1
|
Galdamez LA, Mader TH, Ong J, Kadipasaoglu CM, Lee AG. A multifactorial, evidence-based analysis of pathophysiology in Spaceflight Associated Neuro-Ocular Syndrome (SANS). Eye (Lond) 2025; 39:700-709. [PMID: 39827235 PMCID: PMC11885454 DOI: 10.1038/s41433-025-03618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The National Aeronautics and Space Administration (NASA) in the United States has been studying a fascinating and unique constellation of neuro-ophthalmic findings collectively known as Spaceflight Associated Neuro-Ocular Syndrome (SANS). SANS is unique to the space environment of microgravity and produces novel physiological and pathological findings that have no direct terrestrial equivalent. The neuro-ophthalmic phenomenon is a major physiologic barrier to future planetary spaceflight. The underlying pathophysiology of SANS remains ill-defined, but since its initial report in 2011, several hypotheses have been proposed including increased intracranial pressure, cerebral venous congestion and glymphatic stasis, compartmentalization of CSF within the orbital nerve sheath sub-arachnoid space (SAS), upward brain shift, inflammation, disrupted axoplasmic transport, and radiation exposure. These aetiologies may not be mutually exclusive and may be interconnected, leading to an integrative, multifactorial aetiology of SANS. This paper critically analyses the various hypotheses of this neuro-ophthalmic phenomenon and the connections between the physiologic and anatomical evidence-based changes observed in spaceflight and terrestrial analogues. Continued prospective, longitudinal study and development of practical countermeasures for SANS will be necessary for future human spaceflight missions including the mission to Mars.
Collapse
Affiliation(s)
- Laura A Galdamez
- Department of Emergency Medicine, Memorial Hermann The Woodlands, The Woodlands, TX, USA
| | | | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - Andrew G Lee
- Department of Ophthalmology, Houston Methodist Hospital, Houston, TX, USA.
- Baylor College of Medicine and the Baylor Center for Space Medicine, Houston, TX, USA.
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine New York, New York, NY, USA.
- Department of Ophthalmology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- The UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Caddy HT, Fujino M, Vahabli E, Voigt V, Kelsey LJ, Dilley RJ, Carvalho LS, Takahashi S, Green DJ, Doyle BJ. Simulation of murine retinal hemodynamics in response to tail suspension. Comput Biol Med 2024; 182:109148. [PMID: 39298883 DOI: 10.1016/j.compbiomed.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (<10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P < 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (<10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (<20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Livia S Carvalho
- Retinal Genomics and Therapy Group, Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia.
| |
Collapse
|
3
|
Waisberg E, Ong J, Masalkhi M, Shimada K, Lee AG. Artificial gravity as a potential countermeasure for Spaceflight Associated Neuro-Ocular Syndrome. Eye (Lond) 2024; 38:2847-2848. [PMID: 38877205 PMCID: PMC11461887 DOI: 10.1038/s41433-024-03178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Affiliation(s)
- Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | | | - Andrew G Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
4
|
Ahmed SS, Goswami N, Sirek A, Green DA, Winnard A, Fiebig L, Weber T. Systematic review of the effectiveness of standalone passive countermeasures on microgravity-induced physiologic deconditioning. NPJ Microgravity 2024; 10:48. [PMID: 38664498 PMCID: PMC11045828 DOI: 10.1038/s41526-024-00389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
A systematic review of literature was conducted to evaluate the effectiveness of passive countermeasures in ameliorating the cardiopulmonary and musculoskeletal effects of gravitational unloading on humans during spaceflight. This systematic review is the third of a series being conducted by the European Space Agency to evaluate the effectiveness of countermeasures to physiologic deconditioning during spaceflight. With future long-duration space missions on the horizon, it is critical to understand the effectiveness of existing countermeasures to promote astronaut health and improve the probability of future mission success. An updated search for studies examining passive countermeasures was conducted in 2021 to supplement results from a broader search conducted in 2017 for all countermeasures. Ground-based analogue and spaceflight studies were included in the search. A total of 647 articles were screened following removal of duplicates, of which 16 were included in this review. Data extraction and analysis, quality assessment of studies, and transferability of reviewed studies to actual spaceflight based on their bed-rest protocol were conducted using dedicated tools created by the Aerospace Medicine Systematic Review Group. Of the 180 examined outcomes across the reviewed studies, only 20 were shown to have a significant positive effect in favour of the intervention group. Lower body negative pressure was seen to significantly maintain orthostatic tolerance (OT) closer to baseline as comparted to control groups. It also was seen to have mixed efficacy with regards to maintaining resting heart rate close to pre-bed rest values. Whole body vibration significantly maintained many balance-related outcome measures close to pre-bed rest values as compared to control. Skin surface cooling and centrifugation both showed efficacy in maintaining OT. Centrifugation also was seen to have mixed efficacy with regards to maintaining VO2max close to pre-bed rest values. Overall, standalone passive countermeasures showed no significant effect in maintaining 159 unique outcome measures close to their pre-bed rest values as compared to control groups. Risk of bias was rated high or unclear in all studies due to poorly detailed methodologies, poor control of confounding variables, and other sources of bias (i.e. inequitable recruitment of participants leading to a higher male:female ratios). The bed-rest transferability (BR) score varied from 2-7, with a median score of 5. Generally, most studies had good BR transferability but underreported on factors such as control of sunlight or radiation exposure, diet, level of exercise and sleep-cycles. We conclude that: (1) Lack of standardisation of outcome measurement and methodologies has led to large heterogeneity amongst studies; (2) Scarcity of literature and high risk of bias amongst existing studies limits the statistical power of results; and (3) Passive countermeasures have little or no efficacy as standalone measures against cardiopulmonary and musculoskeletal deconditioning induced by spaceflight related to physiologic deterioration due to gravity un-loading.
Collapse
Affiliation(s)
- Syed Shozab Ahmed
- Department of Family Medicine, Postgraduate Medical Education, Queen's University School of Medicine, Kingston, ON, Canada
| | - Nandu Goswami
- Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Integrative Health Department, Alma Mater Europaea Maribor, Maribor, Slovenia.
| | - Adam Sirek
- Faculty of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Institute for Earth and Space Exploration, Western University, London, ON, Canada
| | - David Andrew Green
- King's College London, Centre of Human & Applied Physiological Sciences, London, UK
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| | | | - Leonie Fiebig
- Space Biomedicine Systematic Review Methods, Wylam, UK
| | - Tobias Weber
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| |
Collapse
|
5
|
Fois M, Diaz-Artiles A, Zaman SY, Ridolfi L, Scarsoglio S. Linking cerebral hemodynamics and ocular microgravity-induced alterations through an in silico-in vivo head-down tilt framework. NPJ Microgravity 2024; 10:22. [PMID: 38413627 PMCID: PMC10899661 DOI: 10.1038/s41526-024-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Head-down tilt (HDT) has been widely proposed as a terrestrial analog of microgravity and used also to investigate the occurrence of spaceflight-associated neuro-ocular syndrome (SANS), which is currently considered one of the major health risks for human spaceflight. We propose here an in vivo validated numerical framework to simulate the acute ocular-cerebrovascular response to 6° HDT, to explore the etiology and pathophysiology of SANS. The model links cerebral and ocular posture-induced hemodynamics, simulating the response of the main cerebrovascular mechanisms, as well as the relationship between intracranial and intraocular pressure to HDT. Our results from short-term (10 min) 6° HDT show increased hemodynamic pulsatility in the proximal-to-distal/capillary-venous cerebral direction, a marked decrease (-43%) in ocular translaminar pressure, and an increase (+31%) in ocular perfusion pressure, suggesting a plausible explanation of the underlying mechanisms at the onset of ocular globe deformation and edema formation over longer time scales.
Collapse
Affiliation(s)
- Matteo Fois
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy.
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX, 77843-3141, USA
- Department of Kinesiology and Sport Management, Texas A&M University, 2929 Research Pkwy, College Station, TX, 77845, USA
| | - Syeda Yasmin Zaman
- Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX, 77843-3141, USA
| | - Luca Ridolfi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- PolitoBioMed Lab, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
| | - Stefania Scarsoglio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- PolitoBioMed Lab, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
| |
Collapse
|
6
|
Elias A, Weber T, Green DA, Harris KM, Laws JM, Greaves DK, Kim DS, Mazzolai-Duchosal L, Roberts L, Petersen LG, Limper U, Bergauer A, Elias M, Winnard A, Goswami N. Systematic review of the use of ultrasound for venous assessment and venous thrombosis screening in spaceflight. NPJ Microgravity 2024; 10:14. [PMID: 38316814 PMCID: PMC10844233 DOI: 10.1038/s41526-024-00356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
The validity of venous ultrasound (V-US) for the diagnosis of deep vein thrombosis (DVT) during spaceflight is unknown and difficult to establish in diagnostic accuracy and diagnostic management studies in this context. We performed a systematic review of the use of V-US in the upper-body venous system in spaceflight to identify microgravity-related changes and the effect of venous interventions to reverse them, and to assess appropriateness of spaceflight V-US with terrestrial standards. An appropriateness tool was developed following expert panel discussions and review of terrestrial diagnostic studies, including criteria relevant to crew experience, in-flight equipment, assessment sites, ultrasound modalities, and DVT diagnosis. Microgravity-related findings reported as an increase in internal jugular vein (IJV) cross-sectional area and pressure were associated with reduced, stagnant, and retrograde flow. Changes were on average responsive to venous interventions using lower body negative pressure, Bracelets, Valsalva and Mueller manoeuvres, and contralateral IJV compression. In comparison with terrestrial standards, spaceflight V-US did not meet all appropriateness criteria. In DVT studies (n = 3), a single thrombosis was reported and only ultrasound modality criterion met the standards. In the other studies (n = 15), all the criteria were appropriate except crew experience criterion, which was appropriate in only four studies. Future practice and research should account for microgravity-related changes, evaluate individual effect of venous interventions, and adopt Earth-based V-US standards.
Collapse
Affiliation(s)
- Antoine Elias
- Cardiology and Vascular Medicine, Sainte Musse Hospital, Toulon Hospital Centre, Toulon, France.
- Clinical Research and Innovation, Sainte Musse Hospital, Toulon Hospital Centre, Toulon, France.
- Investigation Network On Venous Thrombo-Embolism | French Clinical Research Infrastructure Network (INNOVTE | F-CRIN), Toulon, France.
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Center (EAC), European Space Agency (ESA), Cologne, Germany
- KBR, Cologne, Germany
| | - David A Green
- Space Medicine Team (HRE-OM), European Astronaut Center (EAC), European Space Agency (ESA), Cologne, Germany
- KBR, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Katie M Harris
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jonathan M Laws
- University of Northumbria at Newcastle, Newcaslte-upon-Tyne, United Kingdom
- Space Biomedicine Systematic Review Methods Group, Wylam, United Kingdom
| | | | - David S Kim
- Space Medicine Team (HRE-OM), European Astronaut Center (EAC), European Space Agency (ESA), Cologne, Germany
- Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Lara Roberts
- King's Thrombosis Centre, Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Lonnie G Petersen
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- University of Witten / Herdecke, Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Hospitals of Cologne, Cologne, Germany
| | - Andrej Bergauer
- Department of Surgery, LKH Südsteiermark, Wagna, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Michael Elias
- Critical Care Medicine, St. Vincent's Medical Center, Hartford Healthcare, Bridgeport, CT, USA
- The Frank H. Netter MD School of Medicine, North Haven, CT, USA
| | - Andrew Winnard
- Space Biomedicine Systematic Review Methods Group, Wylam, United Kingdom
| | - Nandu Goswami
- Division of Physiology, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- Mohammed Bin Rashid University of Medicine and Applied Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
7
|
Dontre AJ. Weighing the impact of microgravity on vestibular and visual functions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:51-61. [PMID: 38245348 DOI: 10.1016/j.lssr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible intracranial pressure changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and artificial gravity achieved with a centrifuge or spacecraft rotation.
Collapse
Affiliation(s)
- Alexander J Dontre
- School of Psychology, Fielding Graduate University, 2020 De La Vina Street, Santa Barbara, CA 93105, USA; Department of Communications, Behavioral, and Natural Sciences, Franklin University, 201 South Grant Avenue, Columbus, OH 43215, USA.
| |
Collapse
|
8
|
Levasseur S, Purvis N, Trozzo S, Chung SH, Ades M, Drudi LM. Venous Thromboembolism in Exploration Class Human Spaceflight. Aerosp Med Hum Perform 2024; 95:45-53. [PMID: 38158572 DOI: 10.3357/amhp.6290.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
INTRODUCTION: A recent finding of a deep venous thrombosis during spaceflight has prompted the need to clarify mechanisms and risks of venous thromboembolism (VTE). In turn, mitigation countermeasures, diagnostic modalities, and treatment options must be explored. The objective of this review was to synthesize current evidence on VTE in spaceflight.METHODS: A literature review was performed from inception to April 2023 pertaining to VTE in the context of spaceflight or ground-based analogs with human participants. PubMed was searched for papers written in English using the terms "spaceflight" or "weightlessness" and "thrombotic" or "embolism" or "thromboembolism" in "venous" or "veins". Papers using cellular or animal models were excluded.RESULTS: There were 63 papers captured; 7 original scientific studies, 3 narrative reviews, 2 systematic reviews, and 3 commentaries discussed VTE in spaceflight. Reference lists were screened. Important themes included: altered venous hemodynamics, increased fibrinogen and coagulation markers, hypoalbuminemia, and immune dysfunction. Additional risk factors may be seen in women, such as the use of oral contraceptives.DISCUSSION: Venous stasis and decreased shear stress secondary to fluid shifts may induce inflammatory changes in the venous system, resulting in endothelial damage and upregulation of the coagulation cascade. Additionally, women in space are subject to physiological factors increasing their VTE risk, such as the use of oral contraceptives, inducing increased blood viscosity and hypoalbuminemia. Efforts should also be placed in optimizing sensitivity and specificity of imaging markers, payload, and training ability, notably the use of vector flow imaging, and improving point-of-testing biomarkers, such as albumin and p-selectin.Levasseur S, Purvis N, Trozzo S, Chung SH, Ades M, Drudi LM. Venous thromboembolism in exploration class human spaceflight. Aerosp Med Hum Perform. 2024; 95(1):45-53.
Collapse
|
9
|
Ong J, Tarver W, Brunstetter T, Mader TH, Gibson CR, Mason SS, Lee A. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures. Br J Ophthalmol 2023; 107:895-900. [PMID: 36690421 PMCID: PMC10359702 DOI: 10.1136/bjo-2022-322892] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 01/25/2023]
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) refers to a distinct constellation of ocular, neurological and neuroimaging findings observed in astronauts during and following long duration spaceflight. These ocular findings, to include optic disc oedema, posterior globe flattening, chorioretinal folds and hyperopic shifts, were first described by NASA in 2011. SANS is a potential risk to astronaut health and will likely require mitigation prior to planetary travel with prolonged exposures to microgravity. While the exact pathogenesis of SANS is not completely understood, several hypotheses have been proposed to explain this neuro-ocular phenomenon. In this paper, we briefly discuss the current hypotheses and contributing factors underlying SANS pathophysiology as well as analogues used to study SANS on Earth. We also review emerging potential countermeasures for SANS including lower body negative pressure, nutritional supplementation and translaminar pressure gradient modulation. Ongoing investigation within these fields will likely be instrumental in preparing and protecting astronaut vision for future spaceflight missions including deep space exploration.
Collapse
Affiliation(s)
- Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - C Robert Gibson
- KBR, NASA Space Medicine Operations Division, Houston, Texas, USA
- South Shore Eye Center, League City, Texas, USA
| | | | - Andrew Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, USA
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas A&M College of Medicine, Bryan, Texas, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Iordachescu A, Eisenstein N, Appleby-Thomas G. Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. NPJ Microgravity 2023; 9:23. [PMID: 36966158 PMCID: PMC10039948 DOI: 10.1038/s41526-023-00266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Numerous technical scenarios have been developed to facilitate a human return to the Moon, and as a testbed for a subsequent mission to Mars. Crews appointed with constructing and establishing planetary bases will require a superior level of physical ability to cope with the operational demands. However, the challenging environments of nearby planets (e.g. geological, atmospheric, gravitational conditions) as well as the lengthy journeys through microgravity, will lead to progressive tissue degradation and an increased susceptibility to injury. The isolation, distance and inability to evacuate in an emergency will require autonomous medical support, as well as a range of facilities and specialised equipment to repair tissue damage on-site. Here, we discuss the design requirements of such a facility, in the form of a habitat that would concomitantly allow tissue substitute production, maintenance and surgical implantation, with an emphasis on connective tissues. The requirements for the individual modules and their operation are identified. Several concepts are assessed, including the presence of adjacent wet lab and medical modules supporting the gradual implementation of regenerative biomaterials and acellular tissue substitutes, leading to eventual tissue grafts and, in subsequent decades, potential tissues/organ-like structures. The latter, currently in early phases of development, are assessed particularly for researching the effects of extreme conditions on representative analogues for astronaut health support. Technical solutions are discussed for bioengineering in an isolated planetary environment with hypogravity, from fluid-gel bath suspended manufacture to cryostorage, cell sourcing and on-site resource utilisation for laboratory infrastructure. Surgical considerations are also discussed.
Collapse
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Consortium for organotypic research on ageing and microgravity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Cranfield Defence and Security, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, United Kingdom.
| | - Neil Eisenstein
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gareth Appleby-Thomas
- Consortium for organotypic research on ageing and microgravity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Cranfield Defence and Security, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, United Kingdom
| |
Collapse
|
11
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
12
|
Freeborn TJ, Critcher S, Hooper G. Segmental Tissue Resistance of Healthy Young Adults during Four Hours of 6-Degree Head-Down-Tilt Positioning. SENSORS (BASEL, SWITZERLAND) 2023; 23:2793. [PMID: 36904995 PMCID: PMC10006931 DOI: 10.3390/s23052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: One effect of microgravity on the human body is fluid redistribution due to the removal of the hydrostatic gravitational gradient. These fluid shifts are expected to be the source of severe medical risks and it is critical to advance methods to monitor them in real-time. One technique to monitor fluid shifts captures the electrical impedance of segmental tissues, but limited research is available to evaluate if fluid shifts in response to microgravity are symmetrical due to the bilateral symmetry of the body. This study aims to evaluate this fluid shift symmetry. (2) Methods: Segmental tissue resistance at 10 kHz and 100 kHz was collected at 30 min intervals from the left/right arm, leg, and trunk of 12 healthy adults over 4 h of 6° head-down-tilt body positioning. (3) Results: Statistically significant increases were observed in the segmental leg resistances, first observed at 120 min and 90 min for 10 kHz and 100 kHz measurements, respectively. Median increases were approximately 11% to 12% for the 10 kHz resistance and 9% for the 100 kHz resistance. No statistically significant changes in the segmental arm or trunk resistance. Comparing the left and right segmental leg resistance, there were no statistically significant differences in the resistance changes based on the side of the body. (4) Conclusions: The fluid shifts induced by the 6° body position resulted in similar changes in both left and right body segments (that had statistically significant changes in this work). These findings support that future wearable systems to monitor microgravity-induced fluid shifts may only require monitoring of one side of body segments (reducing the hardware needed for the system).
Collapse
Affiliation(s)
- Todd J. Freeborn
- Department of Electrical and Computer Engineering, College of Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shelby Critcher
- Department of Electrical and Computer Engineering, College of Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Gwendolyn Hooper
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
13
|
Harris KM, Arya R, Elias A, Weber T, Green DA, Greaves DK, Petersen LG, Roberts L, Kamine TH, Mazzolai L, Bergauer A, Kim DS, Olde Engberink RH, zu Eulenberg P, Grassi B, Zuccarelli L, Baldassarre G, Tabury K, Baatout S, Jordan J, Blaber AP, Choukér A, Russomano T, Goswami N. Pathophysiology, risk, diagnosis, and management of venous thrombosis in space: where are we now? NPJ Microgravity 2023; 9:17. [PMID: 36797288 PMCID: PMC9935502 DOI: 10.1038/s41526-023-00260-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
The recent incidental discovery of an asymptomatic venous thrombosis (VT) in the internal jugular vein of an astronaut on the International Space Station prompted a necessary, immediate response from the space medicine community. The European Space Agency formed a topical team to review the pathophysiology, risk and clinical presentation of venous thrombosis and the evaluation of its prevention, diagnosis, mitigation, and management strategies in spaceflight. In this article, we discuss the findings of the ESA VT Topical Team over its 2-year term, report the key gaps as we see them in the above areas which are hindering understanding VT in space. We provide research recommendations in a stepwise manner that build upon existing resources, and highlight the initial steps required to enable further evaluation of this newly identified pertinent medical risk.
Collapse
Affiliation(s)
- Katie M. Harris
- grid.25055.370000 0000 9130 6822Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Roopen Arya
- grid.429705.d0000 0004 0489 4320Kings College Hospital, NHS Foundation Trust, London, UK
| | - Antoine Elias
- Vascular Medicine, Toulon Hospital Centre, Toulon, France
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany. .,KBR, Cologne, Germany.
| | - David A. Green
- grid.461733.40000 0001 2375 6474Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany ,KBR, Cologne, Germany ,grid.13097.3c0000 0001 2322 6764Centre for Human and Applied Physiological Sciences, King’s College London, London, UK
| | - Danielle K. Greaves
- grid.46078.3d0000 0000 8644 1405Faculty of Health, University of Waterloo, Waterloo, Canada
| | - Lonnie G. Petersen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.116068.80000 0001 2341 2786Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, USA
| | - Lara Roberts
- grid.429705.d0000 0004 0489 4320Kings College Hospital, NHS Foundation Trust, London, UK
| | - Tovy Haber Kamine
- grid.281162.e0000 0004 0433 813XDivision of Trauma, Acute Care Surgery, and Surgical Critical Care, Baystate Medical Center, Springfield, MA USA
| | - Lucia Mazzolai
- grid.9851.50000 0001 2165 4204Department of Angiology, Lausanne University, Lausanne, Switzerland
| | | | - David S. Kim
- grid.461733.40000 0001 2375 6474Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany ,grid.17091.3e0000 0001 2288 9830Department Emergency Medicine, University British Columbia, Vancouver, Canada
| | - Rik H. Olde Engberink
- grid.509540.d0000 0004 6880 3010Amsterdam UMC location University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam, The Netherlands ,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Peter zu Eulenberg
- grid.5252.00000 0004 1936 973XInstitute for Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bruno Grassi
- grid.5390.f0000 0001 2113 062XDepartment of Medicine, University of Udine, Udine, Italy
| | - Lucrezia Zuccarelli
- grid.5390.f0000 0001 2113 062XDepartment of Medicine, University of Udine, Udine, Italy
| | - Giovanni Baldassarre
- grid.5390.f0000 0001 2113 062XDepartment of Medicine, University of Udine, Udine, Italy
| | - Kevin Tabury
- grid.8953.70000 0000 9332 3503Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Sarah Baatout
- grid.8953.70000 0000 9332 3503Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jens Jordan
- grid.7551.60000 0000 8983 7915Institute of Aerospace Medicine, German Aerospace Center and University of Cologne, Köln, Germany
| | - Andrew P. Blaber
- grid.61971.380000 0004 1936 7494Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Alexander Choukér
- grid.411095.80000 0004 0477 2585Translational Research Stress & Immunity, Klinik für Anästhesiologie/Forschungslabors, LMU Klinikum, München, Germany
| | - Thais Russomano
- grid.411095.80000 0004 0477 2585Translational Research Stress & Immunity, Klinik für Anästhesiologie/Forschungslabors, LMU Klinikum, München, Germany ,InnovaSpace UK, London, UK
| | - Nandu Goswami
- grid.11598.340000 0000 8988 2476Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria ,Mohammed Bin Rashid University of Medicine and Applied Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
14
|
Scott JM, Feiveson AH, English KL, Spector ER, Sibonga JD, Dillon EL, Ploutz-Snyder L, Everett ME. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts. NPJ Microgravity 2023; 9:11. [PMID: 36737441 PMCID: PMC9898566 DOI: 10.1038/s41526-023-00256-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Exercise training is a key countermeasure used to offset spaceflight-induced multisystem deconditioning. Here, we evaluated the effects of exercise countermeasures on multisystem function in a large cohort (N = 46) of astronauts on long-duration spaceflight missions. We found that during 178 ± 48 d of spaceflight, ~600 min/wk of aerobic and resistance exercise did not fully protect against multisystem deconditioning. However, substantial inter-individual heterogeneity in multisystem response was apparent with changes from pre to postflight ranging from -30% to +5%. We estimated that up to 17% of astronauts would experience performance-limiting deconditioning if current exercise countermeasures were used on future spaceflight missions. These findings support the need for refinement of current countermeasures, adjunct interventions, or enhanced requirements for preflight physiologic and functional capacity for the protection of astronaut health and performance during exploration missions to the moon and beyond.
Collapse
Affiliation(s)
- Jessica M Scott
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Kirk L English
- Milligan University, Milligan College, Elizabethton, TN, USA
| | | | - Jean D Sibonga
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | | | - Meghan E Everett
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| |
Collapse
|
15
|
Ong J, Zaman N, Waisberg E, Kamran SA, Lee AG, Tavakkoli A. Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. WEARABLE TECHNOLOGIES 2022; 3:e26. [PMID: 38486901 PMCID: PMC10936292 DOI: 10.1017/wtc.2022.21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/04/2022] [Accepted: 08/28/2022] [Indexed: 03/17/2024]
Abstract
During long-duration spaceflight, astronauts are exposed to various risks including spaceflight-associated neuro-ocular syndrome, which serves as a risk to astronaut vision and a potential physiological barrier to future spaceflight. When considering exploration missions that may expose astronauts to longer periods of microgravity, radiation exposure, and natural aging processes during spaceflight, more severe changes to functional vision may occur. The macula plays a critical role in central vision and disruptions to this key area in the eye may compromise functional vision and mission performance. In this article, we describe the development of a countermeasure technique to digitally suppress monocular central visual distortion with head-mounted display technology. We report early validation studies with this noninvasive countermeasure in individuals with simulated metamorphopsia. When worn by these individuals, this emerging wearable countermeasure technology has demonstrated a suppression of monocular visual distortion. We describe the considerations and further directions of this head-mounted technology for both astronauts and aging individuals on Earth.
Collapse
Affiliation(s)
- Joshua Ong
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
| | - Ethan Waisberg
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
| | - Andrew G. Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Ophthalmology, Texas A&M College of Medicine, College Station, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
| |
Collapse
|
16
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
17
|
Ekman R, Green DA, Scott JPR, Huerta Lluch R, Weber T, Herssens N. Introducing the Concept of Exercise Holidays for Human Spaceflight - What Can We Learn From the Recovery of Bed Rest Passive Control Groups. Front Physiol 2022; 13:898430. [PMID: 35874509 PMCID: PMC9307084 DOI: 10.3389/fphys.2022.898430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In an attempt to counteract microgravity-induced deconditioning during spaceflight, exercise has been performed in various forms on the International Space Station (ISS). Despite significant consumption of time and resources by daily exercise, including around one third of astronauts' energy expenditure, deconditioning-to variable extents-are observed. However, in future Artemis/Lunar Gateway missions, greater constraints will mean that the current high volume and diversity of ISS in-flight exercise will be impractical. Thus, investigating both more effective and efficient multi-systems countermeasure approaches taking into account the novel mission profiles and the associated health and safety risks will be required, while also reducing resource requirements. One potential approach is to reduce mission exercise volume by the introduction of exercise-free periods, or "exercise holidays". Thus, we hypothesise that by evaluating the 'recovery' of the no-intervention control group of head-down-tilt bed rest (HDTBR) campaigns of differing durations, we may be able to define the relationship between unloading duration and the dynamics of functional recovery-of interest to future spaceflight operations within and beyond Low Earth Orbit (LEO)-including preliminary evaluation of the concept of exercise holidays. Hence, the aim of this literature study is to collect and investigate the post-HDTBR recovery dynamics of current operationally relevant anthropometric outcomes and physiological systems (skeletal, muscular, and cardiovascular) of the passive control groups of HDTBR campaigns, mimicking a period of 'exercise holidays', thereby providing a preliminary evaluation of the concept of 'exercise holidays' for spaceflight, within and beyond LEO. The main findings were that, although a high degree of paucity and inconsistency of reported recovery data is present within the 18 included studies, data suggests that recovery of current operationally relevant outcomes following HDTBR without exercise-and even without targeted rehabilitation during the recovery period-could be timely and does not lead to persistent decrements differing from those experienced following spaceflight. Thus, evaluation of potential exercise holidays concepts within future HDTBR campaigns is warranted, filling current knowledge gaps prior to its potential implementation in human spaceflight exploration missions.
Collapse
Affiliation(s)
- Robert Ekman
- Riga Stradins University, Faculty of Medicine, Riga, Latvia
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathon P. R. Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Institut Médecine Physiologie Spatiale (MEDES), Toulouse, France
| | - Roger Huerta Lluch
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Ly V, Velichala SR, Hargens AR. Cardiovascular, Lymphatic, and Ocular Health in Space. Life (Basel) 2022; 12:268. [PMID: 35207555 PMCID: PMC8875500 DOI: 10.3390/life12020268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022] Open
Abstract
Life on Earth has evolved continuously under Earth's 1 G force and the protection of the magnetosphere. Thus, astronauts exhibit maladaptive physiological responses during space travel. Exposure to harmful cosmic radiation and weightlessness are unique conditions to the deep-space environment responsible for several spaceflight-associated risks: visual impairment, immune dysfunction, and cancer due to cosmic radiation in astronauts. The evidence thus reviewed indicates that microgravity and cosmic radiation have deleterious effects on the cardiovascular, lymphatic, and vision systems of astronauts on long-duration space missions. The mechanisms responsible for the decline in these systems are potentially due to cytoskeletal filament rearrangement, endothelial dysfunction, and muscular atrophy. These factors may alter fluid hemodynamics within cardiovascular and lymphatic vasculatures such that greater fluid filtration causes facial and intracranial edema. Thus, microgravity induces cephalad fluid shifts contributing to spaceflight-associated neuro-ocular syndrome (SANS). Moreover, visual impairment via retinal ischemia and altered nitric oxide production may alter endothelial function. Based on rodent studies, cosmic radiation may exacerbate the effects of microgravity as observed in impaired endothelium and altered immunity. Relevant findings help understand the extent of these risks associated with spaceflight and suggest relevant countermeasures to protect astronaut health during deep-space missions.
Collapse
Affiliation(s)
| | | | - Alan R. Hargens
- Department of Orthopaedic Surgery, UC San Diego Medical Center, University of California San Diego, San Diego, CA 92093, USA; (V.L.); (S.R.V.)
| |
Collapse
|
19
|
Harris KM, Weber T, Greaves D, Green DA, Goswami N, Petersen LG. Going against the flow: are venous thromboembolism and impaired cerebral drainage critical risks for spaceflight? J Appl Physiol (1985) 2022; 132:270-273. [PMID: 34672768 PMCID: PMC8759966 DOI: 10.1152/japplphysiol.00425.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Katie M. Harris
- 1Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Tobias Weber
- 2European Astronaut Centre, European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany,3KBR GmbH, Cologne, Germany
| | - Danielle Greaves
- 4Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - David Andrew Green
- 2European Astronaut Centre, European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany,3KBR GmbH, Cologne, Germany,5Centre of Human & Applied Physiological Sciences, King’s College London, London, United Kingdom
| | - Nandu Goswami
- 6Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Lonnie G. Petersen
- 7Department of Mechanical and Aerospace Engineering, University of California, San Diego, California,8Department of Radiology, University of California, San Diego, California
| |
Collapse
|
20
|
Pollock RD, Hodkinson PD, Smith TG. Oh G: The x, y and z of human physiological responses to acceleration. Exp Physiol 2021; 106:2367-2384. [PMID: 34730860 DOI: 10.1113/ep089712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review focuses on the main physiological challenges associated with exposure to acceleration in the Gx, Gy and Gz directions and to microgravity. What advances does it highlight? Our current understanding of the physiology of these environments and latest strategies to protect against them are discussed in light of the limited knowledge we have in some of these areas. ABSTRACT The desire to go higher, faster and further has taken us to environments where the accelerations placed on our bodies far exceed or are much lower than that attributable to Earth's gravity. While on the ground, racing drivers of the fastest cars are exposed to high degrees of lateral acceleration (Gy) during cornering. In the air, while within the confines of the lower reaches of Earth's atmosphere, fast jet pilots are routinely exposed to high levels of acceleration in the head-foot direction (Gz). During launch and re-entry of suborbital and orbital spacecraft, astronauts and spaceflight participants are exposed to high levels of chest-back acceleration (Gx), whereas once in space the effects of gravity are all but removed (termed microgravity, μG). Each of these environments has profound effects on the homeostatic mechanisms within the body and can have a serious impact, not only for those with underlying pathology but also for healthy individuals. This review provides an overview of the main challenges associated with these environments and our current understanding of the physiological and pathophysiological adaptations to them. Where relevant, protection strategies are discussed, with the implications of our future exposure to these environments also being considered.
Collapse
Affiliation(s)
- Ross D Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Peter D Hodkinson
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas G Smith
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.,Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Macaulay TR, Peters BT, Wood SJ, Clément GR, Oddsson L, Bloomberg JJ. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight. Front Syst Neurosci 2021; 15:658985. [PMID: 33986648 PMCID: PMC8111171 DOI: 10.3389/fnsys.2021.658985] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. Furthermore, some exercise capabilities like treadmill running are currently not feasible on exploration spaceflight vehicles. Thus, new in-flight operational countermeasures are needed to mitigate postural and locomotor control deficits after exploration missions. Data from spaceflight and from analog studies collectively suggest that body unloading decreases the utilization of proprioceptive input, and this adaptation strongly contributes to balance dysfunction after spaceflight. For example, on return to Earth, an astronaut's vestibular input may be compromised by adaptation to microgravity, but their proprioceptive input is compromised by body unloading. Since proprioceptive and tactile input are important for maintaining postural control, keeping these systems tuned to respond to upright balance challenges during flight may improve functional task performance after flight through dynamic reweighting of sensory input. Novel approaches are needed to compensate for the challenges of balance training in microgravity and must be tested in a body unloading environment such as head down bed rest. Here, we review insights from the literature and provide observations from our laboratory that could inform the development of an in-flight proprioceptive countermeasure.
Collapse
Affiliation(s)
| | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | - Lars Oddsson
- RxFunction Inc., Eden Prairie, MN, United States
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
- Recaniti School for Community Health Professions, Ben Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|