1
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025; 676:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
2
|
van Beek LF, van der Gaast-de Jongh C, Platenburg PP, Hilgers L, de Jonge MI. Improving the immunogenicity of the pneumococcal conjugate vaccine using a synthetic carbohydrate fatty acid monosulphate squalane-in-water adjuvant. Vaccine 2025; 51:126893. [PMID: 39983540 DOI: 10.1016/j.vaccine.2025.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Pneumococcal conjugate vaccines (PCVs) have been highly effective in preventing invasive pneumococcal disease. However, increasing serotype coverage of PCVs led to decreasing antibody responses against individual serotypes, possibly leading to vaccine failure. It is therefore important to improve the immunogenicity of PCVs. A novel, synthetic carbohydrate fatty acid monosulphate-based adjuvant in squalane-based oil-in-water (CMS:O/W), has proven to be safe and potent for protein-based vaccines. Here, we demonstrated that administration of CMS:O/W-supplemented PCV-13 in rabbits is safe. Primary vaccination with two different PCV-doses showed that adding CMS:O/W improved the response rate against vaccine-serotypes to 100 % (6/6 animals) and increased the antibody levels against 6/13 serotypes with a full and 7/13 serotypes with a fractional (1/5th) human dose. After booster vaccination, CMS:O/W increased the antibody levels against 2/13 serotypes. Collectively, CMS:O/W represents a promising adjuvant to enhance PCV immunogenicity, potentially mitigating the risk of decreasing antibody responses associated with increased PCV valency.
Collapse
Affiliation(s)
- Lucille F van Beek
- Laboratory of Medical Immunology, Radboud University Medical Center, Radboudumc Community for Infectious Diseases, Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, the Netherlands.
| | - Christa van der Gaast-de Jongh
- Laboratory of Medical Immunology, Radboud University Medical Center, Radboudumc Community for Infectious Diseases, Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, the Netherlands
| | | | - Luuk Hilgers
- LiteVax BV, Ophemert, Akkersestraat 50, 4061, BJ, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud University Medical Center, Radboudumc Community for Infectious Diseases, Nijmegen, Geert Grooteplein Zuid 10, 6525, GA, the Netherlands
| |
Collapse
|
3
|
Feng W, Chen Z, Wu L, Chen X, Li Q, Xiang Y, Guo Y, Du W, Chen J, Zhu S, Dong H, Xue X, Zhao KN, Zhang L. A novel HBc-S230 protein chimeric VLPs induced robust immune responses against SARS-CoV-2. Int Immunopharmacol 2024; 143:113362. [PMID: 39426233 DOI: 10.1016/j.intimp.2024.113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Here, we report that four functional fragments of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike protein including receptor binding motif (RBM), fusion peptide (FP), heptad repeat 1 (HR1) and heptad repeat 2 (HR2) were chosen to develop a recombinant S subunit protein vaccine. This recombinant protein consisting of S230 amino acids (aa) (S230) bound specifically to the antibody from COVID-19-patients serum, which showed very strong antigenicity. The S230 was then engineered to present on the surface of Hepatitis B core (HBc) virus-like particles (VLPs) to develop HBc-S230 chimeric VLPs vaccine. Both vaccines induced strong humoral and cellular immune responses in mice, however, HBc-S230 chimeric VLPs elicited significantly higher immunogenicity than the S230. HBc-S230 chimeric VLPs promoted to generate not only dramatically higher levels of S230-specific serum antibodies, but also marked higher CD4+/CD8 + T cells ratio and substantially higher yields of IFN-γ and IL-6. Furthermore, HBc-S230 chimeric VLPs induced serum antibodies that could effectively neutralize the infection with three SARS-CoV-2 pseudoviruses (Wild type, Delta and Omicron). Our results demonstrated that HBc-S230 chimeric VLPs immunization conveyed the humoral immunity, which lasted longer than six months. Clearly, HBc-S230 chimeric VLPs enhanced immunogenicity of the S230, which could provide potent and durable protection against SARS-CoV-2 infection, indicating that HBc-S230 chimeric VLPs possessed great potential for developing highly immunogenic vaccines against SARS-CoV-2.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- SARS-CoV-2/immunology
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Humans
- COVID-19 Vaccines/immunology
- Female
- Mice, Inbred BALB C
- Mice
- Hepatitis B Core Antigens/immunology
- Hepatitis B Core Antigens/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Immunity, Humoral
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunity, Cellular
Collapse
Affiliation(s)
- Weixu Feng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianpeng Wu
- Department of Laboratory Medicine, The Sixth People Hospital of Wenzhou, Wenzhou, Zhejiang, China
| | - Xiuting Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingfeng Li
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunru Xiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanru Guo
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wangqi Du
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyan Dong
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia.
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Soni D, Borriello F, Scott DA, Feru F, DeLeon M, Brightman SE, Cheng WK, Melhem G, Smith JA, Ramirez JC, Barman S, Cameron M, Kelly A, Walker K, Nanishi E, van Haren SD, Phan T, Qi Y, Kinsey R, Raczy MM, Ozonoff A, Pettengill MA, Hubbell JA, Fox CB, Dowling DJ, Levy O. From hit to vial: Precision discovery and development of an imidazopyrimidine TLR7/8 agonist adjuvant formulation. SCIENCE ADVANCES 2024; 10:eadg3747. [PMID: 38959314 PMCID: PMC11221515 DOI: 10.1126/sciadv.adg3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.
Collapse
Affiliation(s)
- Dheeraj Soni
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David A. Scott
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frederic Feru
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria DeLeon
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E. Brightman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wing Ki Cheng
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Juan C. Ramirez
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Aisling Kelly
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Kristina Walker
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simon Daniel van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tony Phan
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Yizhi Qi
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Robert Kinsey
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Matthew A. Pettengill
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffery A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Christopher B. Fox
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - David J. Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Titball RW, Bernstein DI, Fanget NVJ, Hall RA, Longet S, MacAry PA, Rupp RE, van Gils M, von Messling V, Walker DH, Barrett ADT. Progress with COVID vaccine development and implementation. NPJ Vaccines 2024; 9:69. [PMID: 38561358 PMCID: PMC10985065 DOI: 10.1038/s41541-024-00867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stephanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Richard E Rupp
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Marit van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Platenburg PPLI, Deschamps F, Jung J, Leonard C, Rusconi S, Mohan Kumar SB, Sulaiman SM, de Waal L, Hilgers LAT. Carbohydrate fatty acid monosulphate ester is a potent adjuvant for low-dose seasonal influenza vaccines. Vaccine 2023; 41:6980-6990. [PMID: 37852870 DOI: 10.1016/j.vaccine.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
There is still a need for a better and affordable seasonal influenza vaccine and the use of an adjuvant could solve both issues. Therefore, immunogenicity of a combination of low dose of 1/5TH (3 µg of HA) a licensed seasonal flu vaccine with the novel carbohydrate fatty acid monosulfate ester (CMS)-based adjuvant was investigated in ferrets and safety in rabbits. Without CMS, hemagglutination inhibition (HI) antibody titers ranged from ≤5 to 26 three weeks post immunization 1 (PV-1) and from 7 to 134 post-immunization 2 (PV-2) in ferrets. Virus neutralizing (VN) antibody titers ranged from 20 to 37 PV-1 and from 21 to 148 PV-2. CMS caused 10 to 111- fold increase in HI titers and 3 to 58- fold increase in VN titers PV-1 and PV-2, depending on influenza strain and dose of adjuvant. Eight mg of CMS generated significantly higher antibody titers than 1 or 4 mg, while 1 and 4 mg induced similar responses. Three µg of HA plus 4 mg of CMS was considered the highest human dose and safety of two-fold this dose was determined in acute and repeated-dose toxicity studies in rabbits conducted according to OECD GLP guidelines. The test item did not elicit any clinical signs, local reactions, effect on body weight, effect on urine parameters, effect on blood biochemistry, or gross pathological changes. In blood, increased numbers of neutrophils, lymphocytes and/or monocytes were noted and in iliac lymph nodes, increased cellularity of macrophages of minimal to mild degree were observed. In both ferrets and rabbits, body temperature increased with increasing dose of CMS to a maximum of 1 ˚C during the first day post-immunization, which returned to normal values during the second day. In the local tolerance study, histopathology of the site of injection at 7 days PV-1 revealed minimal, mild or moderate inflammation in 5, 8 and 5 animals, respectively. In the repeated-dose study and 21 days PV-3, minimal, mild or moderate inflammation was observed in 15, 18 and 3 animals, respectively. We concluded that the data show CMS is a potent and safe adjuvant ready for further clinical development of a seasonal influenza vaccine and combines high immunogenicity with possible antigen-sparing capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - S M Sulaiman
- Adgyl Lifesciences Private Ltd., Bangalore, India
| | | | | |
Collapse
|
7
|
Lee B, Nanishi E, Levy O, Dowling DJ. Precision Vaccinology Approaches for the Development of Adjuvanted Vaccines Targeted to Distinct Vulnerable Populations. Pharmaceutics 2023; 15:1766. [PMID: 37376214 PMCID: PMC10305121 DOI: 10.3390/pharmaceutics15061766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems. In this context, several considerations exist, including the intended goals of immunization (e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse reactogenicity, and optimizing the route of administration. Each of these considerations is accompanied by several key challenges. On-going innovation in precision vaccinology will expand and target the arsenal of vaccine components for protection of vulnerable populations.
Collapse
Affiliation(s)
- Branden Lee
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Kim JY, Rosenberger MG, Rutledge NS, Esser-Kahn AP. Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics 2023; 15:1687. [PMID: 37376133 PMCID: PMC10300703 DOI: 10.3390/pharmaceutics15061687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Adjuvants are a critical component of vaccines. Adjuvants typically target receptors that activate innate immune signaling pathways. Historically, adjuvant development has been laborious and slow, but has begun to accelerate over the past decade. Current adjuvant development consists of screening for an activating molecule, formulating lead molecules with an antigen, and testing this combination in an animal model. There are very few adjuvants approved for use in vaccines, however, as new candidates often fail due to poor clinical efficacy, intolerable side effects, or formulation limitations. Here, we consider new approaches using tools from engineering to improve next-generation adjuvant discovery and development. These approaches will create new immunological outcomes that will be evaluated with novel diagnostic tools. Potential improved immunological outcomes include reduced vaccine reactogenicity, tunable adaptive responses, and enhanced adjuvant delivery. Evaluations of these outcomes can leverage computational approaches to interpret "big data" obtained from experimentation. Applying engineering concepts and solutions will provide alternative perspectives, further accelerating the field of adjuvant discovery.
Collapse
Affiliation(s)
| | | | | | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA; (J.Y.K.); (M.G.R.); (N.S.R.)
| |
Collapse
|