1
|
Yeruva T, Morris Iii RJ, Kumar S, Zhao L, Kofinas P, Duncan GA. Rapid in situ forming PEG hydrogels for mucosal drug delivery. Biomater Sci 2025. [PMID: 40242909 PMCID: PMC12004215 DOI: 10.1039/d4bm01101e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
In situ gelling polymeric biomaterials have proven useful as drug delivery vehicles to enable sustained release at the sites of disease or injury. However, if delivered to mucosal tissues, such as the eyes, nose, and gastrointestinal and cervicovaginal tracts, these gels must also possess the ability to adhere to an epithelium coated in mucus. Towards this end, we report a new rapid in situ gelling polyethylene glycol-based hydrogel. Unlike other chemistries that enable rapid gel formation via irreversible covalent bonds, we use a bio-reducible linker allowing the gels to be naturally degraded over several days once administered. We identified a set of 6 lead formulations, which rapidly transform into disulfide-linked PEG hydrogels in 30 seconds or less. These rapidly forming PEG hydrogels were also able to conform and adhere to mucosal tissues via PEG-mucin entanglements and hydrogen bonding. Controlled release of protein-based cargoes from the PEG gels was achieved over several hours, whereas 40 nm nanoparticle-based cargos were retained over 24 hours. We also found that these rapid in situ forming PEG gels were well tolerated by mammalian cells and were retained in the nasal cavity of mice for up to 1 week. These studies support further testing and development of rapid in situ forming PEG gels for drug delivery to improve therapeutic retention and efficacy at mucosal sites.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Robert J Morris Iii
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sahana Kumar
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Molecular and Cellular Biology Program, University of Maryland, College Park, MD 20742, USA
| | - Luke Zhao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Peter Kofinas
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Molecular and Cellular Biology Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 PMCID: PMC11966650 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A. Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Liu M, Chu B, Sun R, Ding J, Ye H, Yang Y, Wu Y, Shi H, Song B, He Y, Wang H, Hong J. Antisense Oligonucleotides Selectively Enter Human-Derived Antibiotic-Resistant Bacteria through Bacterial-Specific ATP-Binding Cassette Sugar Transporter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300477. [PMID: 37002615 DOI: 10.1002/adma.202300477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Indexed: 05/28/2023]
Abstract
Current vehicles used to deliver antisense oligonucleotides (ASOs) cannot distinguish between bacterial and mammalian cells, greatly hindering the preclinical or clinical treatment of bacterial infections, especially those caused by antibiotic-resistant bacteria. Herein, bacteria-specific ATP-binding cassette (ABC) sugar transporters are leveraged to selectively internalize ASOs by hitchhiking them on α (1-4)-glucosidically linked glucose polymers. Compared with their cell-penetrating peptide counterparts, which are non-specifically engulfed by mammalian and bacterial cells, the presented therapeutics consisting of glucose polymer and antisense peptide nucleic-acid-modified nanoparticles are selectively internalized into the human-derived multidrug-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus, and they display a much higher uptake rate (i.e., 51.6%). The developed strategy allows specific and efficient killing of nearly 100% of the antibiotic-resistant bacteria. Its significant curative efficacy against bacterial keratitis and endophthalmitis is also shown. This strategy will expand the focus of antisense technology to include bacterial cells other than mammalian cells.
Collapse
Affiliation(s)
- Mingzhu Liu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Binbin Chu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Rong Sun
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jiali Ding
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Road Fenyang, Shanghai, 200031, China
| | - Yunmin Yang
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yuqi Wu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Haoliang Shi
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yao He
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Houyu Wang
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Road Fenyang, Shanghai, 200031, China
| |
Collapse
|
6
|
Park W, Nguyen VP, Jeon Y, Kim B, Li Y, Yi J, Kim H, Leem JW, Kim YL, Kim DR, Paulus YM, Lee CH. Biodegradable silicon nanoneedles for ocular drug delivery. SCIENCE ADVANCES 2022; 8:eabn1772. [PMID: 35353558 PMCID: PMC8967230 DOI: 10.1126/sciadv.abn1772] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Ocular drug delivery remains a grand challenge due to the complex structure of the eye. Here, we introduce a unique platform of ocular drug delivery through the integration of silicon nanoneedles with a tear-soluble contact lens. The silicon nanoneedles can penetrate into the cornea in a minimally invasive manner and then undergo gradual degradation over the course of months, enabling painless and long-term sustained delivery of ocular drugs. The tear-soluble contact lens can fit a variety of corneal sizes and then quickly dissolve in tear fluid within a minute, enabling an initial burst release of anti-inflammatory drugs. We demonstrated the utility of this platform in effectively treating a chronic ocular disease, such as corneal neovascularization, in a rabbit model without showing a notable side effect over current standard therapies. This platform could also be useful in treating other chronic ocular diseases.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bongjoong Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|