1
|
Sun C, Li S, Ding J. Biomaterials-mediated biomineralization for tumor blockade therapy. Nanomedicine (Lond) 2025; 20:417-425. [PMID: 39800898 PMCID: PMC11812332 DOI: 10.1080/17435889.2025.2451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Recent advancements in tumor therapy have underscored the potential of biomaterials-mediated biomineralization for tumor blockade. By precisely regulating biomineralization and constructing nanomineralized structures at the cellular level, this therapy achieves multi-dimensional targeted inhibition of tumors. Mineralized precursor molecules are engineered to selectively recognize and bind to proteins on the tumor cell membrane, obstructing signal transduction. Biomineralized materials directly target the tumor cell membrane, disrupting its biological functions and inducing cell apoptosis. Additionally, these materials infiltrate the mitochondria of tumor cells, disrupting energy metabolism through mineralization and significantly impairing tumor viability. This biomaterials-mediated approach enhances treatment precision and efficacy while mitigating side effects, offering a unique approach to tumor therapy.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, Jilin University, Changchun, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
2
|
Nia HT, Munn LL, Jain RK. Probing the physical hallmarks of cancer. Nat Methods 2025:10.1038/s41592-024-02564-4. [PMID: 39815103 DOI: 10.1038/s41592-024-02564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks. Here, after briefly defining these physical hallmarks, we discuss the tools and model systems available for probing each hallmark in vitro, ex vivo, in vivo and in clinical settings. We finally review the unmet needs for mechanistic probing of the physical hallmarks of tumors and discuss the challenges and unanswered questions associated with each hallmark.
Collapse
Affiliation(s)
- Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Zhu K, Li S, Yao H, Hei J, Jiang W, Martin T, Zhang S. Junctional adhesion molecular 3 (JAM3) is a novel tumor suppressor and improves the prognosis in breast cancer brain metastases via the TGF-β/Smad signal pathway. J Neurooncol 2024; 170:331-345. [PMID: 39320657 DOI: 10.1007/s11060-024-04797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE Breast cancer brain metastasis (BCBM) is a deadly clinical problem, and the exact underlying mechanisms remain elusive. Junctional adhesion molecule (JAM), a tight junction protein, is a key negative regulator of cancer cell invasion and metastasis. METHODS Junction adhesion molecule 3 (JAM3) expression in breast cancer was analyzed using bioinformatics methods and confirmed by PCR, western blotting, and immunofluorescence (IF) in cell lines. The effects of exogenous expression of JAM3 using lentiviral vectors on invasion, adhesion, and apoptosis were verified using transwell assays and flow cytometry. Differentially expressed genes (DEGs) were detected by RNA sequencing and verified by q‒PCR and Western blotting. The effect of JAM3 silencing using siRNA was assessed by an adhesion assay. Kaplan‒Meier analysis was applied to calculate the impact of JAM3 expression and classic clinicopathologic characteristics on survival. RESULTS Bioinformatics analysis revealed that JAM3 expression was reduced in BCBM. Exogenous expression of JAM3 minimizes the ability of breast cancer cells to invade and adhere and promotes their apoptosis. Silencing JAM3 results in morphology changes and the recovery of invasion and adhesion to ECMs, and the TGF-β/Smad signaling pathway may be involved. JAM3 predicts less metastasis and good survival in patients with BCBM. Statistical analysis of BCBM samples detected by immunohistochemistry (IHC) and the associated clinicopathological characteristics revealed that low levels of JAM3 expression and high levels of TNF-β1 are linked to the clinical progression of both primary and metastatic breast tumors. Kaplan-Meier analysis revealed that a high expression level of JAM3 was associated with longer survival. CONCLUSION JAM3 can serve as a key negative regulator of breast cancer cell invasion, apoptosis, and brain metastasis, possibly through the TGF/Smad signaling pathway. JAM3 is anticipated to be a promising biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Kaitao Zhu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong- Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiwei Li
- Department of Neurosurgery, HeYou International Health System, Foshan, China
| | - Hongru Yao
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong- Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jilong Hei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong- Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - WenGuo Jiang
- Joint Centre Biomedical Research), School of Medicine, Cardiff China Medical Research Collaborative (CCMRC), (Cardiff University - Peking University Cancer Institute and Cardiff University - Capital Medical University, Cardiff University, Cardiff, UK
| | - Tracey Martin
- Joint Centre Biomedical Research), School of Medicine, Cardiff China Medical Research Collaborative (CCMRC), (Cardiff University - Peking University Cancer Institute and Cardiff University - Capital Medical University, Cardiff University, Cardiff, UK.
| | - Shanyi Zhang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong- Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Joint Centre Biomedical Research), School of Medicine, Cardiff China Medical Research Collaborative (CCMRC), (Cardiff University - Peking University Cancer Institute and Cardiff University - Capital Medical University, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Baldassarri I, Tavakol DN, Graney PL, Chramiec AG, Hibshoosh H, Vunjak-Novakovic G. An engineered model of metastatic colonization of human bone marrow reveals breast cancer cell remodeling of the hematopoietic niche. Proc Natl Acad Sci U S A 2024; 121:e2405257121. [PMID: 39374382 PMCID: PMC11494322 DOI: 10.1073/pnas.2405257121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Incomplete understanding of metastatic disease mechanisms continues to hinder effective treatment of cancer. Despite remarkable advancements toward the identification of druggable targets, treatment options for patients in remission following primary tumor resection remain limited. Bioengineered human tissue models of metastatic sites capable of recreating the physiologically relevant milieu of metastatic colonization may strengthen our grasp of cancer progression and contribute to the development of effective therapeutic strategies. We report the use of an engineered tissue model of human bone marrow (eBM) to identify microenvironmental cues regulating cancer cell proliferation and to investigate how triple-negative breast cancer (TNBC) cell lines influence hematopoiesis. Notably, individual stromal components of the bone marrow niche (osteoblasts, endothelial cells, and mesenchymal stem/stromal cells) were each critical for regulating tumor cell quiescence and proliferation in the three-dimensional eBM niche. We found that hematopoietic stem and progenitor cells (HSPCs) impacted TNBC cell growth and responded to cancer cell presence with a shift of HSPCs (CD34+CD38-) to downstream myeloid lineages (CD11b+CD14+). To account for tumor heterogeneity and show proof-of-concept ability for patient-specific studies, we demonstrate that patient-derived tumor organoids survive and proliferate in the eBM, resulting in distinct shifts in myelopoiesis that are similar to those observed for aggressively metastatic cell lines. We envision that this human tissue model will facilitate studies of niche-specific metastatic progression and individualized responses to treatment.
Collapse
Affiliation(s)
- Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Pamela L. Graney
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Alan G. Chramiec
- Department of Biomedical Engineering, Columbia University, New York, NY10025
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Medicine, Columbia University, New York, NY10032
- College of Dental Medicine, Columbia University, New York, NY10032
| |
Collapse
|
5
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Cheng Z, Xu H, Wang X, Teng T, Li B, Cao Z, Li Z, Zhang J, Xuan J, Zhang F, Chen Y, Li Y, Wang W. A causal relationship between bone mineral density and breast cancer risk: a mendelian randomization study based on east Asian population. BMC Cancer 2024; 24:1148. [PMID: 39277718 PMCID: PMC11401392 DOI: 10.1186/s12885-024-12908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Breast cancer (BC) poses significant burdens on women globally. While past research suggests a potential link between bone mineral density (BMD) and BC risk, findings remain inconsistent. Our study aims to elucidate the causal relationship between BMD and BC in East Asians using bidirectional Mendelian randomization (MR). METHODS Genetic association data for bone mineral density T-scores (BMD-T) and Z-scores (BMD-Z) (Sample size = 92,615) and BC from two different sources (Sample size1 = 98,283; Sample size2 = 79,550) were collected from publicly available genome-wide association studies (GWAS). Single-nucleotide polymorphisms (SNPs) associated with BMD-T and BMD-Z as phenotype-related instrumental variables (IVs) were used, with BC as the outcome. As the primary means of causal inference, the inverse variance weighted (IVW) approach was employed. Heterogeneity analysis was conducted using Cochran's Q test, while MR-Egger regression analysis was implemented to assess the pleiotropic effects of the IVs. Sensitivity analyses were performed using methods such as MR-Egger, weighted median, and weighted mode to analyze the robustness and reliability of the results. The MR-PRESSO method and the RadialMR were used to detect and remove outliers. The PhenoScanner V2 website was utilized to exclude confounding factors shared between BMD and BC. Besides, the Bonferroni correction was also used to adjust the significance threshold. Then, the meta-analysis method was applied to combine the MR analysis results from the two BC sources. Finally, a reverse MR analysis was conducted. RESULTS The results of the IVW method were consolidated through meta-analysis, revealing a positive correlation between genetically predicted BMD-T ([Formula: see text], [Formula: see text], [Formula: see text]) and BMD-Z ([Formula: see text],[Formula: see text], [Formula: see text]) with increased BC risk. The Cochran's [Formula: see text] test and MR-Egger regression suggested that neither of these causal relationships was affected by heterogeneity or horizontal pleiotropy. The sensitivity analyses supported the IVW results, indicating the robustness of the findings. Reverse MR analysis showed no causal relationship between BC and BMD. CONCLUSION Our MR study results provide evidence for the causal relationship between BMD and BC risk in East Asian populations, suggesting that BMD screening is of great significance in detecting and preventing BC.
Collapse
Affiliation(s)
- Ziyang Cheng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Teng
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Li
- Department of Radiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Li
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayi Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Xuan
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengyi Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaxin Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujie Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Wenbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Yoon H, Park Y, Kwak JG, Lee J. Collagen structures of demineralized bone paper direct mineral metabolism. JBMR Plus 2024; 8:ziae080. [PMID: 38989259 PMCID: PMC11235081 DOI: 10.1093/jbmrpl/ziae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Bone is a dynamic mineralized tissue that undergoes continuous turnover throughout life. While the general mechanism of bone mineral metabolism is documented, the role of underlying collagen structures in regulating osteoblastic mineral deposition and osteoclastic mineral resorption remains an active research area, partly due to the lack of biomaterial platforms supporting accurate and analytical investigation. The recently introduced osteoid-inspired demineralized bone paper (DBP), prepared by 20-μm thin sectioning of demineralized bovine compact bone, holds promise in addressing this challenge as it preserves the intrinsic bony collagen structure and retains semi-transparency. Here, we report on the impact of collagen structures on modulating osteoblast and osteoclast-driven bone mineral metabolism using vertical and transversal DBPs that exhibit a uniaxially aligned and a concentric ring collagen structure, respectively. Translucent DBP reveals these collagen structures and facilitates longitudinal tracking of mineral deposition and resorption under brightfield microscopy for at least 3 wk. Genetically labeled primary osteogenic cells allow fluorescent monitoring of these cellular processes. Osteoblasts adhere and proliferate following the underlying collagen structures of DBPs. Osteoblastic mineral deposition is significantly higher in vertical DBP than in transversal DBP. Spatiotemporal analysis reveals notably more osteoblast adhesion and faster mineral deposition in vascular regions than in bone regions. Subsequent osteoclastic resorption follows these mineralized collagen structures, directing distinct trench and pit-type resorption patterns. In vertical DBP, trench-type resorption occurs at an 80% frequency, whereas transversal DBP shows 35% trench-type and 65% pit-type resorption. Our studies substantiate the importance of collagen structures in regulating mineral metabolism by osteogenic cells. DBP is expected to serve as an enabling biomaterial platform for studying various aspects of cellular and extracellular bone remodeling biology.
Collapse
Affiliation(s)
- Hyejin Yoon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Yongkuk Park
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
8
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604333. [PMID: 39091735 PMCID: PMC11291034 DOI: 10.1101/2024.07.19.604333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Breast cancer bone metastasis is the leading cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Here, we investigate how bone mineral content affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to matrix mineral content depends on host immunocompetence and the murine tumor model used. Collectively, our findings suggest that bone mineral density affects tumor growth by altering microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A. Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| |
Collapse
|
9
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
10
|
Lindgren H, Ademi D, Godina C, Tryggvadottir H, Isaksson K, Jernström H. Potential interplay between tumor size and vitamin D receptor (VDR) polymorphisms in breast cancer prognosis: a prospective cohort study. Cancer Causes Control 2024; 35:907-919. [PMID: 38351438 PMCID: PMC11130020 DOI: 10.1007/s10552-023-01845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 05/28/2024]
Abstract
PURPOSE Vitamin D has some anticancer properties that may decrease breast cancer risk and improve prognosis. The aim was to investigate associations between four previously studied VDR SNPs (Taq1, Tru91, Bsm1, and Fok1) and prognosis in different groups of breast cancer patients. METHODS VDR genotyping of 1,017 breast cancer patients included 2002-2012 in Lund, Sweden, was performed using Oncoarray. Follow-up was until June 30, 2019. Clinical data and patient information were collected from medical records and questionnaires. Cox regression was used for survival analyses. RESULTS Genotype frequencies were as follows: Fok1 (AA 15.7%, AG 49.1%, GG 35.1%), Bsm1 (CC 37.2%, CT 46.1%, TT 16.7%), Tru91 (CC 77.8%, CT 20.7%, TT 1.5%), and Taq1 (AA 37.2%, AG 46.2%, GG 16.6%). During follow-up there were 195 breast cancer events. The homozygous variants of Taq1 and Bsm1 were associated with reduced risk of breast cancer events (adjusted HR = 0.59, 95% CI 0.38-0.92 for Taq1 and adjusted HR = 0.61, 95% CI 0.40-0.94 for Bsm1). The G allele of the Fok1 was associated with increased risk of breast cancer events in small tumors (pT1, adjusted HR = 1.83, 95% CI 1.04-3.23) but not in large tumors (pT2/3/4, adjusted HR = 0.80, 95% CI 0.41-1.59) with a borderline interaction (Pinteraction = 0.058). No interactions between VDR genotypes and adjuvant treatments regarding breast cancer prognosis were detected. CONCLUSION VDR genotypes were associated with breast cancer prognosis and the association might be modified by tumor size. Further research is needed to confirm the findings and elucidate their potential clinical implications.
Collapse
Affiliation(s)
- Hampus Lindgren
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - David Ademi
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - Christopher Godina
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, SE 221 85, Lund, Sweden
- Department of Surgery, Kristianstad Hospital, J A Hedlunds väg 5, SE 291 33, Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden.
| |
Collapse
|
11
|
Lee JWN, Holle AW. Engineering approaches for understanding mechanical memory in cancer metastasis. APL Bioeng 2024; 8:021503. [PMID: 38605886 PMCID: PMC11008915 DOI: 10.1063/5.0194539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Understanding cancer metastasis is crucial for advancing therapeutic strategies and improving clinical outcomes. Cancer cells face dynamic changes in their mechanical microenvironment that occur on timescales ranging from minutes to years and exhibit a spectrum of cellular transformations in response to these mechanical cues. A crucial facet of this adaptive response is the concept of mechanical memory, in which mechanosensitive cell behavior and function persists even when mechanical cues are altered. This review explores the evolving mechanical landscape during metastasis, emphasizing the significance of mechanical memory and its influence on cell behavior. We then focus on engineering techniques that are being utilized to probe mechanical memory of cancer cells. Finally, we highlight promising translational approaches poised to harness mechanical memory for new therapies, thereby advancing the frontiers of bioengineering applications in cancer research.
Collapse
Affiliation(s)
- Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | | |
Collapse
|
12
|
Kumar V, Naqvi SM, Verbruggen A, McEvoy E, McNamara LM. A mechanobiological model of bone metastasis reveals that mechanical stimulation inhibits the pro-osteolytic effects of breast cancer cells. Cell Rep 2024; 43:114043. [PMID: 38642336 DOI: 10.1016/j.celrep.2024.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/22/2024] Open
Abstract
Bone is highly susceptible to cancer metastasis, and both tumor and bone cells enable tumor invasion through a "vicious cycle" of biochemical signaling. Tumor metastasis into bone also alters biophysical cues to both tumor and bone cells, which are highly sensitive to their mechanical environment. However, the mechanobiological feedback between these cells that perpetuate this cycle has not been studied. Here, we develop highly advanced in vitro and computational models to provide an advanced understanding of how tumor growth is regulated by the synergistic influence of tumor-bone cell signaling and mechanobiological cues. In particular, we develop a multicellular healthy and metastatic bone model that can account for physiological mechanical signals within a custom bioreactor. These models successfully recapitulated mineralization, mechanobiological responses, osteolysis, and metastatic activity. Ultimately, we demonstrate that mechanical stimulus provided protective effects against tumor-induced osteolysis, confirming the importance of mechanobiological factors in bone metastasis development.
Collapse
Affiliation(s)
- Vatsal Kumar
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Syeda M Naqvi
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Anneke Verbruggen
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland.
| |
Collapse
|
13
|
Liu Y, Dong L, Ma J, Chen L, Fang L, Wang Z. The prognostic genes model of breast cancer drug resistance based on single-cell sequencing analysis and transcriptome analysis. Clin Exp Med 2024; 24:113. [PMID: 38795164 PMCID: PMC11127859 DOI: 10.1007/s10238-024-01372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Breast cancer (BC) represents a multifaceted malignancy, with escalating incidence and mortality rates annually. Chemotherapy stands as an indispensable approach for treating breast cancer, yet drug resistance poses a formidable challenge. Through transcriptome data analysis, we have identified two sets of genes exhibiting differential expression in this context. Furthermore, we have confirmed the overlap between these genes and those associated with exosomes, which were subsequently validated in cell lines. The investigation screened the identified genes to determine prognostic markers for BC and utilized them to formulate a prognostic model. The disparities in prognosis and immunity between the high- and low-risk groups were validated using the test dataset. We have discerned different BC subtypes based on the expression levels of prognostic genes in BC samples. Variations in prognosis, immunity, and drug sensitivity among distinct subtypes were examined. Leveraging data from single-cell sequencing and prognostic gene expression, the AUCell algorithm was employed to score individual cell clusters and analyze the pathways implicated in high-scoring groups. Prognostic genes (CCT4, CXCL13, MTDH, PSMD2, and RAB27A) were subsewoquently validated using RT-qPCR. Consequently, we have established a model for predicting prognosis in breast cancer that hinges on drug resistance and ERGs. Furthermore, we have evaluated the prognostic value of this model. The genes identified as prognostic markers can now serve as a reference for precise treatment of this condition.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lun Dong
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Linghui Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| |
Collapse
|
14
|
Elaasser B, Arakil N, Mohammad KS. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. Int J Mol Sci 2024; 25:2846. [PMID: 38474093 PMCID: PMC10932255 DOI: 10.3390/ijms25052846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of patients with advanced cancer poses clinical problems due to the complications that arise as the disease progresses. Bone metastases are a common problem that cancer patients may face, and currently, there are no effective drugs to treat these individuals. Prostate, breast, and lung cancers often spread to the bone, causing significant and disabling health conditions. The bone is a highly active and dynamic tissue and is considered a favorable environment for the growth of cancer. The role of osteoblasts and osteoclasts in the process of bone remodeling and the way in which their interactions change during the progression of metastasis is critical to understanding the pathophysiology of this disease. These interactions create a self-perpetuating loop that stimulates the growth of metastatic cells in the bone. The metabolic reprogramming of both cancer cells and cells in the bone microenvironment has serious implications for the development and progression of metastasis. Insight into the process of bone remodeling and the systemic elements that regulate this process, as well as the cellular changes that occur during the progression of bone metastases, is critical to the discovery of a cure for this disease. It is crucial to explore different therapeutic options that focus specifically on malignancy in the bone microenvironment in order to effectively treat this disease. This review will focus on the bone remodeling process and the effects of metabolic disorders as well as systemic factors like hormones and cytokines on the development of bone metastases. We will also examine the various therapeutic alternatives available today and the upcoming advances in novel treatments.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (B.E.); (N.A.)
| |
Collapse
|
15
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. COLLAGEN MINERALIZATION DECREASES NK CELL-MEDIATED CYTOTOXICITY OF BREAST CANCER CELLS VIA INCREASED GLYCOCALYX THICKNESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576377. [PMID: 38328161 PMCID: PMC10849468 DOI: 10.1101/2024.01.20.576377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Shimpi AA, Williams ED, Ling L, Tamir T, White FM, Fischbach C. Phosphoproteomic Changes Induced by Cell-Derived Matrix and Their Effect on Tumor Cell Migration and Cytoskeleton Remodeling. ACS Biomater Sci Eng 2023; 9:6835-6848. [PMID: 38015076 DOI: 10.1021/acsbiomaterials.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increased fibrotic extracellular matrix (ECM) deposition promotes tumor invasion, which is the first step of the metastatic cascade. Yet, the underlying mechanisms are poorly understood as conventional studies of tumor cell migration are often performed in 2D cultures lacking the compositional and structural complexity of native ECM. Moreover, these studies frequently focus on select candidate pathways potentially overlooking other relevant changes in cell signaling. Here, we combine a cell-derived matrix (CDM) model with phosphotyrosine phosphoproteomic analysis to investigate tumor cell migration on fibrotic ECM relative to standard tissue culture plastic (TCP). Our results suggest that tumor cells cultured on CDMs migrate faster and in a more directional manner than their counterparts on TCP. These changes in migration correlate with decreased cell spreading and increased cell elongation. While the formation of phosphorylated focal adhesion kinase (pFAK)+ adhesion complexes did not vary between TCP and CDMs, time-dependent phosphoproteomic analysis identified that the SRC family kinase LYN may be differentially regulated. Pharmacological inhibition of LYN decreased tumor cell migration and cytoskeletal rearrangement on CDMs and also on TCP, suggesting that LYN regulates tumor cell migration on CDMs in combination with other mechanisms. These data highlight how the combination of physicochemically complex in vitro systems with phosphoproteomics can help identify signaling mechanisms by which the fibrotic ECM regulates tumor cell migration.
Collapse
Affiliation(s)
- Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Erik D Williams
- Department of Information Science, Cornell University, Ithaca, New York 14853, United States
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tigist Tamir
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 023139, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Affiliation(s)
- Cheyenne Ernst
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|