromosome. Overall, we describe USP9X as a novel female-specific leukemia predisposition gene associated with multiple congenital, neurodevelopmental anomalies, and B-ALL risk. In contrast, USP9X serves as a tumor suppressor in sporadic pediatric B-ALL in both sexes, with low expression associated with poorer survival in patients with high-risk B-ALL.
Collapse
Affiliation(s)
- Saumya Dushyant Sisoudiya
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Pamela Mishra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jeremy M. Schraw
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Sejal Salvi
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Danielle Mitchell
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Olga Taylor
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Philip J. Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Sharon E. Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
9
|
Agazzi C, Magliozzi M, Iacoviello O, Palladino S, Delvecchio M, Masciopinto M, Galati A, Novelli A, Causio FA, Zampino G, Ruggiero C, Fischetto R. Novel Variant in the USP9X Gene Is Associated with Congenital Heart Disease in a Male Patient: A Case Report and Literature Review. Mol Syndromol 2023; 14:158-163. [PMID: 37064340 PMCID: PMC10090979 DOI: 10.1159/000527424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The X-chromosomal USP9X gene encodes a deubiquitylating enzyme involved in protein turnover and TGF-β signaling during fetal and neuronal development. USP9X variants in females are primarily associated with complete loss-of-function (LOF) alleles, leading to neurodevelopmental delay and intellectual disability, as well as a wide range of congenital anomalies. In contrast, USP9X missense variants in males often result in partial rather than complete LOF, specifically affecting neuronal migration and development. USP9X variants in males are associated with intellectual disability, behavioral disorders, global developmental delay, speech delay, and structural CNS defects. Facial dysmorphisms are found in almost all patients. Case Presentation We report the case of an Italian boy presenting dysmorphism, intellectual disability, structural brain anomalies, and congenital heart disease. Using next-generation sequencing analysis, we identified a hemizygous de novo variant in the USP9X gene (c.5470A>G, p.Met1824Val) that was never reported in the literature. Conclusion We provide an overview of the available literature on USP9X variants in males, in order to further expand the genotypic and phenotypic landscape of male-restricted X-linked mental retardation syndrome. Our findings confirm the involvement of USP9X variants in neuronal development and corroborate the possible association between the novel USP9X variant and congenital heart malformation.
Collapse
Affiliation(s)
- Cristiana Agazzi
- Rare Diseases Unit, Fondazione Policlinico Universitario Gemelli, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Onofrio Iacoviello
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Stefano Palladino
- Radiology Unit, Department of Interdisciplinary Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Maurizio Delvecchio
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Maristella Masciopinto
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Alessio Galati
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Andrea Causio
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Zampino
- Rare Diseases Unit, Fondazione Policlinico Universitario Gemelli, IRCCS, Rome, Italy
| | - Claudia Ruggiero
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Rita Fischetto
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| |
Collapse
|
10
|
Shen J, Lin X, Dai F, Chen G, Lin H, Fang B, Liu H. Ubiquitin-specific peptidases: Players in bone metabolism. Cell Prolif 2023:e13444. [PMID: 36883930 PMCID: PMC10392067 DOI: 10.1111/cpr.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoporosis is an ageing-related disease, that has become a major public health problem and its pathogenesis has not yet been fully elucidated. Substantial evidence suggests a strong link between overall age-related disease progression and epigenetic modifications throughout the life cycle. As an important epigenetic modification, ubiquitination is extensively involved in various physiological processes, and its role in bone metabolism has attracted increasing attention. Ubiquitination can be reversed by deubiquitinases, which counteract protein ubiquitination degradation. As the largest and most structurally diverse cysteinase family of deubiquitinating enzymes, ubiquitin-specific proteases (USPs), comprising the largest and most structurally diverse cysteine kinase family of deubiquitinating enzymes, have been found to be important players in maintaining the balance between bone formation and resorption. The aim of this review is to explore recent findings highlighting the regulatory functions of USPs in bone metabolism and provide insight into the molecular mechanisms governing their actions during bone loss. An in-deep understanding of USPs-mediated regulation of bone formation and bone resorption will provide a scientific rationale for the discovery and development of novel USP-targeted therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Xiaoning Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Feifei Dai
- School of Medicine, Putian Universtiy, Putian, China
| | - Guoli Chen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Liu
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
11
|
Strong A, Behr M, Lott C, Clark AJ, Mentch F, Da Silva RP, Rux DR, Campbell R, Skraban C, Wang X, Anari JB, Sinder B, Cahill PJ, Sleiman P, Hakonarson H. Molecular diagnosis and novel genes and phenotypes in a pediatric thoracic insufficiency cohort. Sci Rep 2023; 13:991. [PMID: 36653407 PMCID: PMC9849333 DOI: 10.1038/s41598-023-27641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Thoracic insufficiency syndromes are a genetically and phenotypically heterogeneous group of disorders characterized by congenital abnormalities or progressive deformation of the chest wall and/or vertebrae that result in restrictive lung disease and compromised respiratory capacity. We performed whole exome sequencing on a cohort of 42 children with thoracic insufficiency to elucidate the underlying molecular etiologies of syndromic and non-syndromic thoracic insufficiency and predict extra-skeletal manifestations and disease progression. Molecular diagnosis was established in 24/42 probands (57%), with 18/24 (75%) probands having definitive diagnoses as defined by laboratory and clinical criteria and 6/24 (25%) probands having strong candidate genes. Gene identified in cohort patients most commonly encoded components of the primary cilium, connective tissue, and extracellular matrix. A novel association between KIF7 and USP9X variants and thoracic insufficiency was identified. We report and expand the genetic and phenotypic spectrum of a cohort of children with thoracic insufficiency, reinforce the prevalence of extra-skeletal manifestations in thoracic insufficiency syndromes, and expand the phenotype of KIF7 and USP9X-related disease to include thoracic insufficiency.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Meckenzie Behr
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carina Lott
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abigail J Clark
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frank Mentch
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino Da Silva
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Danielle R Rux
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Campbell
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Cara Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Xiang Wang
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason B Anari
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Sinder
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick J Cahill
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Patrick Sleiman
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Endowed Chair in Genomic Research, Division of Pulmonary Medicine, The Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
A patient with mosaic USP9X gene variant. Eur J Med Genet 2022; 65:104638. [DOI: 10.1016/j.ejmg.2022.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
13
|
Leitão E, Schröder C, Parenti I, Dalle C, Rastetter A, Kühnel T, Kuechler A, Kaya S, Gérard B, Schaefer E, Nava C, Drouot N, Engel C, Piard J, Duban-Bedu B, Villard L, Stegmann APA, Vanhoutte EK, Verdonschot JAJ, Kaiser FJ, Tran Mau-Them F, Scala M, Striano P, Frints SGM, Argilli E, Sherr EH, Elder F, Buratti J, Keren B, Mignot C, Héron D, Mandel JL, Gecz J, Kalscheuer VM, Horsthemke B, Piton A, Depienne C. Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X. Nat Commun 2022; 13:6570. [PMID: 36323681 PMCID: PMC9630267 DOI: 10.1038/s41467-022-34264-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.
Collapse
Affiliation(s)
- Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilaria Parenti
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Carine Dalle
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Agnès Rastetter
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bénédicte Gérard
- Unité de Génétique Moléculaire, IGMA, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Caroline Nava
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67400, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, 67400, France
- Université de Strasbourg, Illkirch, 67400, France
| | - Camille Engel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67400, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, 67400, France
- Université de Strasbourg, Illkirch, 67400, France
| | - Juliette Piard
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne-Franche-Comté, Dijon, France
| | | | - Laurent Villard
- Aix-Marseille University, INSERM, MMG, UMR-S 1251, Faculté de médecine, Marseille, France
- Département de Génétique Médicale, APHM, Hôpital d'Enfants de La Timone, Marseille, France
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute (CARIM), Departments of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frédéric Tran Mau-Them
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne-Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Suzanna G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Genetics and Cell Biology, Faculty of Health Medicine Life Sciences, Maastricht University Medical Center+, Maastricht University, Maastricht, The Netherlands
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Fikret Elder
- UF de Génomique du Développement, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France
| | - Julien Buratti
- UF de Génomique du Développement, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France
| | - Boris Keren
- UF de Génomique du Développement, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- APHP, Sorbonne Université, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France
| | - Delphine Héron
- APHP, Sorbonne Université, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France
| | - Jean-Louis Mandel
- Unité de Génétique Moléculaire, IGMA, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67400, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, 67400, France
- Université de Strasbourg, Illkirch, 67400, France
| | - Jozef Gecz
- School of Medicine, The University of Adelaide, Adelaide, 5005, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5006, Australia
- South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Amélie Piton
- Unité de Génétique Moléculaire, IGMA, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67400, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, 67400, France
- Université de Strasbourg, Illkirch, 67400, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Jolly LA, Kumar R, Penzes P, Piper M, Gecz J. The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders. Biol Psychiatry 2022; 92:614-625. [PMID: 35662507 PMCID: PMC10084722 DOI: 10.1016/j.biopsych.2022.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.
Collapse
Affiliation(s)
- Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia.
| | - Raman Kumar
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael Piper
- School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Non-Invasive Detection of a De Novo Frameshift Variant of STAG2 in a Female Fetus: Escape Genes Influence the Manifestation of X-Linked Diseases in Females. J Clin Med 2022; 11:jcm11144182. [PMID: 35887945 PMCID: PMC9323000 DOI: 10.3390/jcm11144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Background: We report on a 20-week-old female fetus with a diaphragmatic hernia and other malformations, all of which appeared after the first-trimester ultrasound. Methods and Results: Whole trio exome sequencing (WES) on cell-free fetal DNA (cff-DNA) revealed a de novo frameshift variant of the X-linked STAG2 gene. Loss-of-function (LoF) STAG2 variants cause either holoprosencephaly (HPE) or Mullegama–Klein–Martinez syndrome (MKMS), are de novo, and only affect females, indicating male lethality. In contrast, missense mutations associate with milder forms of MKMS and follow the classic X-linked recessive inheritance transmitted from healthy mothers to male offspring. STAG2 has been reported to escape X-inactivation, suggesting that disease onset in LoF females is dependent on inadequate dosing for at least some of the transcripts, as is the case with a part of the autosomal dominant diseases. Missense STAG2 variants produce a quantity of transcripts, which, while resulting in a different protein, leads to disease only in hemizygous males. Similar inheritance patterns are described for other escapee genes. Conclusions: This study confirms the advantage of WES on cff-DNA and emphasizes the role of the type of the variant in X-linked disorders.
Collapse
|
16
|
Saida K, Chong PF, Yamaguchi A, Saito N, Ikehara H, Koshimizu E, Miyata R, Ishiko A, Nakamura K, Ohnishi H, Fujioka K, Sakakibara T, Asada H, Ogawa K, Kudo K, Ohashi E, Kawai M, Abe Y, Tsuchida N, Uchiyama Y, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Miyake N, Kato M, Kira R, Matsumoto N. Monogenic causes of pigmentary mosaicism. Hum Genet 2022; 141:1771-1784. [PMID: 35503477 DOI: 10.1007/s00439-022-02437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biological parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong candidates in the remaining patient. Exome sequencing, using patients' blood and skin samples is highly recommended as the first choice for detecting causative genetic variants of pigmentary mosaicism.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Asuka Yamaguchi
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Naka Saito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata, Japan
| | - Hajime Ikehara
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Rie Miyata
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kei Fujioka
- Center of General Internal Medicine and Rheumatology, Gifu Municipal Hospital, Gifu, Japan
| | - Takafumi Sakakibara
- Department of Pediatrics, Nara Medical University School of Medicine, Nara, Japan
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kohei Ogawa
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kyoko Kudo
- Department of Dermatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Eri Ohashi
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Michiko Kawai
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
17
|
Li D, March ME, Wang T, Merengwa V, Sertori Finoti L, Schrier Vergano SA, Hakonarson H, Bhoj EJ. Exome and RNA-Seq analyses of an incomplete penetrance variant in USP9X in female-specific syndromic intellectual disability. Am J Med Genet A 2022; 188:1808-1814. [PMID: 35253988 DOI: 10.1002/ajmg.a.62715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
Pathogenic variants in USP9X, on X chromosome, have been implicated in syndromic intellectual disability (ID) in both males and females with distinct craniofacial features. We report a truncating variant, c.885_889delAAAAG, p.(Lys296Serfs*4), in the USP9X gene with incomplete penetrance in two nontwin female siblings with phenotypic resemblance to female-specific syndromic ID (MIM 300969, also known as MRX99F). To investigate the possible genetic etiology of the reduced penetrance, X-inactivation, RNA-Seq, and full quad exome analyses were attempted, but failed to identify a promising candidate modifier. While the penetrance of pathogenic variants in USP9X in female appears to be high (95%) and the variants frequently occur de novo, incomplete penetrance should be considered.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tiancheng Wang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Victoria Merengwa
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Livia Sertori Finoti
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Le Collen L, Delemer B, Spodenkiewicz M, Cornillet Lefebvre P, Durand E, Vaillant E, Badreddine A, Derhourhi M, Mouhoub TA, Jouret G, Juttet P, Souchon PF, Vaxillaire M, Froguel P, Bonnefond A, Doco Fenzy M. Compound genetic etiology in a patient with a syndrome including diabetes, intellectual deficiency and distichiasis. Orphanet J Rare Dis 2022; 17:86. [PMID: 35227307 PMCID: PMC8887189 DOI: 10.1186/s13023-022-02248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied a young woman with atypical diabetes associated with mild intellectual disability, lymphedema distichiasis syndrome (LDS) and polymalformative syndrome including distichiasis. We used different genetic tools to identify causative pathogenic mutations and/or copy number variations. RESULTS Although proband's, diabetes mellitus occurred during childhood, type 1 diabetes was unlikely due to the absence of detectable autoimmunity. DNA microarray analysis first identified a de novo, heterozygous deletion at the chr16q24.2 locus. Previously, thirty-three pathogenic or likely pathogenic deletions encompassing this locus have been reported in patients presenting with intellectual deficiency, obesity and/or lymphedema but not with diabetes. Of note, the deletion encompassed two topological association domains, whose one included FOXC2 that is known to be linked with LDS. Via whole-exome sequencing, we found a heterozygous, likely pathogenic variant in WFS1 (encoding wolframin endoplasmic reticulum [ER] transmembrane glycoprotein) which was inherited from her father who also had diabetes. WFS1 is known to be involved in monogenic diabetes. We also found a likely pathogenic variant in USP9X (encoding ubiquitin specific peptidase 9 X-linked) that is involved in X-linked intellectual disability, which was inherited from her mother who had dyscalculia and dyspraxia. CONCLUSIONS Our comprehensive genetic analysis suggested that the peculiar phenotypes of our patient were possibly due to the combination of multiple genetic causes including chr16q24.2 deletion, and two likely pathogenic variants in WFS1 and USP9X.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France. .,Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France. .,University of Lille, Lille, France. .,Department of Genetic, University Hospital Center of Reims, Reims, France.
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France. .,Faculty of Medicine of Reims, CRESTIC EA 3804, University of Reims Champagne Ardenne, Moulin de La Housse, BP 1039, 51687, Reims Cedex 2, France.
| | | | | | - Emmanuelle Durand
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Tarik Ait Mouhoub
- Department of Genetic, University Hospital Center of Reims, Reims, France
| | - Guillaume Jouret
- Department of Genetic, University Hospital Center of Reims, Reims, France.,Departement of Genetic, 1 rue Louis Rech Dudelange, 3555, Luxembourg, Luxembourg
| | | | | | - Martine Vaxillaire
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France. .,University of Lille, Lille, France.
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France. .,University of Lille, Lille, France.
| | - Martine Doco Fenzy
- Department of Genetic, University Hospital Center of Reims, Reims, France. .,Faculty of Medicine of Reims, EA 3801, URCA, Reims, France.
| |
Collapse
|
19
|
Akopian D, McGourty CA, Rapé M. Co-adaptor driven assembly of a CUL3 E3 ligase complex. Mol Cell 2022; 82:585-597.e11. [PMID: 35120648 PMCID: PMC8884472 DOI: 10.1016/j.molcel.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are essential ubiquitylation enzymes that combine a catalytic core built around cullin scaffolds with ∼300 exchangeable substrate adaptors. To ensure robust signal transduction, cells must constantly form new CRLs by pairing substrate-bound adaptors with their cullins, but how this occurs at the right time and place is still poorly understood. Here, we show that formation of individual CRL complexes is a tightly regulated process. Using CUL3KLHL12 as a model, we found that its co-adaptor PEF1-ALG2 initiates CRL3 formation by releasing KLHL12 from an assembly inhibitor at the endoplasmic reticulum, before co-adaptor monoubiquitylation stabilizes the enzyme for substrate modification. As the co-adaptor also helps recruit substrates, its role in CRL assembly couples target recognition to ubiquitylation. We propose that regulators dedicated to specific CRLs, such as assembly inhibitors or co-adaptors, cooperate with target-agnostic adaptor exchange mechanisms to establish E3 ligase complexes that control metazoan development.
Collapse
Affiliation(s)
- David Akopian
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720
| | - Colleen A. McGourty
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720,Quantitative Biosciences Institute, QB3, University of California at Berkeley, Berkeley CA 94720,lead contact,to whom correspondence should be addressed:
| |
Collapse
|
20
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
21
|
Cloney T, Gallacher L, Pais LS, Tan NB, Yeung A, Stark Z, Brown NJ, McGillivray G, Delatycki MB, de Silva MG, Downie L, Stutterd CA, Elliott J, Compton AG, Lovgren A, Oertel R, Francis D, Bell KM, Sadedin S, Lim SC, Helman G, Simons C, Macarthur DG, Thorburn DR, O'Donnell-Luria AH, Christodoulou J, White SM, Tan TY. Lessons learnt from multifaceted diagnostic approaches to the first 150 families in Victoria's Undiagnosed Diseases Program. J Med Genet 2021; 59:748-758. [PMID: 34740920 DOI: 10.1136/jmedgenet-2021-107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Clinical exome sequencing typically achieves diagnostic yields of 30%-57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals. AIM We share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases. METHODS We enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis. RESULTS In 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis. CONCLUSION We share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease-gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.
Collapse
Affiliation(s)
- Thomas Cloney
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lynn S Pais
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Natalie B Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle G de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lilian Downie
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chloe A Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison G Compton
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alysia Lovgren
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Analytic and Translational Genomics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Ralph Oertel
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sze Chern Lim
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Guy Helman
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cas Simons
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Translational Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Daniel G Macarthur
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anne H O'Donnell-Luria
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia .,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Meira JGC, Magalhães BS, Ferreira IBB, Tavares DF, Kobayashi GS, Leão EKEA. Novel USP9X variant associated with syndromic intellectual disability in a female: A case study and review. Am J Med Genet A 2021; 185:1569-1574. [PMID: 33638286 DOI: 10.1002/ajmg.a.62141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Heterozygous variants in USP9X are associated with female-restricted X-linked mental retardation (MRXS99F), a rare syndrome characterized by neurodevelopmental delay, intellectual disability (ID), and a wide variety of additional congenital anomalies. Here, we report a girl harboring a novel de novo loss-of-function variant in USP9X (c.4091delinsAG, p.Thr1364Lysfs*7), and literature review revealed novel prenatal features associated with MRXS99F, expanding the genotypic and phenotypic landscape of the syndrome. It is important to consider X-linked diseases in girls with ID and perform directed molecular investigation to provide correct diagnosis and prognosis.
Collapse
Affiliation(s)
- Joanna Goes Castro Meira
- Department of Life Sciences, Universidade do Estado da Bahia-UNEB, Salvador, Brazil.,Department of Medical Genetics, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia-UFBA, Salvador, Brazil
| | | | | | - Dione Fernandes Tavares
- Department of Medical Genetics, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia-UFBA, Salvador, Brazil
| | - Gerson Shigeru Kobayashi
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Emília Katiane E A Leão
- Department of Life Sciences, Universidade do Estado da Bahia-UNEB, Salvador, Brazil.,Department of Medical Genetics, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia-UFBA, Salvador, Brazil
| |
Collapse
|