1
|
Li M, Huang J, Dong Q, Yuan G, Piao Y, Shao S, Zhou Z, Tang J, Xiang J, Shen Y. Protein-Nonfouling and Cell-Binding Polysulfobetaine Inducing Fast Transcytosis for Tumor-Active Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500748. [PMID: 40405632 DOI: 10.1002/adma.202500748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/10/2025] [Indexed: 05/24/2025]
Abstract
Long blood circulation and fast cellular uptake are essential yet paradoxical requirements for efficient tumor-targeted drug delivery carriers. For instance, polyzwitterions, generally nonfouling to proteins and cells, have been extensively explored as long-circulating drug delivery carriers but suffer ultraslow cell internalization, making them inefficient in delivering drugs to cells. Protein-resistant yet cell membrane-binding polymers will simultaneously achieve long blood circulation and fast cellular internalization, but their designs are generally complicated, such as introducing cell-membrane binding groups. Here, it is shown that the N-alkyl chain length of zwitterionic poly(sulfobetaine) can be used to tune its affinity toward proteins and cell membranes. A poly(sulfobetaine) with a moderately long N-alkyl chain became cell membrane-philic while retaining protein resistance, leading to long blood circulation and fast cellular uptake, which further triggered efficient tumor cell transcytosis and intratumor penetration. Thus, its paclitaxel (PTX)-loaded micelles demonstrated potent antitumor efficacy in triple-negative breast cancer models. This study showcases a paradigm of designing polyzwitterions harmonizing long blood circulation and fast cellular uptake properties as tumor-active drug delivery carriers.
Collapse
Affiliation(s)
- Minghui Li
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianxiang Huang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Qiuyang Dong
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Guiping Yuan
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Nabawy A, Chattopadhyay AN, Makabenta JMV, Hassan MA, Yang J, Park J, Jiang M, Jeon T, Im J, Rotello VM. Cationic conjugated polymers with tunable hydrophobicity for efficient treatment of multidrug-resistant wound biofilm infections. Biomaterials 2025; 316:123015. [PMID: 39705926 PMCID: PMC11755787 DOI: 10.1016/j.biomaterials.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Biofilm-associated infections arising from antibiotic-resistant bacteria pose a critical challenge to global health. We report the generation of a library of cationic conjugated poly(phenylene ethynylene) (PPE) polymers featuring trimethylammonium terminated sidechains with tunable hydrophobicity. Screening of the library identified an amphiphilic polymer with a C11 hydrophobic spacer as the polymer with the highest antimicrobial efficacy against biofilms in the dark with excellent selectivity. These polymers are highly fluorescent, allowing label-free monitoring of polymer-bacteria/biofilm interactions. The amphiphilic conjugated polymer penetrated the biofilm matrix in vitro and eradicated resident bacteria through membrane disruption. This C11 polymer was likewise effective in an in vivo murine model of antibiotic-resistant wound biofilm infections, clearing >99.9 % of biofilm colonies and efficient alleviation of biofilm-associated inflammation. The results demonstrate the therapeutic potential of the fluorescent conjugated polymer platform as a multi-modal antimicrobial and imaging tool, surpassing conventional antimicrobial strategies against resilient biofilm infection.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Junwhee Yang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA, 01003, USA
| | - Jungkyun Im
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Ding F, Yu Y, Zhang Y, Wei S, Han JH, Li Z, Jiang HB, Ryu D, Park W, Ha KT, Geng L. Harnessing nutrients and natural products for sustainable drug development against aging. Front Pharmacol 2025; 16:1579266. [PMID: 40356992 PMCID: PMC12066681 DOI: 10.3389/fphar.2025.1579266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Developing treatments for age-related diseases requires cost-effective and efficient approaches. Nutrients and natural metabolites offer safer alternatives to synthetic drugs. Aging increases the need for solutions that protect health and repair cells. Recent studies show that nutrients and natural products reduce oxidative stress, regulate metabolism, and influence longevity-related genes. This review focuses on vitamins, minerals, antioxidants, and natural products that improve healthspan and combat aging. It also discusses challenges such as standardization, clinical validation, and regulatory approval. Finally, emerging trends, such as personalized nutrition and advanced delivery systems, highlight the potential of these metabolites for addressing aging.
Collapse
Affiliation(s)
- Fuan Ding
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Yu
- Department of Surgery, Changchun University of Chinese Medicine, Changchun, China
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Zhuo Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong-Bo Jiang
- Department of Dermatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Li Geng
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Lei H, Cui H, Xia Y, Sun F, Zhang W. Illuminating Hope for Tumors: The Progress of Light-Activated Nanomaterials in Skin Cancer. Int J Nanomedicine 2025; 20:5081-5118. [PMID: 40264819 PMCID: PMC12013650 DOI: 10.2147/ijn.s506000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Skin cancer is a common malignant tumor that poses significant global health and economic burdens. The main clinical types include malignant melanoma and non-melanoma. Complications such as post-surgical recurrence, wound formation, or disfigurement can severely impact the patient's mental well-being. Traditional treatments such as surgery, chemotherapy, radiation therapy, and immunotherapy often face limitations. These challenges not only reduce the effectiveness of treatments but also negatively impact patients' quality of life. Phototherapy, a widely used and long-standing method in dermatology, presents a promising alternative for skin cancer treatment. Light-triggered nanomaterials further enhance the potential of phototherapy by offering advantages such as improved therapeutic precision, controlled drug release, minimal invasiveness, and reduced damage to surrounding healthy tissues. This review summarizes the application of light-triggered nanomaterials in skin cancer treatment, focusing on the principles, advantages, and design strategies of photodynamic therapy (PDT), photothermal therapy (PTT), and photoacoustic therapy (PAT). In this manuscript we have an in-depth discussion on overcoming translational barriers, including strategies to enhance light penetration, mitigate toxicity, reduce production costs, and optimize delivery systems. Additionally, we discuss the challenges associated with their clinical translation, including limited light penetration in deep tissues, potential toxicity, high production costs, and the need for advanced delivery systems.
Collapse
Affiliation(s)
- Huaqing Lei
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, People’s Republic of China
| | - Hengqing Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Institute of Aesthetic Plastic Surgery and Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yu Xia
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Fujia Sun
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Yu Y, Xie B, Wang J, Luo W, Yang M, Xiong Z, Huang G, Yang J, Tang Z, Qiao R, Yuan Z, He L, Chen T. Translational Selenium Nanoparticles Promotes Clinical Non-small-cell Lung Cancer Chemotherapy via Activating Selenoprotein-driven Immune Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415818. [PMID: 40095246 DOI: 10.1002/adma.202415818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Reconstructing the tumor immune microenvironment is an effective strategy to enhance therapeutic efficacy limited by immunosuppression in non-small-cell lung cancer (NSCLC). In this study, it is found that selenium (Se) depletion and immune dysfunction are present in patients with advanced NSCLC compared with healthy volunteers. Surprisingly, Se deficiency resulted in decreased immunity and accelerated rapid tumor growth in the mice model, which further reveals that the correlation between micronutrient Se and lung cancer progression. This pioneering work achieves 500-L scale production of Se nanoparticles (SeNPs) at GMP level and utilizes it to reveal how and why the trace element Se can enhance clinical immune-mediated treatment efficacy against NSCLC. The results found that translational SeNPs can promote the proliferation of NK cells and enhance its cytotoxicity against cancer cells by activating mTOR signaling pathway driven by GPXs to regulate the secretion of cytokines to achieve an antitumor response. Moreover, a clinical study of an Investigator-initiated Trial shows that translational SeNPs supplementation in combination with bevacizumab/cisplatin/pemetrexed exhibits enhanced therapeutic efficacy with an objective response rate of 83.3% and a disease control rate of 100%, through potentiating selenoprotein-driven antitumor immunity. Taken together, this study, for the first time, highlights the translational SeNPs-enhanced therapeutic efficacy against clinical advanced NSCLC.
Collapse
Affiliation(s)
- Yanzi Yu
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weizhan Luo
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Meijin Yang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zushuang Xiong
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guanning Huang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jianwei Yang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhiying Tang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Rui Qiao
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhongwen Yuan
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Chen Z, Zheng X, Mu Z, Lu W, Zhang H, Yan J. Intelligent Nanomaterials Design for Osteoarthritis Managements. SMALL METHODS 2025:e2402263. [PMID: 40159773 DOI: 10.1002/smtd.202402263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disorder, characterized by progressive joint degradation, pain, and diminished mobility, all of which collectively impair patients' quality of life and escalate healthcare expenditures. Current treatment options are often inadequate due to limited efficacy, adverse side effects, and temporary symptom relief, underscoring the urgent need for more effective therapeutic strategies. Recent advancements in nanomaterials and nanomedicines offer promising solutions by improving drug bioavailability, reducing side effects and providing targeted therapeutic benefits. This review critically examines the pathogenesis of OA, highlights the limitations of existing treatments, and explores the latest innovations in intelligent nanomaterials design for OA therapy, with an emphasis on their engineered properties, therapeutic mechanisms, and translational potential in clinical application. By compiling recent findings, this work aims to inspire further exploration and innovation in nanomedicine, ultimately advancing the development of more effective and personalized OA therapies.
Collapse
Affiliation(s)
- Zhihao Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Zheng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Weijie Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- Department of Orthopedics, Yanjiang Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Haiyuan Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiao Yan
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
7
|
Ding J, Jiang Y, Jiang N, Xing S, Ge F, Ma P, Tang Q, Miao H, Zhou J, Fang Y, Cui D, Liu D, Han Y, Yu W, Wang Y, Zhao G, Cai Y, Wang S, Sun N, Li N. Bridging the gap: unlocking the potential of emerging drug therapies for brain metastasis. Brain 2025; 148:702-722. [PMID: 39512184 DOI: 10.1093/brain/awae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024] Open
Abstract
Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis. Meanwhile, novel agents capable of penetrating the BBB have rapidly developed and been evaluated in preclinical studies and clinical trials, with both targeted therapies and immunotherapies demonstrating impressive intracranial activity against brain metastasis. In this review, we summarize the recent advances in the biological properties of the BBB/BTB and the emerging strategies for BBB/BTB permeabilization and drug delivery across the BBB/BTB. We also discuss the emerging targeted therapies and immunotherapies against brain metastasis tested in clinical trials. Additionally, we provide our viewpoints on accelerating clinical translation of novel drugs into clinic for patients of brain metastasis. Although still challenging, we expect this review to benefit the future development of novel therapeutics, specifically from a clinical perspective.
Collapse
Affiliation(s)
- Jiatong Ding
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Xing
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peiwen Ma
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhou
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dandan Cui
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongyan Liu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjie Han
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weijie Yu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuning Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanting Cai
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Mahapatra C, Kishore A, Gawad J, Al-Emam A, Kouzeiha RA, Rusho MA. Review of electrophysiological models to study membrane potential changes in breast cancer cell transformation and tumor progression. Front Physiol 2025; 16:1536165. [PMID: 40110186 PMCID: PMC11920174 DOI: 10.3389/fphys.2025.1536165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The transformation of normal breast cells into cancerous cells is a complex process influenced by both genetic and microenvironmental factors. Recent studies highlight the significant role of membrane potential (Vm) alterations in this transformation. Cancer cells typically exhibit a depolarized resting membrane potential (RMP) compared to normal cells, which correlates with increased cellular activity and more aggressive cancer behavior. These RMP and Vm changes are associated with altered ion channel activity, altered calcium dynamics, mitochondrial dysfunction, modified gap junction communication, and disrupted signaling pathways. Such fluctuations in RMP and Vm influence key processes in cancer progression, including cell proliferation, migration, and invasion. Notably, more aggressive subtypes of breast cancer cells display more frequent and pronounced Vm fluctuations. Understanding the electrical properties of cancer cells provides new insights into their behavior and offers potential therapeutic targets, such as ion channels and Vm regulation. This review synthesizes current research on how various factors modulate membrane potential and proposes an electrophysiological model of breast cancer cells based on experimental and clinical data from the literature. These findings may pave the way for novel pharmacological targets for clinicians, researchers, and pharmacologists in treating breast cancer.
Collapse
Affiliation(s)
| | - Arnaw Kishore
- Microbiology and Immunology, Xavier University School of Medicine, Aruba, Netherlands
| | - Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, VIVA Institute of Pharmacy, Virar, India
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Riad Azzam Kouzeiha
- Faculty of Medical Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Maher Ali Rusho
- Department of Biomedical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Cordeiro Gomes F, Ferreira Alves MC, Alves Júnior S, Medina SH. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Mol Pharm 2025; 22:638-646. [PMID: 39729416 PMCID: PMC11795525 DOI: 10.1021/acs.molpharmaceut.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024]
Abstract
Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations. Gallium MOFs show improved solubility and antibacterial potency relative to the free metal due to their ability to coload antibiotics and functional biomolecules. Synthetic strategies are equally versatile, with several rapid, cost-effective, and scalable methods available. In this review, we present the advantages and disadvantages of these various synthetic strategies with respect to their antibacterial efficiency, product purity, and reaction control. The activity of gallium-based MOFs against Gram-positive and Gram-negative pathogens in mono- and combinatorial therapeutic settings is discussed in the context of their mechanisms of action and structure-function-performance relationships collated from recent studies. While gallium MOF development as antibacterials is still in its nascent stages, the examples discussed here highlight their potential as a novel class of therapeutics poised to impact the fight against pan-drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Fellype
Diorgennes Cordeiro Gomes
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Cidade Universitária, Recife 50670, Brazil
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | | | - Severino Alves Júnior
- Department
of Fundamental Chemistry, Federal University
of Pernambuco, Cidade Universitária, Recife 50670, Brazil
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Huck
Institutes of the Life Sciences, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Diaz-Peregrino R, San-Juan D, Patiño-Ramirez C, Sandoval-Luna LV, Arritola-Uriarte A. Nanocarriers-based therapeutic strategy for drug-resistant epilepsy: A systematic review. Int J Pharm 2025; 668:124986. [PMID: 39580104 DOI: 10.1016/j.ijpharm.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Nanocarriers have been proposed as a solution for drug-resistant epilepsy. METHODS A systematic review of animal and in vitro studies was conducted to evaluate the efficacy, toxicity, and biological properties of nanocarriers. Searches were performed in PubMed/Medline and Scopus from March 2023 to March 2024. RESULTS Eighteen studies were identified: 2 in vitro, 9 in vivo, and 7 combined. While epilepsy models and seizure control assessments were consistent, there was variability in evaluating the potential toxicity of nanocarriers. Only one study did not show a reduction in brain inflammation, seizures, and cell loss. Nanocarrier toxicity was evaluated just in six studies, all of which indicated low toxicity both in vitro and in vivo. CONCLUSIONS Nanocarriers with antiseizure drugs manage seizures, inflammation, oxidative stress, and behavior impairment in drug-resistant epilepsy. Furthermore, nanocarriers are a safe option for delivering antiseizure drugs, though more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Roberto Diaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Patiño-Ramirez
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Lenin V Sandoval-Luna
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | |
Collapse
|
11
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
12
|
Lemoine É, Neves Briard J, Rioux B, Gharbi O, Podbielski R, Nauche B, Toffa D, Keezer M, Lesage F, Nguyen DK, Bou Assi E. Computer-assisted analysis of routine EEG to identify hidden biomarkers of epilepsy: A systematic review. Comput Struct Biotechnol J 2024; 24:66-86. [PMID: 38204455 PMCID: PMC10776381 DOI: 10.1016/j.csbj.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Background Computational analysis of routine electroencephalogram (rEEG) could improve the accuracy of epilepsy diagnosis. We aim to systematically assess the diagnostic performances of computed biomarkers for epilepsy in individuals undergoing rEEG. Methods We searched MEDLINE, EMBASE, EBM reviews, IEEE Explore and the grey literature for studies published between January 1961 and December 2022. We included studies reporting a computational method to diagnose epilepsy based on rEEG without relying on the identification of interictal epileptiform discharges or seizures. Diagnosis of epilepsy as per a treating physician was the reference standard. We assessed the risk of bias using an adapted QUADAS-2 tool. Results We screened 10 166 studies, and 37 were included. The sample size ranged from 8 to 192 (mean=54). The computed biomarkers were based on linear (43%), non-linear (27%), connectivity (38%), and convolutional neural networks (10%) models. The risk of bias was high or unclear in all studies, more commonly from spectrum effect and data leakage. Diagnostic accuracy ranged between 64% and 100%. We observed high methodological heterogeneity, preventing pooling of accuracy measures. Conclusion The current literature provides insufficient evidence to reliably assess the diagnostic yield of computational analysis of rEEG. Significance We provide guidelines regarding patient selection, reference standard, algorithms, and performance validation.
Collapse
Affiliation(s)
- Émile Lemoine
- Department of Neurosciences, University of Montreal, Canada
- Institute of biomedical engineering, Polytechnique Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Joel Neves Briard
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Bastien Rioux
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Oumayma Gharbi
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | | | - Bénédicte Nauche
- University of Montreal Hospital Center’s Research Center, Canada
| | - Denahin Toffa
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Mark Keezer
- Department of Neurosciences, University of Montreal, Canada
- School of Public Health, University of Montreal, Canada
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Frédéric Lesage
- Institute of biomedical engineering, Polytechnique Montreal, Canada
| | - Dang K. Nguyen
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Elie Bou Assi
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| |
Collapse
|
13
|
Tripathi D, Pandey P, Sharma S, Rai AK, Prabhu B.H. M. Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. BIOIMPACTS : BI 2024; 15:30573. [PMID: 40256227 PMCID: PMC12008503 DOI: 10.34172/bi.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 04/22/2025]
Abstract
By integrating the cutting-edge principles of nanotechnology with medical science, nanomedicine offers unprecedented opportunities to develop advanced drug delivery systems that surpass the limitations of conventional therapies. These nanoscale systems are designed to enhance treatments' efficacy, specificity, and safety by optimizing pharmacokinetics and biodistribution, ensuring that therapeutic agents reach their intended targets with minimal side effects. The article provides an in-depth analysis of nanomaterials' pivotal role in overcoming challenges related to drug delivery, including the ability to bypass biological barriers, improve bioavailability, and achieve controlled release of drugs. Despite these promising advancements, the transition of nanomedicine from research to clinical practice faces significant hurdles. The review highlights key obstacles such as patient heterogeneity, physiological variability, and the complex ADME (Absorption, Distribution, Metabolism, Excretion) profiles of nanocarriers, which complicate treatment predictability and effectiveness. Moreover, the article addresses the issues of limited tissue penetration, variable patient responses, and the need for standardized protocols in nanomaterial characterization, all of which hinder the widespread clinical adoption of nanomedicine. Nevertheless, the potential of nanomedicine in revolutionizing personalized cancer therapy remains immense. The article advocates for increased translational research and international collaboration to overcome these challenges, paving the way for fully realizing nanomedicine's capabilities in precision oncology and beyond.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sakshi Sharma
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Awani K Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Manjunatha Prabhu B.H.
- Department of Food Protection and Infestation Control, CSIR- Central Food Technological Research Institute (CFTRI), Mysore-570012, Karnataka, India
| |
Collapse
|
14
|
Joyce P, Allen CJ, Alonso MJ, Ashford M, Bradbury MS, Germain M, Kavallaris M, Langer R, Lammers T, Peracchia MT, Popat A, Prestidge CA, Rijcken CJF, Sarmento B, Schmid RB, Schroeder A, Subramaniam S, Thorn CR, Whitehead KA, Zhao CX, Santos HA. A translational framework to DELIVER nanomedicines to the clinic. NATURE NANOTECHNOLOGY 2024; 19:1597-1611. [PMID: 39242807 DOI: 10.1038/s41565-024-01754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines' physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines.
Collapse
Affiliation(s)
- Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Christine J Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Michelle S Bradbury
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, Faculty of Medicine and Health UNSW, Sydney, New South Wales, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, Aachen, Germany
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Bruno Sarmento
- IiS - Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, Porto, Portugal
| | - Ruth B Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Santhni Subramaniam
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Chelsea R Thorn
- BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, MA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, South Australia, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, Groningen, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Hefnawy A, Abdelhamid AS, Abdelaziz MM, Elzoghby AO, Khalil IA. Recent advances in nano-based drug delivery systems for treatment of liver cancer. J Pharm Sci 2024; 113:3145-3172. [PMID: 39151795 DOI: 10.1016/j.xphs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Liver cancer is one of the aggressive primary tumors as evident by high rate of incidence and mortality. Conventional treatments (e.g. chemotherapy) suffer from various drawbacks including wide drug distribution, low localized drug concentration, and severe off-site toxicity. Therefore, they cannot satisfy the mounting need for safe and efficient cancer therapeutics, and alternative novel strategies are needed. Nano-based drug delivery systems (NDDSs) are among these novel approaches that can improve the overall therapeutic outcomes. NDDSs are designed to encapsulate drug molecules and target them specifically to liver cancer. Thus, NDDSs can selectively deliver therapeutic agents to the tumor cells and avoid distribution to off-target sites which should improve the safety profile of the active agents. Nonetheless, NDDSs should be well designed, in terms of the preparing materials, nanocarriers structure, and the targeting strategy, in order to accomplish these objectives. This review discusses the latest advances of NDDSs for cancer therapy with emphasis on the aforementioned essential design components. The review also entails the challenges associated with the clinical translation of NDDSs, and the future perspectives towards next-generation NDDSs.
Collapse
Affiliation(s)
- Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA.
| | - Ahmed S Abdelhamid
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Giza, Egypt.
| |
Collapse
|
16
|
Zhang B, Liu H, Wang Y, Zhang Y. ROS-Responsive and Self-Catalytic Nanocarriers for a Combination of Chemotherapy and Reinforced Ferroptosis against Breast Cancer. ACS Biomater Sci Eng 2024; 10:6352-6362. [PMID: 39262329 DOI: 10.1021/acsbiomaterials.4c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ferroptosis is an appealing cancer therapy strategy based on the H2O2-involved Fenton reaction to produce toxic •OH for lipid peroxidation. However, intracellular H2O2 is easily consumed and results in a deficient Fenton reaction. This obstacle can be overcome by traditional chemotherapeutic drugs for H2O2 supplements. Moreover, a recent work illustrated that dihydroartemisinin (DHA) could promote ferroptosis against tumoral cells, particularly in the presence of ferrous compounds. To achieve combined chemotherapy and ferroptosis, a nanocarrier (TKNPDHA-Fc) was constructed by using thioketal (TK)-bridged paclitaxel prodrug (PEG-TK-PTX) and ferrocene (Fc)-conjugated PEG-Fc, where DHA was encapsulated by a hydrophobic-hydrophobic interaction. Upon cellular uptake, TKNPDHA-Fc could facilitate PTX release through TK breakage under an excess H2O2 microenvironment. Owing to the loss of the hydrophobic PTX component, TKNPDHA-Fc underwent a rapid dissociation for improving DHA to act as a ferroptotic inducer along with Fe supplied from Fc. Moreover, both the chemotherapy-induced reactive oxygen species and the •OH produced from reinforced ferroptosis further stimulated the TK cleavage. The "self-catalytic" loop of TKNPDHA-Fc remarkably improved the antitumor performance in vivo via combined mechanisms, and its tumor inhibition rate reached 78.3%. This work highlights the contribution of ROS-responsive and self-catalytic nanoplatforms for enhancing the potential of combined chemotherapy and ferroptosis for cancer therapy in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, P. R. China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou 450002, P. R. China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou 450002, P. R. China
| | - Hao Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, P. R. China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou 450002, P. R. China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou 450002, P. R. China
| | - Yifei Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, P. R. China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou 450002, P. R. China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou 450002, P. R. China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, P. R. China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou 450002, P. R. China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou 450002, P. R. China
| |
Collapse
|
17
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
18
|
Cao Z, Liu C, Wen J, Lu Y. Innovative Formulation Platform: Paving the Way for Superior Protein Therapeutics with Enhanced Efficacy and Broadened Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403116. [PMID: 38819929 PMCID: PMC11571700 DOI: 10.1002/adma.202403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Protein therapeutics offer high therapeutic potency and specificity; the broader adoptions and development of protein therapeutics, however, have been constricted by their intrinsic limitations such as inadequate stability, immunogenicity, suboptimal pharmacokinetics and biodistribution, and off-target effects. This review describes a platform technology that formulates individual protein molecules with a thin formulation layer of crosslinked polymers, which confers the protein therapeutics with high activity, enhanced stability, controlled release capability, reduced immunogenicity, improved pharmacokinetics and biodistribution, and ability to cross the blood brain barriers. Based on currently approved protein therapeutics, this formulating platform affords the development of a vast family of superior protein therapeutics with improved efficacy and broadened indications at significantly reduced cost.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, CA, 90066, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Changping Laboratory, Beijing, 100871, P. R. China
| |
Collapse
|
19
|
Desai N, Pande S, Salave S, Singh TRR, Vora LK. Antitoxin nanoparticles: design considerations, functional mechanisms, and applications in toxin neutralization. Drug Discov Today 2024; 29:104060. [PMID: 38866357 DOI: 10.1016/j.drudis.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The application of nanotechnology has significantly advanced the development of novel platforms that enhance disease treatment and diagnosis. A key innovation in this field is the creation of antitoxin nanoparticles (ATNs), designed to address toxin exposure. These precision-engineered nanosystems have unique physicochemical properties and selective binding capabilities, allowing them to effectively capture and neutralize toxins from various biological, chemical, and environmental sources. In this review, we thoroughly examine their therapeutic and diagnostic potential for managing toxin-related challenges. We also explore recent advancements and offer critical insights into the design and clinical implementation of ATNs.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | | | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
20
|
Park G, Rim YA, Sohn Y, Nam Y, Ju JH. Replacing Animal Testing with Stem Cell-Organoids : Advantages and Limitations. Stem Cell Rev Rep 2024; 20:1375-1386. [PMID: 38639829 PMCID: PMC11319430 DOI: 10.1007/s12015-024-10723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Various groups including animal protection organizations, medical organizations, research centers, and even federal agencies such as the U.S. Food and Drug Administration, are working to minimize animal use in scientific experiments. This movement primarily stems from animal welfare and ethical concerns. However, recent advances in technology and new studies in medicine have contributed to an increase in animal experiments throughout the years. With the rapid increase in animal testing, concerns arise including ethical issues, high cost, complex procedures, and potential inaccuracies.Alternative solutions have recently been investigated to address the problems of animal testing. Some of these technologies are related to stem cell technologies, such as organ-on-a-chip, organoids, and induced pluripotent stem cell models. The aim of the review is to focus on stem cell related methodologies, such as organoids, that can serve as an alternative to animal testing and discuss its advantages and limitations, alongside regulatory considerations.Although stem cell related methodologies has shortcomings, it has potential to replace animal testing. Achieving this requires further research on stem cells, with potential societal and technological benefits.
Collapse
Affiliation(s)
- Guiyoung Park
- School of Biopharmaceutical and Medical Sciences, Health & Wellness College, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea.
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| |
Collapse
|
21
|
van Os WL, Wielaert L, Alter C, Davidović D, Šachl R, Kock T, González UU, Arias-Alpizar G, Vigario FL, Knol RA, Kuster R, Romeijn S, Mora NL, Detampel P, Hof M, Huwyler J, Kros A. Lipid conjugate dissociation analysis improves the in vivo understanding of lipid-based nanomedicine. J Control Release 2024; 371:85-100. [PMID: 38782063 DOI: 10.1016/j.jconrel.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.
Collapse
Affiliation(s)
- Winant L van Os
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Laura Wielaert
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Claudio Alter
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Thomas Kock
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Urimare Ugueto González
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gabriela Arias-Alpizar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Fernando Lozano Vigario
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Renzo A Knol
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Rick Kuster
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Nestor Lopez Mora
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
22
|
Licciardello M, Traldi C, Cicolini M, Bertana V, Marasso SL, Cocuzza M, Tonda-Turo C, Ciardelli G. A miniaturized multicellular platform to mimic the 3D structure of the alveolar-capillary barrier. Front Bioeng Biotechnol 2024; 12:1346660. [PMID: 38646009 PMCID: PMC11026571 DOI: 10.3389/fbioe.2024.1346660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.
Collapse
Affiliation(s)
- Michela Licciardello
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Cecilia Traldi
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Martina Cicolini
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Valentina Bertana
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Simone Luigi Marasso
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
- CNR-IMEM, National Research Council-Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Matteo Cocuzza
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Chiara Tonda-Turo
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Gianluca Ciardelli
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| |
Collapse
|
23
|
Svensson E, von Mentzer U, Stubelius A. Achieving Precision Healthcare through Nanomedicine and Enhanced Model Systems. ACS MATERIALS AU 2024; 4:162-173. [PMID: 38496040 PMCID: PMC10941278 DOI: 10.1021/acsmaterialsau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 03/19/2024]
Abstract
The ability to customize medical choices according to an individual's genetic makeup and biomarker patterns marks a significant advancement toward overall improved healthcare for both individuals and society at large. By transitioning from the conventional one-size-fits-all approach to tailored treatments that can account for predispositions of different patient populations, nanomedicines can be customized to target the specific molecular underpinnings of a patient's disease, thus mitigating the risk of collateral damage. However, for these systems to reach their full potential, our understanding of how nano-based therapeutics behave within the intricate human body is necessary. Effective drug administration to the targeted organ or pathological niche is dictated by properties such as nanocarrier (NC) size, shape, and targeting abilities, where understanding how NCs change their properties when they encounter biomolecules and phenomena such as shear stress in flow remains a major challenge. This Review specifically focuses on vessel-on-a-chip technology that can provide increased understanding of NC behavior in blood and summarizes the specialized environment of the joint to showcase advanced tissue models as approaches to address translational challenges. Compared to conventional cell studies or animal models, these advanced models can integrate patient material for full customization. Combining such models with nanomedicine can contribute to making personalized medicine achievable.
Collapse
Affiliation(s)
| | | | - Alexandra Stubelius
- Division of Chemical Biology,
Department of Life Sciences, Chalmers University
of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
24
|
Lee J, Kim H, Lim HR, Kim YS, Hoang TTT, Choi J, Jeong GJ, Kim H, Herbert R, Soltis I, Kim KR, Lee SH, Kwon Y, Lee Y, Jang YC, Yeo WH. Large-scale smart bioreactor with fully integrated wireless multivariate sensors and electronics for long-term in situ monitoring of stem cell culture. SCIENCE ADVANCES 2024; 10:eadk6714. [PMID: 38354246 PMCID: PMC10866562 DOI: 10.1126/sciadv.adk6714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.
Collapse
Affiliation(s)
- Jimin Lee
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Yun Soung Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thi Thai Thanh Hoang
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Jeongmoon Choi
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Altos Labs-San Diego Institute of Science, San Diego, CA 92121, USA
| | - Gun-Jae Jeong
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert Herbert
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Ira Soltis
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sung Hoon Lee
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Youngjin Kwon
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunki Lee
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Young Charles Jang
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
26
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
27
|
Li C, Tian Y, Zeng D, Shepherd BE. Asymptotic Properties for Cumulative Probability Models for Continuous Outcomes. MATHEMATICS (BASEL, SWITZERLAND) 2023; 11:4896. [PMID: 38374966 PMCID: PMC10875740 DOI: 10.3390/math11244896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Regression models for continuous outcomes frequently require a transformation of the outcome, which is often specified a priori or estimated from a parametric family. Cumulative probability models (CPMs) nonparametrically estimate the transformation by treating the continuous outcome as if it is ordered categorically. They thus represent a flexible analysis approach for continuous outcomes. However, it is difficult to establish asymptotic properties for CPMs due to the potentially unbounded range of the transformation. Here we show asymptotic properties for CPMs when applied to slightly modified data where bounds, one lower and one upper, are chosen and the outcomes outside the bounds are set as two ordinal categories. We prove the uniform consistency of the estimated regression coefficients and of the estimated transformation function between the bounds. We also describe their joint asymptotic distribution, and show that the estimated regression coefficients attain the semiparametric efficiency bound. We show with simulations that results from this approach and those from using the CPM on the original data are very similar when a small fraction of the data are modified. We reanalyze a dataset of HIV-positive patients with CPMs to illustrate and compare the approaches.
Collapse
Affiliation(s)
- Chun Li
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuqi Tian
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA
| | - Donglin Zeng
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bryan E. Shepherd
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
28
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
29
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Ilvesroiha E, Lauren P, Uema N, Kikuchi K, Takashima Y, Laaksonen T, Lajunen T. Establishing a simple perfusion cell culture system for light-activated liposomes. Sci Rep 2023; 13:2050. [PMID: 36739469 PMCID: PMC9899206 DOI: 10.1038/s41598-023-29215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
The off-target effects of light-activated or targeted liposomes are difficult to distinguish in traditional well plate experiments. Additionally, the absence of fluid flow in traditional cell models can lead to overestimation of nanoparticle uptake. In this paper, we established a perfusion cell culture platform to study light-activated liposomes and determined the effect of flow on the liposomal cell uptake. The optimal cell culturing parameters for the A549 cells under flow conditions were determined by monitoring cell viability. To determine optimal liposome treatment times, particle uptake was measured with flow cytometry. The suitability of commercial QuasiVivo flow-chambers for near-infrared light activation was assessed with a calcein release study. The chamber material did not hinder the light activation and subsequent calcein release from the liposomes. Furthermore, our results show that the standard cell culturing techniques are not directly translatable to flow cultures. For non-coated liposomes, the uptake was hindered by flow. Interestingly, hyaluronic acid coating diminished the uptake differences between the flow and static conditions. The study demonstrates that flow affects the liposomal uptake by lung cancer cell line A549. The flow also complicates the cell attachment of A549 cells. Moreover, we show that the QuasiVivo platform is suitable for light-activation studies.
Collapse
Affiliation(s)
- Eija Ilvesroiha
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland.
| | - Patrick Lauren
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Natsumi Uema
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kanako Kikuchi
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuuki Takashima
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, 33720, Tampere, Finland
| | - Tatu Lajunen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
- Faculty of Health Sciences, University of Eastern Finland, 70600, Kuopio, Finland
| |
Collapse
|
31
|
Singh N, Shi S, Goel S. Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook. Adv Drug Deliv Rev 2023; 192:114638. [PMID: 36462644 PMCID: PMC9812918 DOI: 10.1016/j.addr.2022.114638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| |
Collapse
|
32
|
Nanomedicine approaches for medulloblastoma therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Shim MK, Yang S, Park J, Yoon JS, Kim J, Moon Y, Shim N, Jo M, Choi Y, Kim K. Preclinical development of carrier-free prodrug nanoparticles for enhanced antitumor therapeutic potential with less toxicity. J Nanobiotechnology 2022; 20:436. [PMID: 36195911 PMCID: PMC9531438 DOI: 10.1186/s12951-022-01644-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Nanomedicine has emerged as a promising strategy for cancer treatment. The most representative nanomedicine used in clinic is PEGylated liposomal doxorubicin DOXIL®, which is first FDA-approved nanomedicine. However, several shortcomings, such as low drug loading capacity, low tumor targeting, difficulty in mass production and potential toxicity of carrier materials, have hindered the successful clinical translation of nanomedicines. In this study, we report a preclinical development process of the carrier-free prodrug nanoparticles designed as an alternative formulation to overcome limitations of conventional nanomedicines in the terms of technical- and industrial-aspects. Results The carrier-free prodrug nanoparticles (F68-FDOX) are prepared by self-assembly of cathepsin B-specific cleavable peptide (FRRG) and doxorubicin (DOX) conjugates without any additional carrier materials, and further stabilized with Pluronic F68, resulting in high drug loading (> 50%). The precise and concise structure allow mass production with easily controllable quality control (QC), and its lyophilized powder form has a great long-term storage stability at different temperatures (− 4, 37 and 60 °C). With high cathepsin B-specificity, F68-FDOX induce a potent cytotoxicity preferentially in cancer cells, whereas their cytotoxicity is greatly minimized in normal cells with innately low cathepsin B expression. In tumor models, F68-FDOX efficiently accumulates within tumor tissues owing to enhanced permeability and retention (EPR) effect and subsequently release toxic DOX molecules by cathepsin B-specific cleavage mechanism, showing a broad therapeutic spectrum with significant antitumor activity in three types of colon, breast and pancreatic cancers. Finally, the safety of F68-FDOX treatment is investigated after single-/multi-dosage into mice, showing greatly minimized DOX-related toxicity, compared to free DOX in normal mice. Conclusions Collectively, these results provide potential preclinical development process of an alternative approach, new formulation of carrier-free prodrug nanoparticles, for clinical translation of nanomedicines. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01644-x.
Collapse
Affiliation(s)
- Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Suah Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jooho Park
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jun Sik Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinseong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yujeong Moon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Shim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mihee Jo
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yongwhan Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kwangmeyung Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea. .,College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
34
|
Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. MICROMACHINES 2022; 13:mi13101623. [PMID: 36295976 PMCID: PMC9611581 DOI: 10.3390/mi13101623] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/14/2023]
Abstract
Although nanomedicine has been highly investigated for cancer treatment over the past decades, only a few nanomedicines are currently approved and in the market; making this field poorly represented in clinical applications. Key research gaps that require optimization to successfully translate the use of nanomedicines have been identified, but not addressed; among these, the lack of control of the release pattern of therapeutics is the most important. To solve these issues with currently used nanomedicines (e.g., burst release, systemic release), different strategies for the design and manufacturing of nanomedicines allowing for better control over the therapeutic release, are currently being investigated. The inclusion of stimuli-responsive properties and prolonged drug release have been identified as effective approaches to include in nanomedicine, and are discussed in this paper. Recently, smart sustained release nanoparticles have been successfully designed to safely and efficiently deliver therapeutics with different kinetic profiles, making them promising for many drug delivery applications and in specific for cancer treatment. In this review, the state-of-the-art of smart sustained release nanoparticles is discussed, focusing on the design strategies and performances of polymeric nanotechnologies. A complete list of nanomedicines currently tested in clinical trials and approved nanomedicines for cancer treatment is presented, critically discussing advantages and limitations with respect to the newly developed nanotechnologies and manufacturing methods. By the presented discussion and the highlight of nanomedicine design criteria and current limitations, this review paper could be of high interest to identify key features for the design of release-controlled nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Zara L. Smith
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuheng Wang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- Correspondence:
| |
Collapse
|
35
|
Harnessing Protein Corona for Biomimetic Nanomedicine Design. Biomimetics (Basel) 2022; 7:biomimetics7030126. [PMID: 36134930 PMCID: PMC9496170 DOI: 10.3390/biomimetics7030126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are usually treated as multifunctional agents combining several therapeutical applications, like imaging and targeting delivery. However, clinical translation is still largely hindered by several factors, and the rapidly formed protein corona on the surface of NPs is one of them. The formation of protein corona is complicated and irreversible in the biological environment, and protein corona will redefine the “biological identity” of NPs, which will alter the following biological events and therapeutic efficacy. Current understanding of protein corona is still limited and incomplete, and in many cases, protein corona has adverse impacts on nanomedicine, for instance, losing targeting ability, activating the immune response, and rapid clearance. Due to the considerable role of protein corona in NPs’ biological fate, harnessing protein corona to achieve some therapeutic effects through various methods like biomimetic approaches is now treated as a promising way to meet the current challenges in nanomedicine such as poor pharmacokinetic properties, off-target effect, and immunogenicity. This review will first introduce the current understanding of protein corona and summarize the investigation process and technologies. Second, the strategies of harnessing protein corona with biomimetic approaches for nanomedicine design are reviewed. Finally, we discuss the challenges and future outlooks of biomimetic approaches to tune protein corona in nanomedicine.
Collapse
|
36
|
Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers (Basel) 2022; 14:3561. [PMID: 35892819 PMCID: PMC9330888 DOI: 10.3390/cancers14153561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| |
Collapse
|
37
|
Tu SM, Singh SR, Arnaoutakis K, Malapati S, Bhatti SA, Joon AY, Atiq OT, Pisters LL. Stem Cell Theory of Cancer: Implications for Translational Research from Bedside to Bench. Cancers (Basel) 2022; 14:cancers14143345. [PMID: 35884406 PMCID: PMC9321703 DOI: 10.3390/cancers14143345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
A stem cell theory of cancer considers genetic makeup in the proper cellular context. It is a unified theory of cancer that unites the genome with the epigenome, links the intracellular with the extracellular, and connects the cellular constituents and compartments with the microenvironment. Although it allies with genomic medicine, it is better aligned with integrated medicine. In this perspective, we focus on translational research in cancer care. We expose some intrinsic fallacies in translational research when it relates to the basic principles of the scientific method in the care of patients with genomic medicine versus integrated medicine. We postulate that genomic medicine may be at the root of many failed efforts in drug development and data reproducibility. We propose an alternate heuristic approach that may expedite the development of safe and effective treatments and minimize the generation of unproductive pharmaceutical products and nonreproducible experimental results. Importantly, a heuristic approach emphasizes the role of a pertinent scientific theory and distinguishes therapy development from drug development, such that we discover not only useful drugs but also better ways to use them in order to optimize patient care and maximize clinical outcomes.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
- Correspondence:
| | - Sunny R. Singh
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Konstantinos Arnaoutakis
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Sindhu Malapati
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Sajjad A. Bhatti
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Aron Y. Joon
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Omar T. Atiq
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
38
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
39
|
Wang Y, Penna V, Williams RJ, Parish CL, Nisbet DR. A Hydrogel as a Bespoke Delivery Platform for Stromal Cell-Derived Factor-1. Gels 2022; 8:gels8040224. [PMID: 35448125 PMCID: PMC9025061 DOI: 10.3390/gels8040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The defined self-assembly of peptides (SAPs) into nanostructured bioactive hydrogels has great potential for repairing traumatic brain injuries, as they maintain a stable, homeostatic environment at an injury site, preventing further degeneration. They also present a bespoke platform to restore function via the naturalistic presentation of therapeutic proteins, such as stromal-cell-derived factor 1 (SDF-1), expressed by meningeal cells. A key challenge to the use of the SDF protein, however, is its rapid diffusion and degradation. Here, we engineered a homeostatic hydrogel produced by incorporating recombinant SDF-1 protein within a self-assembled peptide hydrogel to create a supportive milieu for transplanted cells. Our hydrogel can concomitantly deliver viable primary neural progenitor cells and sustained active SDF-1 to support the nascent graft, resulting in increased neuronal differentiation. Moreover, this homeostatic hydrogel can ensure a healthy and larger graft core without impeding neuronal fiber growth and innervation. These findings demonstrate the regenerative potential of these hydrogels to improve the integration of grafted cells to treat neural injuries and diseases.
Collapse
Affiliation(s)
- Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia;
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
| | - Vanessa Penna
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3052, Australia; (V.P.); (C.L.P.)
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Melbourne 3216, Australia;
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3052, Australia; (V.P.); (C.L.P.)
| | - David R. Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia;
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne 3010, Australia
- Correspondence:
| |
Collapse
|
40
|
Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem Cell Therapy: From Idea to Clinical Practice. Int J Mol Sci 2022; 23:ijms23052850. [PMID: 35269990 PMCID: PMC8911494 DOI: 10.3390/ijms23052850] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerative medicine is a new and promising mode of therapy for patients who have limited or no other options for the treatment of their illness. Due to their pleotropic therapeutic potential through the inhibition of inflammation or apoptosis, cell recruitment, stimulation of angiogenesis, and differentiation, stem cells present a novel and effective approach to several challenging human diseases. In recent years, encouraging findings in preclinical studies have paved the way for many clinical trials using stem cells for the treatment of various diseases. The translation of these new therapeutic products from the laboratory to the market is conducted under highly defined regulations and directives provided by competent regulatory authorities. This review seeks to familiarize the reader with the process of translation from an idea to clinical practice, in the context of stem cell products. We address some required guidelines for clinical trial approval, including regulations and directives presented by the Food and Drug Administration (FDA) of the United States, as well as those of the European Medicine Agency (EMA). Moreover, we review, summarize, and discuss regenerative medicine clinical trial studies registered on the Clinicaltrials.gov website.
Collapse
|
41
|
Li Y, Zhu C, Wang Y, Wen F, Zhang X. Tumor reduction-sensitive self-delivery molecular prodrug nanomedicine for enhancing the therapeutic efficacy of chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Dirnagl U, Duda GN, Grainger DW, Reinke P, Roubenoff R. Reproducibility, relevance and reliability as barriers to efficient and credible biomedical technology translation. Adv Drug Deliv Rev 2022; 182:114118. [PMID: 35066104 DOI: 10.1016/j.addr.2022.114118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/23/2022]
Abstract
Biomedical research accuracy and relevance for improving healthcare are increasingly identified as costly problems. Basic research data quality, reporting and methodology, and reproducibility are common factors implicated in this challenge. Preclinical models of disease and therapy, largely conducted in rodents, have known deficiencies in replicating most human conditions. Their translation to human results is acknowledged to be poor for decades. Clinical data quality and quantity is also recognized as deficient; gold standard randomized clinical trials are expensive. Few solid conclusions from clinical studies are replicable and many remain unpublished. The translational pathway from fundamental biomedical research through to innovative solutions handed to clinical practitioners is therefore highly inefficient and costly in terms of wasted resources, early claims from fundamental discoveries never witnessed in humans, and few new, improved solutions available clinically for myriad diseases. Improving this biomedical research strategy and resourcing for reliability, translational relevance, reproducibility and clinical impact requires careful analysis and consistent enforcement at both funding and peer review levels.
Collapse
Affiliation(s)
- Ulrich Dirnagl
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Germany; QUEST Center for Responsible Research, Berlin Institute of Health, Germany
| | - Georg N Duda
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA.
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitaetsmedizin Berlin, 13353 Berlin, Germany
| | - Ronenn Roubenoff
- Novartis Institutes for Biomedical Research, Cambridge, Basel, Massachusetts, Switzerland
| |
Collapse
|
43
|
Özkaya AB, Geyik C. From viability to cell death: Claims with insufficient evidence in high-impact cell culture studies. PLoS One 2022; 17:e0250754. [PMID: 35192623 PMCID: PMC8863264 DOI: 10.1371/journal.pone.0250754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Reliability of preclinical research is of critical concern. Prior studies have demonstrated the low reproducibility of research results and recommend implementing higher standards to improve overall quality and robustness of research. One understudied aspect of this quality issue is the harmony between the research hypotheses and the experimental design in published work.
Methods and findings
In this study we focused on highly cited cell culture studies and investigated whether commonly asserted cell culture claims such as viability, cytotoxicity, proliferation rate, cell death and apoptosis are backed with sufficient experimental evidence or not. We created an open access database containing 280 claims asserted by 103 different high-impact articles as well as the results of this study. Our findings revealed that only 64% of all claims were sufficiently supported by evidence and there were concerning misinterpretations such as considering the results of tetrazolium salt reduction assays as indicators of cell death or apoptosis.
Conclusions
Our analysis revealed a discordance between experimental findings and the way they were presented and discussed in the manuscripts. To improve quality of pre-clinical research, we require clear nomenclature by which different cell culture claims are distinctively categorized; materials and methods sections to be written more meticulously; and cell culture methods to be selected and utilized more carefully. In this paper we recommend a nomenclature for selected cell culture claims as well as a methodology for collecting evidence to support those claims.
Collapse
Affiliation(s)
- Ali Burak Özkaya
- Department of Medical Biochemistry, Faculty of Medicine, İzmir University of Economics, İzmir, Turkey
- * E-mail:
| | - Caner Geyik
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
- ISUMKAM Molecular Cancer Research Center, İstinye University, Istanbul, Turkey
| |
Collapse
|
44
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
45
|
Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. J Control Release 2022; 342:157-169. [PMID: 34998914 DOI: 10.1016/j.jconrel.2022.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
Nanocarriers hold great promise for the controlled release of therapeutic payloads to target organs/tissues and extended duration of anticancer agents in the bloodstream. However, limited data on their in vivo pharmacokinetics and delivery process hamper clinical applications. Here we report a series of micellar nanocarriers self-assembled from new-generation thiophenthiadiazole (TTD)-based NIR-II fluorophores HLAnP (n = 1-4) for simultaneous bioimaging and drug delivery. The NIR-II HLA4P nanocarrier displays exceptional non-fouling performance, minimal immunogenicity, ultralong blood half-life, and high tumor accumulation even with different administration routes. When used as a drug carrier, HLA4P with encapsulated doxorubicin (DOX) realized accurate tumor targeting and continuous real-time in vivo NIR-II tracking of drug delivery and therapy, showing a sustained release rate, improved therapeutic effect, and diminished cardiotoxicity as compared to free DOX. This study provides a new perspective on the design of dual-functional NIR-II fluorophores for diagnostic and therapeutic applications.
Collapse
|
46
|
Lecot N, Dávila B, Sánchez C, Fernández M, González M, Cabral P, Cerecetto H, Glisoni R. Development and Evaluation of 2-Amino-7-Fluorophenazine 5,10-Dioxide Polymeric Micelles as Antitumoral Agents for 4T1 Breast Cancer. Polymers (Basel) 2021; 14:71. [PMID: 35012094 PMCID: PMC8747360 DOI: 10.3390/polym14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
2-Amino-7-fluorophenazine 5,10-dioxide (FNZ) is a bioreducible prodrug, poorly soluble in water, with potential anticancer activity on hypoxic-tumors. This poor solubility limits its potential applications in clinic. Amphiphilic pristine polymeric micelles (PMs) based on triblock copolymers Pluronic® and Tetronic®, glycosylated derivatives and their mixtures with preformed-liposomes (LPS), were analyzed as strategies to improve the bioavailability of FNZ. FNZ encapsulations were performed and the obtaining nanostructures were characterized using UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The most promising nanoformulations were analyzed for their potential toxicity and pharmacologically, at 20 mg/kg FNZ-doses, in a stage-IV murine metastatic-breast tumor model. The results revealed that the solubility of the encapsulated-FNZ increased up to 14 times and the analysis (UV-VIS, DLS and TEM) confirmed the interaction between vehicles and FNZ. In all the cases appropriate encapsulation efficiencies (greater than 75%), monodisperse nanometric particle sizes (PDI = 0.180-0.335), adequate Z-potentials (-1.59 to -26.4 mV), stabilities and spherical morphologies were obtained. The in vitro profile of FNZ controlled releases corresponded mainly to a kinetic Higuchi model. The in vitro/in vivo biological studies revealed non-toxicity and relevant tumor-weight diminution (up to 61%).
Collapse
Affiliation(s)
- Nicole Lecot
- Laboratorio de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (P.C.); (H.C.)
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Belén Dávila
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Carina Sánchez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Marcelo Fernández
- Laboratorio de Experimentación Animal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay;
| | - Mercedes González
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Pablo Cabral
- Laboratorio de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (P.C.); (H.C.)
| | - Hugo Cerecetto
- Laboratorio de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (P.C.); (H.C.)
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Romina Glisoni
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
47
|
Helmbrecht H, Xu N, Liao R, Nance E. Data Management Schema Design for Effective Nanoparticle Formulation for Neurotherapeutics. AIChE J 2021; 67:e17459. [PMID: 35399334 PMCID: PMC8993161 DOI: 10.1002/aic.17459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Translation of nanotherapeutics from preclinical research to clinical application is difficult due to the complex and dynamic interaction space between the nanotherapeutic and the brain environment. To improve translation, increased insight into nanoformulation-brain interactions in preclinical research is necessary. We developed a nanoformulation-brain database and wrote queries to connect the complex physical, chemical, and biological features of neurotherapeutics based on experimental data. We queried the database to select nanoformulations based on specific physical characteristics that enable effective penetration within the brain, including size, polydispersity index, and zeta potential. Additionally, we demonstrate the ability to query the database to return select nanoformulation characteristics, including nanoformulation methodology or methodological variables such as surfactant, polymer, drug loading, and sonication times. Finally, we show the capacity of our database to produce correlations relating nanoparticle formulation parameters to biological outcomes, including nanotherapeutic impact on cell viability in cultured brain slices.
Collapse
Affiliation(s)
| | - Nuo Xu
- Chemical Engineering, University of Washington
| | - Rick Liao
- Chemical Engineering, University of Washington
| | - Elizabeth Nance
- Chemical Engineering, University of Washington
- e-Science Institute, University of Washington
- Center for Human Development and Disability, University of Washington
- Department of Radiology, University of Washington
| |
Collapse
|
48
|
Abou-el-Enein M, Angelis A, Appelbaum FR, Andrews NC, Bates SE, Bierman AS, Brenner MK, Cavazzana M, Caligiuri MA, Clevers H, Cooke E, Daley GQ, Dzau VJ, Ellis LM, Fineberg HV, Goldstein LS, Gottschalk S, Hamburg MA, Ingber DE, Kohn DB, Krainer AR, Maus MV, Marks P, Mummery CL, Pettigrew RI, Rutter JL, Teichmann SA, Terzic A, Urnov FD, Williams DA, Wolchok JD, Lawler M, Turtle CJ, Bauer G, Ioannidis JP. Evidence generation and reproducibility in cell and gene therapy research: A call to action. Mol Ther Methods Clin Dev 2021; 22:11-14. [PMID: 34377737 PMCID: PMC8322039 DOI: 10.1016/j.omtm.2021.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Mohamed Abou-el-Enein
- Division of Medical Oncology, Department of Medicine and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Joint USC/CHLA Cell Therapy Program, University of Southern California and Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Aris Angelis
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
- Department of Health Policy and LSE Health, London School of Economics and Political Science, London, UK
| | - Frederick R. Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nancy C. Andrews
- Department of Pharmacology and Cancer Biology and Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Susan E. Bates
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arlene S. Bierman
- Center for Evidence and Practice Improvement, Agency for Healthcare Research and Quality, Rockville, MD, USA
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Marina Cavazzana
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Quest, INSERM, Paris, France
| | - Michael A. Caligiuri
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emer Cooke
- European Medicines Agency, Amsterdam, the Netherlands
| | - George Q. Daley
- Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Lee M. Ellis
- Department of Surgical Oncology and Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Lawrence S.B. Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Margaret A. Hamburg
- American Association for the Advancement of Science (AAAS), Washington, DC, USA
- National Academy of Medicine, Washington, DC, USA
| | - Donald E. Ingber
- Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- The Eli & Edith Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Marcela V. Maus
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Peter Marks
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderic I. Pettigrew
- ENMED, Colleges of Medicine and Engineering, Texas A&M University, Houston, TX, USA
| | - Joni L. Rutter
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, UK
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fyodor D. Urnov
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - David A. Williams
- Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Jedd D. Wolchok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mark Lawler
- Patrick G Johnston Centre for Cancer Research, Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, Belfast, UK
| | - Cameron J. Turtle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - John P.A. Ioannidis
- Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Epidemiology and Population Health and Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Zenych A, Jacqmarcq C, Aid R, Fournier L, Forero Ramirez LM, Chaubet F, Bonnard T, Vivien D, Letourneur D, Chauvierre C. Fucoidan-functionalized polysaccharide submicroparticles loaded with alteplase for efficient targeted thrombolytic therapy. Biomaterials 2021; 277:121102. [PMID: 34482087 DOI: 10.1016/j.biomaterials.2021.121102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 01/22/2023]
Abstract
Intravenous administration of fibrinolytic drugs is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and might trigger hemorrhagic transformations. Therefore, it is mandatory to develop innovative nanomedicine-based solutions for more efficient and safer thrombolysis with biocompatible and biodegradable thrombus-targeted nanocarrier. Herein, fucoidan-functionalized hydrogel polysaccharide submicroparticles with high biocompatibility are elaborated by the inverse miniemulsion/crosslinking method. They are loaded with the gold standard fibrinolytic - alteplase - to direct site-specific fibrinolysis due to nanomolar interactions between fucoidan and P-selectin overexpressed on activated platelets and endothelial cells in the thrombus area. The thrombus targeting properties of these particles are validated in a microfluidic assay containing recombinant P-selectin and activated platelets under arterial and venous blood shear rates as well as in vivo. The experiments on the murine model of acute thromboembolic ischemic stroke support this product's therapeutic efficacy, revealing a faster recanalization rate in the middle cerebral artery than with free alteplase, which reduces post-ischemic cerebral infarct lesions and blood-brain barrier permeability. Altogether, this proof-of-concept study demonstrates the potential of a biomaterial-based targeted nanomedicine for the precise treatment of acute thrombotic events, such as ischemic stroke.
Collapse
Affiliation(s)
- Alina Zenych
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Charlène Jacqmarcq
- INSERM U1237 Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen Normandie (BB@C), GIP Cyceron, 14074, Caen, France
| | - Rachida Aid
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France; Université de Paris, FRIM, UMS 034, INSERM, F-75018, Paris, France
| | - Louise Fournier
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Laura M Forero Ramirez
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Frédéric Chaubet
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Thomas Bonnard
- INSERM U1237 Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen Normandie (BB@C), GIP Cyceron, 14074, Caen, France
| | - Denis Vivien
- INSERM U1237 Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen Normandie (BB@C), GIP Cyceron, 14074, Caen, France; Department of Clinical Research, Caen Normandie University Hospital (CHU), 14074, Caen, France
| | - Didier Letourneur
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Cédric Chauvierre
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France.
| |
Collapse
|
50
|
Mahmoudi M. The need for robust characterization of nanomaterials for nanomedicine applications. Nat Commun 2021; 12:5246. [PMID: 34475383 PMCID: PMC8413343 DOI: 10.1038/s41467-021-25584-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Robust and precise characterization of the interactions between nanoengineered materials and biosystems is vital for the development of safe, efficient diagnostic and therapeutic nanomedicines. This comment discusses the key aspects of nanoparticle characteristics affecting the interpretation of nano-bio interface data.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|