1
|
Jiang C, Qian Y, Bai X, Li S, Zhang L, Xie Y, Lu Y, Lu Z, Liu B, Jiang BH. SLC7A5/E2F1/PTBP1/PKM2 axis mediates progression and therapy effect of triple-negative breast cancer through the crosstalk of amino acid metabolism and glycolysis pathway. Cancer Lett 2025; 617:217612. [PMID: 40054655 DOI: 10.1016/j.canlet.2025.217612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Triple-negative breast cancer (TNBC) is one of the most challenging malignancies with the highest mortality rates among women. TNBC relies on both amino acid metabolism and glycolysis to fuel its bioenergetic and biosynthetic demands. However, the potential crosstalk between these two metabolic pathways and its impact on TNBC progression remain largely unexplored. In this study, we observed that SLC7A5, a key amino acid transporter, was upregulated in TNBC and strongly associated with poor patient prognosis. We demonstrated that the elevated SLC7A5 expression activated the amino acid pathway and promoted cell proliferation, tumor growth, and therapeutic resistance by inducing the switch from PKM1 to PKM2 expression, thereby mediating the crosstalk between amino acid metabolism and glycolysis. We further identified that the upregulation of SLC7A5 resulted from miR-152 suppression, which regulates TNBC cellular function and tumor growth. In addition, the miR-152/SLC7A5 axis mediated the expression of PTBP1, which maintains the balance between PKM1 and PKM2, linking amino acid signaling with the glycolysis pathway. To further understand the mechanism of PTBP1 upregulation, we identified that E2F1 transcriptionally activated PTBP1 expression through direct binding at the seed site, while E2F1 expression was also induced by SLC7A5 in TNBC. This novel SLC7A5/E2F1/PTBP1 axis plays a crucial role in regulating the crosstalk between amino acid signaling and glycolysis in TNBC and is essential for TNBC progression and therapeutic effectiveness. Our findings offer valuable insights into the molecular mechanisms underlying TNBC metabolic reprogramming and highlight potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Chengfei Jiang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Yingchen Qian
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiaoming Bai
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Shuangya Li
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Liyuan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yunxia Xie
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yifan Lu
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, China
| | - Bingjie Liu
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Bing-Hua Jiang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Zhang Y, Zhang S, Sun H, Xu L. The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma. Cell Death Discov 2025; 11:186. [PMID: 40253354 PMCID: PMC12009291 DOI: 10.1038/s41420-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Renal cell carcinoma (RCC), a therapeutically recalcitrant genitourinary malignancy, exemplifies the profound interplay between oncogenic signaling and metabolic adaptation. Emerging evidence positions metabolic reprogramming as a central axis of RCC pathogenesis, characterized by dynamic shifts in nutrient utilization that transcend canonical Warburg physiology to encompass lipid anabolism, glutamine auxotrophy, and microenvironment-driven metabolic plasticity. This orchestrated rewiring of cellular energetics sustains tumor proliferation under hypoxia while fostering immunosuppression through metabolite-mediated T cell exhaustion and myeloid-derived suppressor cell activation. Crucially, RCC exhibits metabolic heterogeneity across histological subtypes and intratumoral regions-a feature increasingly recognized as a determinant of therapeutic resistance. Our review systematically deciphers the molecular architecture of RCC metabolism, elucidating how VHL/HIF axis mutations, mTOR pathway dysregulation, and epigenetic modifiers converge to reshape glucose flux, lipid droplet biogenesis, and amino acid catabolism. We present novel insights into spatial metabolic zonation within RCC tumors, where pseudohypoxic niches engage in lactate shuttling and cholesterol efflux to adjacent vasculature, creating pro-angiogenic and immunosuppressive microdomains. Therapeutically, we evaluate first-in-class inhibitors targeting rate-limiting enzymes in de novo lipogenesis and glutamine metabolism, while proposing biomarker-driven strategies to overcome compensatory pathway activation. We highlight the synergy between glutaminase inhibitors and PD-1 blockade in reinvigorating CD8+ T cell function, and the role of lipid-loaded cancer-associated fibroblasts in shielding tumors from ferroptosis. Finally, we outline a translational roadmap integrating multi-omics profiling, functional metabolomics, and spatial biology to match metabolic vulnerabilities with precision therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shengli Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongbin Sun
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Chen S, Zeng X, Wu M, Zhu J, Wu Y. Sodium Alginate Hydrogel Infusion of Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles and p38α Antagonistic Peptides in Myocardial Infarction Fibrosis Mitigation. J Am Heart Assoc 2025; 14:e036887. [PMID: 40178108 DOI: 10.1161/jaha.124.036887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/27/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Myocardial fibrosis is a pathological hallmark of heart failure post infarction, emphasizing the need for innovative treatment strategies. This research assesses the antifibrotic potential of a sodium alginate (SA) hydrogel loaded with extracellular vesicles (EVs) from bone marrow mesenchymal stem cells and PAP (p38α antagonistic peptides), aiming to interfere with fibrosis-inducing pathways in myocardial tissue after infarction. METHODS We induced fibrosis in mouse cardiac fibroblasts through hypoxia and disrupted the Mapk14 gene to study its contribution to fibrosis. Mesenchymal stem cell-derived EVs, loaded with PAP, were encapsulated in the SA hydrogel (EVs-PAP@SA). The formulation was tested in vitro for its effect on fibrotic marker expression and cell behavior, and in vivo in a murine model of myocardial infarction for its therapeutic efficacy. RESULTS Map k14 silencing showed a decrease in the fibrotic response of cardiac fibroblasts. Treatment with the EVs-PAP@SA hydrogel notably reduced profibrotic signaling, increased cell proliferation and migration, and lowered apoptosis rates. The in vivo treatment with the hydrogel post myocardial infarction significantly diminished myocardial fibrosis and improved cardiac performance. CONCLUSIONS The study endorses the SA hydrogel as an effective vehicle for delivering mesenchymal stem cell-derived EVs and PAP to the heart post myocardial infarction, providing a novel approach for modulating myocardial fibrosis and promoting cardiac healing.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Xiaodong Zeng
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Meifeng Wu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Jiade Zhu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Yijin Wu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| |
Collapse
|
4
|
Fang C, He X, Tang F, Wang Z, Pan C, Zhang Q, Wu J, Wang Q, Liu D, Zhang Y. Where lung cancer and tuberculosis intersect: recent advances. Front Immunol 2025; 16:1561719. [PMID: 40242762 PMCID: PMC11999974 DOI: 10.3389/fimmu.2025.1561719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) represent two major global public health issues. Prior evidence has suggested a link between TB infection and an increased risk of LC. As advancements in LC treatment have led to extended survival rates for LC patients, the co-occurrence of TB and LC has grown more prevalent and poses novel clinical challenges. The intricate molecular mechanisms connecting TB and LC are closely intertwined and many issues remain to be addressed. This review focuses on resemblance between the immunosuppression in tumor and granuloma microenvironments, exploring immunometabolism, cell plasticity, inflammatory signaling pathways, microbiomics, and up-to-date information derived from spatial multi-omics between TB and LC. Furthermore, we outline immunization-related molecular mechanisms underlying these two diseases and propose future research directions. By discussing recent advances and potential targets, this review aims to establish a foundation for developing future therapeutic strategies targeting LC with concurrent TB infection.
Collapse
Affiliation(s)
- Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xuanlu He
- School of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Fei Tang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cong Pan
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Translational Medicine Research Center, eBond Pharmaceutical Technology Co., Ltd., Chengdu, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Wu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
- National Health Commission Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
5
|
Li P, Wu M, Wang R, Zhang G, Kang L, Guan H, Ji M. Spatial alteration of metabolites in diabetic cortical cataracts: New insight into lactate. Exp Eye Res 2025; 255:110361. [PMID: 40157629 DOI: 10.1016/j.exer.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
This study aimed to use metabolomics to accurately reveal alterations in metabolites and potential regulatory mechanisms in patients with diabetic cortical cataracts (DCC). We first collected cortical samples from different pathological areas of the same lens in DCC patients for metabolomics. Then, we used transcriptomic analysis to study lactate's effect on gene expression in human lens epithelial cells (HLECs). An in vitro rat lens culture assay evaluated lactate's impact on lens transparency, and WB and immunofluorescence assessed lactate-induced apoptosis and oxidative damage in rat LECs. Furthermore, CHIP sequencing and LC-MS identified H3K18la separately modified genes and potential lactylation proteins in HLECs. Immunoprecipitation validated lactylation levels of proteins. Our findings identified 11 upregulated and 18 downregulated metabolites in the opacity zone of LFCs (OZ-LFCs) compared to the clear zone (CZ-LFCs) in DCC patients. We confirmed the differential lactate content between OZ-LFCs and CZ-LFCs and, through transcriptomic analysis, discovered that lactate affects gene expression, protein metabolism, and DNA repair in primary Human Lens epithelial cells (HLECs). Lactate-induced apoptosis and DNA repair hastened lens opacity in a high-sugar rat lens culture model. Lactylation-MS and H3K18la-ChIP sequencing revealed 591 H3K18la-modified genes and 953 lactylation proteins in HLECs. PKM2 and NPM1 lactylation was confirmed through immunoprecipitation. These findings improve our grasp of spatial dynamics in DCC patient metabolomics and suggest a new research path into lactylation modification to understand lactate's role in cataract formation.
Collapse
Affiliation(s)
- Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China
| | - Rong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China.
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Kay EJ, Zanivan S. The tumor microenvironment is an ecosystem sustained by metabolic interactions. Cell Rep 2025; 44:115432. [PMID: 40088447 DOI: 10.1016/j.celrep.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) and immune cells make up two major components of the tumor microenvironment (TME), contributing to an ecosystem that can either support or restrain cancer progression. Metabolism is a key regulator of the TME, providing a means for cells to communicate with and influence each other, modulating tumor progression and anti-tumor immunity. Cells of the TME can metabolically interact directly through metabolite secretion and consumption or by influencing other aspects of the TME that, in turn, stimulate metabolic rewiring in target cells. Recent advances in understanding the subtypes and plasticity of cells in the TME both open up new avenues and create challenges for metabolically targeting the TME to hamper tumor growth and improve response to therapy. This perspective explores ways in which the CAF and immune components of the TME could metabolically influence each other, based on current knowledge of their metabolic states, interactions, and subpopulations.
Collapse
Affiliation(s)
- Emily Jane Kay
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK.
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Li T, Li T, Liang Y, Yuan Y, Liu Y, Yao Y, Lei X. Colorectal cancer cells-derived exosomal miR-188-3p promotes liver metastasis by creating a pre-metastatic niche via activation of hepatic stellate cells. J Transl Med 2025; 23:369. [PMID: 40134019 PMCID: PMC11938777 DOI: 10.1186/s12967-025-06334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/AIM Metastasis is the leading cause of mortality for colorectal cancer (CRC). Cancer-derived exosomes are widely recognized as the primary catalysts behind the development of pre-metastasis niche (PMN) in distal sites. However, the exact mechanism behind this process in CRC remains elusive. This study aimed to investigate the function and mechanisms underlying the role of exosomal miR-188-3p in activating hepatic stellate cells (HSCs) to develop the PMN and promote liver metastasis. METHODS We extracted exosomes from CRC cells using ultracentrifugation. Exosomes were identified using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Exosome uptake was assessed using fluorescence tracing, exosome PKH67 staining, and real-time quantitative PCR. The effects of CRC cell-derived exosomes on HSCs migration were evaluated using Transwell migration and wound healing assays. Key differentially expressed miRNAs were screened from the GEO database, and bioinformatics prediction along with dual-luciferase reporter assays were used to identify downstream target genes of miR-188-3p. Downstream related proteins of the target genes were detected by Western blot. In vivo, the distribution of exosomes and activation of HSCs in the liver were explored by tail vein injection of exosomes into nude mice. Further, the impact of exosomal miR-188-3p on liver metastasis was investigated using a spleen injection liver metastasis model. Finally, the expression levels of miR-188-3p in exosomes from CRC patient plasma were determined by real-time quantitative PCR, and the relationship between the expression of miR-188-3p in plasma exosomes and CRC prognosis was analyzed. RESULTS The expression level of miR-188-3p within plasma exosomes demonstrated a statistically significant increase in CRC with liver metastasis compared to those without liver metastases. We also demonstrated the transferability of miR-188-3p from CRC cells to HSCs cells via the exosomes. Exosomal miR-188-3p plays a pivotal role in orchestrating the establishment of PMN through targeting PHLPP2 to activate HSCs before tumor metastasis. Exosomal miR-188-3p was found to actively foster in vivo metastasis of CRC. Additionally, plasma exosomal miR-188-3p potentially serves as a viable blood-based biomarker for CRLM. CONCLUSION Exosomal miR-188-3p derived from CRC cells can promote liver metastasis by activating HSCs to form a PMN through targeting PHLPP2 to activate the AKT/mTOR pathway. These results offer a new perspective on the mechanisms driving CRLM.
Collapse
Affiliation(s)
- Tao Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Taiyuan Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yahang Liang
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuli Yuan
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yang Liu
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yao Yao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiong Lei
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Jin J, Qin J, Qi X, Zhang J, Zhang Y. Serum exosomal miRNA contributes to the diagnosis of leptomeningeal carcinomatosis. J Neurooncol 2025:10.1007/s11060-025-04999-x. [PMID: 40080246 DOI: 10.1007/s11060-025-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Leptomeningeal carcinomatosis (LC) is a severe complication in the advanced stage of lung adenocarcinoma, with an extremely poor prognosis. Currently, the diagnosis of LC poses challenges. Serum exosomal miRNAs (microRNAs) have been demonstrated to possess potential as viable biomarkers. However, their value in the diagnosis of LC remains unclear. METHODS In this study, serum samples were collected from lung adenocarcinoma patients with LC. The control groups consisted of patients with early-stage and advanced-stage lung adenocarcinoma without LC. Serum exosomes were isolated for high - throughput RNA sequencing to screen for differential miRNAs, and the results were validated in 123 samples. Subsequently, the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic ability of exosomal miRNAs for LC. RESULTS The results of miRNA sequencing revealed seven differentially enriched miRNAs (miRNA-1296-5p, miR-503-5p, miR-499a-5p, miR-374a-5p, miR-3173-5p, miR-370-3p and miR-885-3p). The ddPCR confirmed that the expression levels of miRNA-1296-5p, miR-499a-5p and miR-374a-5p were significantly elevated in LC, while miR-370-3p was significantly decreased (P < 0.05). ROC curve analysis showed that the AUC of the combination of miRNA-1296-5p, miR-499a-5p and miR-370-3p with CEA was 0.803 (P < 0.0001), displaying higher diagnostic power for LC. CONCLUSION This study suggests that the specific expression of miRNA-1296-5p, miR-499a-5p, miR-374a-5p and miR-370-3p in the serum exosomes of LC, which has diagnostic potential. And the combination of miRNA-1296-5p, miR-499a-5p and miR-370-3p with CEA can further enhance this potential.
Collapse
Affiliation(s)
- Jie Jin
- Xiong'an Xuanwu Hospital, Baoding, 070001, PR China.
- Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, 050000, PR China.
| | - Junjuan Qin
- Xiong'an Xuanwu Hospital, Baoding, 070001, PR China
| | - Xuejiao Qi
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
- Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, 050000, PR China
| | - Jiasi Zhang
- Xiong'an Xuanwu Hospital, Baoding, 070001, PR China
| | - YingLu Zhang
- Xiong'an Xuanwu Hospital, Baoding, 070001, PR China
| |
Collapse
|
9
|
Quintavalle C, Ingenito F, Roscigno G, Pattanayak B, Esposito CL, Affinito A, Fiore D, Petrillo G, Nuzzo S, Della Ventura B, D'Aria F, Giancola C, Mitola S, Grillo E, Pirozzi M, Donati G, Di Leva FS, Marinelli L, Minic Z, De Micco F, Thomas G, Berezovski MV, Condorelli G. Ex.50.T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov 2025; 11:94. [PMID: 40069570 PMCID: PMC11897156 DOI: 10.1038/s41420-025-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment profoundly influences tumor complexity, particularly in breast cancer, where cancer-associated fibroblasts play pivotal roles in tumor progression and therapy resistance. Extracellular vesicles are involved in mediating communication within the TME, specifically highlighting their role in promoting the transformation of normal fibroblasts into cancer-associated fibroblasts. Recently, we identified an RNA aptamer, namely ex.50.T, that binds with remarkable affinity to extracellular vesicles shed from triple-negative breast cancer cells. Here, through in vitro assays and computational analyses, we demonstrate that the binding of ex.50.T to extracellular vesicles and parental breast cancer cells is mediated by recognition of gremlin-1 (GREM1), a bone morphogenic protein antagonist implicated in breast cancer aggressiveness and metastasis. Functionally, we uncover the role of ex.50.T as an innovative therapeutic agent in the process of tumor microenvironment re-modeling, impeding GREM1 signaling, blocking triple-negative breast cancer extracellular vesicles internalization in recipient cells, and counteracting the transformation of normal fibroblasts into cancer-associated fibroblasts. Altogether, our findings highlight ex.50.T as a novel therapeutical avenue for breast cancer and potentially other GREM1-dependent malignancies, offering insights into disrupting TME dynamics and enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Birlipta Pattanayak
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carla Lucia Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- AKA Biotech S.r.l, Naples, Italy
| | - Danilo Fiore
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pirozzi
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | - Gerolama Condorelli
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
10
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
11
|
Teixeira AF, Wang Y, Iaria J, Ten Dijke P, Zhu HJ. Extracellular Vesicles Secreted by Cancer-Associated Fibroblasts Drive Non-Invasive Cancer Cell Progression to Metastasis via TGF-β Signalling Hyperactivation. J Extracell Vesicles 2025; 14:e70055. [PMID: 40091448 PMCID: PMC11911544 DOI: 10.1002/jev2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. Cancer-associated fibroblasts (CAFs) are abundant components within the tumour microenvironment, playing critical roles in metastasis. Although increasing evidence supports a role for small extracellular vesicles (sEVs) in this process, their precise contribution and molecular mechanisms remain unclear, compromising the development of antimetastatic therapies. Here, we establish that CAF-sEVs drive metastasis by mediating CAF-cancer cell interaction and hyperactivating TGF-β signalling in tumour cells. Metastasis is abolished by genetically targeting CAF-sEV secretion and consequent reduction of TGF-β signalling in cancer cells. Pharmacological treatment with dimethyl amiloride (DMA) decreases CAFs' sEV secretion, reduces TGF-β signalling levels in tumour cells and abrogates metastasis and tumour self-seeding. This work defines a new mechanism required by CAFs to drive cancer progression, supporting the therapeutic targeting of EV trafficking to disable the driving forces of metastasis.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Huagene Institute, Kecheng Science and Technology Park, Nanjing, Jiangsu, China
| | - Yanhong Wang
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Josephine Iaria
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Huagene Institute, Kecheng Science and Technology Park, Nanjing, Jiangsu, China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Hong-Jian Zhu
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Huagene Institute, Kecheng Science and Technology Park, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Tang T, Yang T, Xue H, Liu X, Yu J, Liang C, Li D, Xiang C, Zheng J, Wei L, Ma B. Breast cancer stem cell-derived exosomal lnc-PDGFD induces fibroblast-niche formation and promotes lung metastasis. Oncogene 2025; 44:601-617. [PMID: 39633064 PMCID: PMC11850284 DOI: 10.1038/s41388-024-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastatic potential and lack of therapeutic targets. Breast cancer stem cells (BCSCs) are enriched in TNBC and contribute to its metastatic propensity. Accumulating evidence suggests that cancer-derived exosomes are key drivers of premetastatic niche formation in distal organs. However, the function and underlying mechanism of BCSC-derived exosomes in TNBC metastasis remain elusive. Here, we demonstrated that BCSC-derived exosomes exhibit a greater capacity to activate fibroblasts and promote TNBC cell metastasis to the lung than non-BCSC-derived exosomes. Additionally, we found that upregulation of exosomal long non-coding RNA platelet derived growth factor D (lnc-PDGFD) expression in BCSCs is responsible for fibroblast activation through YBX1/NF-kB signaling in the lung. Activated fibroblasts further promote tumor progression by secreting IL-11. Taken together, BCSC-derived exosomes enriched with lnc-PDGFD could activate fibroblasts, thereby facilitating lung metastasis in TNBC patients. These results provide new insights into the mechanism of TNBC metastasis to the lung.
Collapse
Affiliation(s)
- Tingting Tang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tao Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huijie Xue
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Yu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chen Liang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dameng Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Deng M, Xie P, Xue H, Chen Q, Zhou Y, Ming J, Ma Y, Liu J, Huang H. Decellularized tissue matrices hydrogels functionalized with extracellular vesicles promote macrophage reprogramming and neural stem cell differentiation for spinal cord injury repair. J Nanobiotechnology 2025; 23:139. [PMID: 40001048 PMCID: PMC11853540 DOI: 10.1186/s12951-025-03152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the application of decellularized tissue matrices (DSCM) hydrogels functionalized with extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) for spinal cord injury (SCI) treatment. The primary focus is on how these composites influence macrophage reprogramming and neural stem cell (NSC) differentiation by modulating Slamf9 expression. MSC-derived EVs were successfully isolated, and DSCM hydrogels were prepared from porcine spinal cords. The composite material, EVs derived from MSCs (DSCM@EVs), was constructed and applied to a mouse SCI model, showing significant enhancement in NSC differentiation and axonal growth, thereby alleviating SCI. Bioinformatics and in vitro cell experiments revealed that DSCM@EVs promote the reprogramming of M1 macrophages to the M2 phenotype, reducing inflammatory responses and facilitating NSC differentiation. RNA-seq analysis identified Slamf9 as a key regulatory gene, with its suppression linked to the observed therapeutic effects. This novel approach demonstrates the potential of DSCM@EVs in SCI repair by modulating the inflammatory environment and promoting neural regeneration, offering a promising strategy for treating SCI and potentially other inflammatory neurological disorders.
Collapse
Affiliation(s)
- Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Xie
- Department of Chinese Traditional Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Hongyang Xue
- The First Clinical College of Wuhan University, Wuhan, 430060, China
| | - Qing Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junqi Liu
- Department of Radiation Oncology, The First of Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, 570311, China.
| |
Collapse
|
14
|
Xiao N, Li Q, Liang G, Qian Z, Lin Y, Zhang H, Fu Y, Yang X, Zhang CT, Yang J, Liu A. Regulatory Roles of Exosomes in Aging and Aging-Related Diseases. Biogerontology 2025; 26:61. [PMID: 39966192 DOI: 10.1007/s10522-025-10200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Exosomes are small vesicles with diameters ranging from 30 to 150 nm. They originate from cellular endocytic systems. These vesicles contain a rich payload of biomolecules, including proteins, nucleic acids, lipids, and metabolic products. Exosomes mediate intercellular communication and are key regulators of a diverse array of biological processes, such as oxidative stress and chronic inflammation. Furthermore, exosomes have been implicated in the pathogenesis of infectious diseases, autoimmune disorders, and cancer. Aging is closely associated with the onset and progression of numerous diseases and is significantly influenced by exosomes. Recent studies have consistently highlighted the important functions of exosomes in the regulation of cellular senescence. Additionally, research has explored their potential to delay aging, such as the alleviatory effects of stem cell-derived exosomes on the aging process, which offers broad potential for the development and application of exosomes as anti-aging therapeutic strategies. This review aims to comprehensively investigate the multifaceted impact of exosomes while concurrently evaluating their potential applications and underscoring their strategic significance in advancing anti-aging strategies.
Collapse
Affiliation(s)
- Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yangguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cun-Tai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China.
| |
Collapse
|
15
|
Ma C, Tang W, Wang J, Yang S, Hou J, Guo M, Hao L. Application of engineered exosomes in tumor therapy. Am J Transl Res 2025; 17:736-747. [PMID: 40092132 PMCID: PMC11909558 DOI: 10.62347/kixf4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 03/19/2025]
Abstract
Malignant tumors pose a significant threat to human health, and conventional cancer therapies are limited by inadequate targeting, leading to severe side effects. Exosomes, as extracellular vesicles mediating intercellular communication, exhibit advantages such as low immunogenicity, high biocompatibility, and low toxicity. After modification, engineered exosomes can be employed as targeted delivery vehicles in tumor therapy. This review summarizes the cellular origin, production methods, engineering strategies, and drug-loading routes of engineered exosomes, discusses their applications in cancer treatment, and delves into the challenges and issues in translating engineered exosomes to clinical practice, aiming to provide insights for exosome engineering research.
Collapse
Affiliation(s)
- Chunhui Ma
- Faculty of Medical Imaging, Naval Medical UniversityShanghai 200433, China
| | - Wei Tang
- School of Basic Medicine, Naval Medical UniversityShanghai 200433, China
| | - Jiaye Wang
- School of Basic Medicine, Naval Medical UniversityShanghai 200433, China
| | - Shiyu Yang
- School of Basic Medicine, Naval Medical UniversityShanghai 200433, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Meng Guo
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Lu Hao
- Faculty of Medical Imaging, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
16
|
Chen H, Liu L, Xing G, Zhang D, A. N, Huang J, Li Y, Zhao G, Liu M. Exosome tropism and various pathways in lung cancer metastasis. Front Immunol 2025; 16:1517495. [PMID: 40028322 PMCID: PMC11868168 DOI: 10.3389/fimmu.2025.1517495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer, characterized by its high morbidity and mortality rates, has the capability to metastasize to various organs, thereby amplifying its detrimental impact and fatality. The metastasis of lung cancer is a complex biological phenomenon involving numerous physiological transformations. Exosomes, small membranous vesicles enriched with biologically active components, are pivotal in mediating intercellular communication and regulating physiological functions due to their specificity and stability. Extensive research has elucidated the production and functions of exosomes in cancer contexts. Multitude of evidence demonstrates a strong association between lung cancer metastasis and exosomes. Additionally, the concept of the pre-metastatic niche is crucial in the metastatic process facilitated by exosomes. This review emphasizes the role of exosomes in mediating lung cancer metastasis and their impact on the disease's development and the progression to other tissues. Furthermore, it explores the potential of exosomes as biomarkers for lung cancer metastasis, offering significant insights for future clinical advancements.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Drug Dispensing, The Third Hospital of Mianyang, Sichuan Mental Health Center, MianYang, China
| | - Gang Xing
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Niumuqie A.
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianlin Huang
- Department of Pharmacy, Luzhou Naxi District People’s Hospital, Luzhou, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ge Zhao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
18
|
Saadh MJ, Allela OQB, Kareem RA, Ballal S, Chahar M, Saini S, Prasad GVS, Sameer HN, Hamad AK, Athab ZH, Adil M. The role of exosomal non-coding RNAs in the breast cancer tumor microenvironment. Funct Integr Genomics 2025; 25:32. [PMID: 39891771 DOI: 10.1007/s10142-025-01531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
The leading form of cancer affecting females globally is breast cancer, characterized by an unregulated growth of cells within the breast. Therefore, examining breast tissue is crucial in accurately identifying and treating this disease. Exosomes are very small enclosures bounded by a layer of cells and produced by a variety of cells present in the cancerous tissue surroundings. They play a crucial role in several biological functions in cancerous tumors. These exosomes carry non-coding RNAs (ncRNAs) and are discharged into the TME, where they are instrumental in the development and advancement of tumors. Additionally, the ncRNAs enclosed in exosomes act as significant mediators of communication within cells. Consequently, there is limited comprehension regarding the precise roles and targets of exosomal RNA in regulation, as research in this area is still in its preliminary phases. This piece provides a comprehensive overview of the latest studies on exosomes, delving into their impact on the behavior of cancer cells and immune cells. Moreover, it presents a compilation of the diverse forms of non-coding RNA molecules found in exosomes released by both cancerous and supportive cells, including circular RNAs, microRNAs, and long non-coding RNAs. Current research has proven the noteworthy influence that non-coding RNA molecules have on the progression, proliferation, drug resistance, and immune responses of breast cancer cells.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, 11831, Amman, Jordan
| | | | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, 140307, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Basic Sciences and Humanities, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, 64001, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, 00964, Baghdad, Iraq
| |
Collapse
|
19
|
Puurand M, Llorente A, Linē A, Kaambre T. Exercise-induced extracellular vesicles in reprogramming energy metabolism in cancer. Front Oncol 2025; 14:1480074. [PMID: 39834935 PMCID: PMC11743358 DOI: 10.3389/fonc.2024.1480074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation. The mechanisms of how exercise modulates cancer energy metabolism and the tumor microenvironment through systemic effects mediated, in part, by extracellular vesicles (EVs) are still unknown. By transferring bioactive cargo such as miRNAs, proteins and metabolites, exercise-induced EVs may influence cancer cells by altering glycolysis and oxidative phosphorylation, potentially shifting metabolic plasticity - a hallmark of cancer. This short review explores the roles of EVs in cancer as mediators to reprogram cellular energy metabolism through exchanging information inside the tumor microenvironment, influencing immune cells, fibroblast and distant cells. Considering this knowledge, further functional studies into exercise-induced EVs and cellular energy production pathways could inform more specific exercise interventions to enhance cancer therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | - Aija Linē
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
20
|
Zhang X, Zhang M, Sun H, Wang X, Wang X, Sheng W, Xu M. The role of transcription factors in the crosstalk between cancer-associated fibroblasts and tumor cells. J Adv Res 2025; 67:121-132. [PMID: 38309692 PMCID: PMC11725164 DOI: 10.1016/j.jare.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) fulfill a critical role in the formation and maintenance of different cell types during the developmental process as well as disease. It is believed that cancer-associated fibroblasts (CAFs) are activation status of tissue-resident fibroblasts or derived from form other cell types via transdifferentiation or dedifferentiation. Despite a subgroup of CAFs exhibit anti-cancer effects, most of them are reported to exert effects on tumor progression, further indicating their heterogeneous origin. AIM OF REVIEW This review aimed to summarize and review the roles of TFs in the reciprocal crosstalk between CAFs and tumor cells, discuss the emerging mechanisms, and their roles in cell-fate decision, cellular reprogramming and advancing our understanding of the gene regulatory networks over the period of cancer initiation and progression. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript delves into the key contributory factors of TFs that are involved in activating CAFs and maintaining their unique states. Additionally, it explores how TFs play a pivotal and multifaceted role in the reciprocal crosstalk between CAFs and tumor cells. This includes their involvement in processes such as epithelial-mesenchymal transition (EMT), proliferation, invasion, and metastasis, as well as metabolic reprogramming. TFs also have a role in constructing an immunosuppressive microenvironment, inducing resistance to radiation and chemotherapy, facilitating angiogenesis, and even 'educating' CAFs to support the malignancies of tumor cells. Furthermore, this manuscript delves into the current status of TF-targeted therapy and considers the future directions of TFs in conjunction with anti-CAFs therapies to address the challenges in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Priya, Kumar A, Kumar D. Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications. 3 Biotech 2025; 15:33. [PMID: 39777154 PMCID: PMC11700964 DOI: 10.1007/s13205-024-04195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.
Collapse
Affiliation(s)
- Priya
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar 801505 India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
22
|
Xia M, Chen J, Hu Y, Qu B, Bu Q, Shen H. miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2. Cancer Biol Ther 2024; 25:2315651. [PMID: 38390840 PMCID: PMC10896153 DOI: 10.1080/15384047.2024.2315651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC in vivo. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.
Collapse
Affiliation(s)
- Mingzhi Xia
- Breast Surgery Department I, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jie Chen
- Liver and gallbladder surgery Department I, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Yingyun Hu
- Hunan Cancer Prevention and Control Office, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Bin Qu
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Qianqian Bu
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Haoming Shen
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| |
Collapse
|
23
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
24
|
Li D, Yang Y, Zheng G, Meng L, Shang L, Ren J, Wang L, Bao Y. The potential of cellular homing behavior in tumor immunotherapy: from basic discoveries to clinical applications of immune, mesenchymal stem, and cancer cell homing. Front Immunol 2024; 15:1495978. [PMID: 39726590 PMCID: PMC11669694 DOI: 10.3389/fimmu.2024.1495978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The efficacy of immunotherapy, a pivotal approach in the arsenal of cancer treatment strategies, is contingent on the capacity of effector cells to localize at the tumor site. The navigational capacity of these cells is intricately linked to the homing behaviors of specific cell types. Recent studies have focused on leveraging immune cells and mesenchymal stem cells (MSCs) homing for targeted tumor therapy and incorporating cancer cell homing properties into anti-tumor strategies. However, research and development of immunotherapy based on cancer cell homing remain in their preliminary stages. Enhancing the homing efficiency of effector cells is essential; therefore, understanding the underlying mechanisms and addressing immune resistance within the tumor microenvironment and challenges associated with in vivo therapeutic agent delivery are essential. This review firstly delineates the discovery and clinical translation of the three principal cell-homing behaviors. Secondly, we endeavor to conduct an in-depth analysis of existing research on the homing of immune and stem cells in cancer therapy, with the aim of identifying and understanding of the common applications, potential benefits, barriers, and critical success factors of cellular homing therapies. Finally, based on the understanding of the key factors of cellular homing therapies, we provide an overview and outlook on the enormous potential of harnessing cancer cells' self-homing to treat tumors. Although immunotherapy based on cell-homing behavior warrants further research, it remains a highly competitive treatment modality that can be combined with existing classic anti-cancer therapies. In general, combining the homing properties of cells to optimize their clinical effects is also one of the future research directions in the field of cell transplantation.
Collapse
Affiliation(s)
- Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixuan Yang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Shang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Juanxia Ren
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Lingyun Wang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yanju Bao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Li MX, Hu S, Lei HH, Yuan M, Li X, Hou WK, Huang XJ, Xiao BW, Yu TX, Zhang XH, Wu XT, Jing WQ, Lee HJ, Li JJ, Fu D, Zhang LM, Yan W. Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice. Nat Commun 2024; 15:10539. [PMID: 39627188 PMCID: PMC11615374 DOI: 10.1038/s41467-024-54706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer cells secrete extracellular vesicles (EV) encapsulating bioactive cargoes to facilitate inter-organ communication in vivo and are emerging as critical mediators of tumor progression and metastasis, a condition which is often accompanied by a dysregulated cholesterol metabolism. Whether EVs are involved in the control of cholesterol homeostasis during tumor metastasis is still undefined and warrant further investigation. Here, we find that breast cancer-derived exosomal miR-9-5p induces the expression of HMGCR and CH25H, two enzymes involved in cholesterol synthesis and the conversion of 25-hydroxycholesterol from cholesterol by targeting INSIG1, INSIG2 and ATF3 genes in the liver. Notably, in vivo miR-9-5p antagomir treatment and genetic CH25H ablation prevents tumor metastasis in a mouse model of breast cancer. Thus, our findings reveal the regulatory mechanism of tumor-derived miR-9-5p in liver metastasis by linking oxysterol metabolism and Kupffer cell polarization, shedding light on future applications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - He-Hua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei, 430064, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Meng Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Kui Hou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiang-Jie Huang
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bing-Wen Xiao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Teng-Xiang Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Hui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Ting Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Qiang Jing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hyeon-Jeong Lee
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Da Fu
- General Surgery, Ruijin Hospital & Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei, 430064, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
26
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
27
|
Soares CC, Rizzo A, Maresma MF, Meier P. Autocrine glutamate signaling drives cell competition in Drosophila. Dev Cell 2024; 59:2974-2989.e5. [PMID: 39047739 DOI: 10.1016/j.devcel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cell competition is an evolutionarily conserved quality control process that eliminates suboptimal or potentially dangerous cells. Although differential metabolic states act as direct drivers of competition, how these are measured across tissues is not understood. Here, we demonstrate that vesicular glutamate transporter (VGlut) and autocrine glutamate signaling are required for cell competition and Myc-driven super-competition in the Drosophila epithelia. We find that the loss of glutamate-stimulated VGlut>NMDAR>CaMKII>CrebB signaling triggers loser status and cell death under competitive settings via the autocrine induction of TNF. This in turn drives TNFR>JNK activation, triggering loser cell elimination and PDK/LDH-dependent metabolic reprogramming. Inhibiting caspases or preventing loser cells from transferring lactate to their neighbors nullifies cell competition. Further, in a Drosophila model for premalignancy, Myc-overexpressing clones co-opt this signaling circuit to acquire super-competitor status. Targeting glutamate signaling converts Myc "super-competitor" clones into "losers," highlighting new therapeutic opportunities to restrict the evolution of fitter clones.
Collapse
Affiliation(s)
- Carmo Castilho Soares
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Alberto Rizzo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Marta Forés Maresma
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
28
|
Yang S, Lin M, Hao S, Ye H, Zhang X. Current hotspots and trends in cancer metabolic reprogramming: a scientometric analysis. Front Immunol 2024; 15:1497461. [PMID: 39588377 PMCID: PMC11586341 DOI: 10.3389/fimmu.2024.1497461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Background Metabolic reprogramming (MR) in cancer (CA) has been a focus of intense research in the recent two decades. This phenomenon has attracted great interest because it offers potential targets for cancer therapy. To capture the intellectual landscape of this field, we conducted a bibliometric analysis to assess the scientific output, major contributors, and trends in the MR/CA research. Methods We performed a systematic search using the Web of Science to retrieve articles published on MR of cancer from 2006 until 2023. The bibliometric tools such as Biblioshiny, VOSviewer, and Microsoft Excel were used to identify the most prolific authors, institutions, citation patterns, and keywords. We also used co-citation analysis to map the conceptual structure of the field and identify influential publications. Furthermore, we examined the literature by analyzing publication years, citations, and research impact factors. Results A total of 4,465 publications about MR/CA were retrieved. Publications on MR/CA increased rapidly from 2006 to 2023. Frontiers in Oncology published the most papers, while Cell Metabolism had the most citations. Highly cited papers were mainly published in Cancer Cell, Nature, Cell, Science and Cell Metabolism. China and the United States led the way in publications and contributed the most to MR/CA research. The University of Texas System, Chinese Academy of Sciences, and Fudan University were the most productive institutions. The profitable authors were Deberardinis Ralph J and Chiarugi Paola. The current topics included MR in tumorigenesis and progression of CA, MR of tumor cells and tumor microenvironment, the effect of MR on the CA treatment, the underlying mechanisms of MR (such as gene regulation, epigenetics, extracellular vesicles, and gut microbiota), and the modulation of MR. Some topics such as tumor microenvironment, lipid MR, circular RNA, long noncoding RNA, exosome, prognostic model, and immunotherapy may be the focus of MR/CA research in the next few years. Conclusion This study evaluated the global scientific output in the field of MR/CA research, analyzing its quantitative characteristics. It identified some significant and distinguished papers and compiled information regarding the current status and evolving trends of MR/CA research.
Collapse
Affiliation(s)
- Shanshan Yang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Miaomiao Lin
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen and Stomach Disease Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
29
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
30
|
Künzel SR, Klapproth E, Zimmermann N, Kämmerer S, Schubert M, Künzel K, Hoffmann M, Drukewitz S, Vehlow A, Eitler J, Arriens M, Thiel J, Kronstein-Wiedemann R, Tietze M, Beissert S, Renner B, El-Armouche A, Günther C. Radiation-induced morphea of the breast - characterization and treatment of fibroblast dysfunction with repurposed mesalazine. Sci Rep 2024; 14:26132. [PMID: 39477958 PMCID: PMC11525966 DOI: 10.1038/s41598-024-74206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Radiation-induced morphea (RIM) is a rare complication of radiotherapy presenting as inflammatory fibrosis, most commonly reported in breast cancer patients. As underlying disease mechanisms are not well understood, targeted therapies are lacking. Since fibroblasts are the key mediators of all fibroproliferative diseases, this study aimed to characterize patient-derived fibroblasts to identify therapeutic targets. We studied primary human control and RIM-fibroblasts on a functional and molecular basis, analyzed peripheral blood and tissue samples and conducted, based on our findings, a treatment attempt in one patient. In RIM, we identified a distinct myofibroblast phenotype reflected by increased alpha-smooth-muscle-actin (αSMA) expression, reduced proliferation and migration rates, and overexpression of osteopontin (OPN). Our RNA sequencing identified aberrant Myc activation as a potential disease driver in RIM fibroblasts, similar to previous findings in systemic sclerosis. Treatment with the anti-inflammatory drug mesalazine reversed the myofibroblast phenotype by targeting Myc. Based on these findings, a patient with RIM was successfully treated with mesalazine, resulting in reduced inflammation and pain and tissue softening, while serum OPN was halved. The present study provides a comprehensive characterization of RIM fibroblasts, suggests a disease-driving role for Myc, demonstrates promising antifibrotic effects of mesalazine and proposes OPN as a biomarker for RIM.
Collapse
Affiliation(s)
- Stephan R Künzel
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany.
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany.
| | - Erik Klapproth
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nick Zimmermann
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany
| | - Susanne Kämmerer
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolina Künzel
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Hoffmann
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Drukewitz
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics, NCT Dresden and DKFZ, Dresden, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jiri Eitler
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Marieke Arriens
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Jessica Thiel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Maximiliane Tietze
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany
| | - Bertold Renner
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ali El-Armouche
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany.
| |
Collapse
|
31
|
Chowdhury D, Sharma M, Jahng JWS, Singh U. Extracellular Vesicles Derived From Entamoeba histolytica Have an Immunomodulatory Effect on THP-1 Macrophages. J Parasitol Res 2024; 2024:7325606. [PMID: 39502090 PMCID: PMC11537751 DOI: 10.1155/2024/7325606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Recent studies have shown that extracellular vesicles (EVs) secreted by various parasites are capable of modulating the host's innate immune responses, such as by altering macrophage (Mϕ) phenotypes and functions. Studies have shown that Mϕ promote early host responses to amoebic infection by releasing proinflammatory cytokines that are crucial to combating amoebiasis. Here, we are reporting for the first time the effect of EVs released by Entamoeba histolytica (EhEVs) on human THP-1 differentiated Mϕ (THP-1 Mϕ). We show that the EhEVs are internalized by THP-1 Mϕ which leads to differential regulation of various cytokines associated with both M1 and M2 Mϕ. We also saw that EhEV treatment thwarted Type 2 immune-response-related transcriptome pSTAT6 in the THP-1 Mϕ. Furthermore, EhEVs stimulated Mϕ to reduce their energy demand by suppressing oxidative phosphorylation (OXPHOS) and adenosine triphosphate (ATP) production. Hence, the human parasite E. histolytica-derived EVs are capable of eliciting an immune response from Mϕ that may contribute to overall infection status.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Manu Sharma
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James W. S. Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Upinder Singh
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
32
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
33
|
Wang X, Wang L, Hao Q, Cai M, Wang X, An W. Harnessing glucose metabolism with nanomedicine for cancer treatment. Theranostics 2024; 14:6831-6882. [PMID: 39479443 PMCID: PMC11519798 DOI: 10.7150/thno.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 11/02/2024] Open
Abstract
The significance of metabolic processes in cancer biology has garnered substantial attention, as they are essential for meeting the anabolic demands and maintaining the redox balance of rapidly dividing cancer cells. A distinctive feature of tumors is that cancer cells, unlike normal cells, exhibit an increased rate of glucose metabolism. They predominantly relying on aerobic glycolysis to metabolize glucose, which enables these cells to supply energy and produce the necessary building blocks for growth. Targeting glucose metabolism has led to the development of various cancer treatments. However, these agents often have limited efficacy due to factors such as poor stability and solubility, rapid clearance and an insufficient amount of the drug reaching the target site. These limitations can be overcome by preparing nano dosage forms through nanotechnology, which leverages the unique properties of nanomaterials to deliver drugs more precisely to target tissues with controlled release. In this review, we provide a comprehensive overview of the latest advancements in nanomedicine, focusing on the modulation of glucose metabolism in cancer cells. We discuss the design and application of various strategies that have been engineered to target the metabolic hallmarks of cancer. These nanomedicine strategies aim to exploit the metabolic vulnerabilities of cancer cells, thereby offering novel approaches to cancer therapy. The review highlights the innovative nanomaterials and their potential to deliver therapeutic agents more effectively, as well as the challenges and considerations in translating these nanomedicines from bench to bedside. By targeting the glucose metabolism of cancer cells, these nanoscale interventions hold promise for improving treatment outcomes and potentially overcoming the resistance that often plagues conventional cancer therapies.
Collapse
Affiliation(s)
- Xudong Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Liping Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Qingyi Hao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211195, China
| | - Meng Cai
- China National Pharmaceutical Group Co Ltd., Sinopharm Plaza, No 20 Zhichun Road, Haidian district, Beijing 100191, China
| | - Xueting Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Wenlin An
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
34
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Xu F, Ni Q, Gong N, Xia B, Zhang J, Guo W, Hu Z, Li J, Liang XJ. Delivery Systems Developed for Treatment Combinations to Improve Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407525. [PMID: 39165065 DOI: 10.1002/adma.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.
Collapse
Affiliation(s)
- Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weisheng Guo
- College of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
37
|
Yamamoto V, Ha DP, Liu Z, Huang M, Samanta S, Neamati N, Lee AS. GRP78 inhibitor YUM70 upregulates 4E-BP1 and suppresses c-MYC expression and viability of oncogenic c-MYC tumors. Neoplasia 2024; 55:101020. [PMID: 38991376 PMCID: PMC11294750 DOI: 10.1016/j.neo.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Miller Huang
- Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
38
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
39
|
Zhongyu X, Wei X, Hongmei Z, Xiaodong G, Xiaojing Y, Yuanpei L, Li Z, Zhenmin F, Jianda X. Review of pre-metastatic niches induced by osteosarcoma-derived extracellular vesicles in lung metastasis: A potential opportunity for diagnosis and intervention. Biomed Pharmacother 2024; 178:117203. [PMID: 39067163 DOI: 10.1016/j.biopha.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.
Collapse
Affiliation(s)
- Xia Zhongyu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Xu Wei
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhang Hongmei
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ge Xiaodong
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yan Xiaojing
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Lian Yuanpei
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Zhu Li
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Fan Zhenmin
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
| | - Xu Jianda
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
40
|
Muralidharan H, Hansen T, Steinle A, Schumacher D, Stickeler E, Maurer J. Breast Cancer Stem Cells Upregulate IRF6 in Stromal Fibroblasts to Induce Stromagenesis. Cells 2024; 13:1466. [PMID: 39273037 PMCID: PMC11393902 DOI: 10.3390/cells13171466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The microenvironment of a cancer stem cell (CSC) niche is often found in coexistence with cancer-associated fibroblasts (CAFs). Here, we show the first in-depth analysis of the interaction between primary triple-negative breast cancer stem cells (BCSCs) with fibroblasts. Using 2D co-culture models with specific seeding ratios, we identified stromal fibroblast aggregation at the BCSC cluster periphery, and, on closer observation, the aggregated fibroblasts was found to encircle BCSC clusters in nematic organization. In addition, collagen type I and fibronectin accumulation were also found at the BCSC-stromal periphery. MACE-Seq analysis of BCSC-encapsulating fibroblasts displayed the transformation of stromal fibroblasts to CAFs and the upregulation of fibrosis regulating genes of which the Interferon Regulatory Factor 6 (IRF6) gene was identified. Loss of function experiments with the IRF6 gene decreased fibroblast encapsulation around BCSC clusters in 2D co-cultures. In BCSC xenografts, fibroblast IRF6 expression led to an increase in the stromal area and fibroblast density in tumors, in addition to a reduction in necrotic growth. Based on our findings, we propose that fibroblast IRF6 function is an important factor in the development of the stromal microenvironment and in sustaining the BCSC tumor niche.
Collapse
Affiliation(s)
- Harshini Muralidharan
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - Thomas Hansen
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - Anja Steinle
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
41
|
Espiau-Romera P, Gordo-Ortiz A, Ortiz-de-Solórzano I, Sancho P. Metabolic features of tumor-derived extracellular vesicles: challenges and opportunities. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:455-470. [PMID: 39697624 PMCID: PMC11648520 DOI: 10.20517/evcna.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 12/20/2024]
Abstract
Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
42
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
43
|
Qin C, Zhao B, Wang Y, Li Z, Li T, Zhao Y, Wang W, Zhao Y. Extracellular vesicles miR-31-5p promotes pancreatic cancer chemoresistance via regulating LATS2-Hippo pathway and promoting SPARC secretion from pancreatic stellate cells. J Extracell Vesicles 2024; 13:e12488. [PMID: 39104296 DOI: 10.1002/jev2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
44
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
45
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
46
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
47
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
48
|
Chen Z, Yam JWP, Mao X. The multifaceted roles of small extracellular vesicles in metabolic reprogramming in the tumor microenvironments. Proteomics 2024; 24:e2300021. [PMID: 38171844 DOI: 10.1002/pmic.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The link between metabolism and tumor progression has been extensively researched for a long time. With the increasing number of studies uncovering the multiple functions of metabolic reprogramming in tumor microenvironments, the regulatory network seems to become even more intricate at the same time. Small extracellular vesicles (sEV), as crucial mediators facilitating intercellular communications, exhibit significant involvement in regulating metabolic reprogramming within the complicated network of tumor microenvironments. sEV derived from tumor cells and those released by other cell populations such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) can mutually influence each other, giving rise to diverse complex feedback loops. This review includes multiple studies conducted in recent years to summarize the functions of sEV in altering metabolism in various cell types within tumor microenvironments. Additionally, it aims to highlight potential therapeutic targets based on the commonly observed mechanisms identified in different studies.
Collapse
Affiliation(s)
- Zhixian Chen
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
49
|
He L, Zhang H, Zhao N, Liao L. A novel approach in biomedical engineering: The use of polyvinyl alcohol hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration. Int J Biol Macromol 2024; 270:132116. [PMID: 38723803 DOI: 10.1016/j.ijbiomac.2024.132116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
Developing effective methods for alveolar bone defect regeneration is a significant challenge in orthopedics. Exosomes from human umbilical cord mesenchymal stem cells (HUMSC-Exos) have shown potential in bone repair but face limitations due to undefined application methods and mechanisms. To address this, HUMSC-Exos were encapsulated in polyvinyl alcohol (PVA) hydrogel (Exo@PVA) to create a novel material for alveolar bone repair. This combination enhanced the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) more effectively than Exos alone. Additionally, Exo@PVA significantly improved alveolar bone regeneration and defect repair in rats. The microRNA-21-5p (miR-21-5p) in Exo@PVA, identified through the GEO database and analyzed via in silico methods, played a crucial role. miR-21-5p promoted BMSC osteogenic differentiation by inhibiting WWP1-mediated KLF5 ubiquitination and enhanced HUVEC angiogenesis by targeting ATP2B4. These findings underscore the potential of an Exo-based approach with PVA hydrogel scaffolds for bone defect repair, operating through the miR-21-5p/WWP1/ATP2B4 signaling axis.
Collapse
Affiliation(s)
- Longlong He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Hengwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lifan Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
50
|
Fang S, Peng L, Zhang M, Hou R, Deng X, Li X, Xin J, Peng L, Liu Z, Liu Y, Xie Y, Zhou B, Fang W, Liu Z, Cheng C. MiR-2110 induced by chemically synthesized cinobufagin functions as a tumor-metastatic suppressor via targeting FGFR1 to reduce PTEN ubiquitination degradation in nasopharyngeal carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:3548-3562. [PMID: 38477013 DOI: 10.1002/tox.24197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Tumor cell metastasis is the key cause of death in patients with nasopharyngeal carcinoma (NPC). MiR-2110 was cloned and identified in Epstein-Barr virus (EBV)-positive NPC, but its role is unclear in NPC. In this study, we investigated the effect of miR-2110 on NPC metastasis and its related molecular basis. In addition, we also explored whether miR-2110 can be regulated by cinobufotalin (CB) and participate in the inhibition of CB on NPC metastasis. Bioinformatics, RT-PCR, and in situ hybridization were used to observe the expression of miR-2110 in NPC tissues and cells. Scratch, Boyden, and tail vein metastasis model of nude mouse were used to detect the effect of miR-2110 on NPC metastasis. Western blot, Co-IP, luciferase activity, colocalization of micro confocal and ubiquitination assays were used to identify the molecular mechanism of miR-2110 affecting NPC metastasis. Finally, miR-2110 induced by CB participates in CB-stimulated inhibition of NPC metastasis was explored. The data showed that increased miR-2110 significantly suppresses NPC cell migration, invasion, and metastasis. Suppressing miR-2110 markedly restored NPC cell migration and invasion. Mechanistically, miR-2110 directly targeted FGFR1 and reduced its protein expression. Decreased FGFR1 attenuated its recruitment of NEDD4, which downregulated NEDD4-induced phosphatase and tensin homolog (PTEN) ubiquitination and degradation and further increased PTEN protein stability, thereby inactivating PI3K/AKT-stimulated epithelial-mesenchymal transition signaling and ultimately suppressing NPC metastasis. Interestingly, CB, a potential new inhibitory drug for NPC metastasis, significantly induced miR-2110 expression by suppressing PI3K/AKT/c-Jun-mediated transcription inhibition. Suppression of miR-2110 significantly restored cell migration and invasion in CB-treated NPC cells. Finally, a clinical sample assay indicated that reduced miR-2110 was negatively correlated with NPC lymph node metastasis and positively related to NPC patient survival prognosis. In summary, miR-2110 is a metastatic suppressor involving in CB-induced suppression of NPC metastasis.
Collapse
Affiliation(s)
- Shiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mengmin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xing Deng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoning Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jianyang Xin
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lingrong Peng
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihua Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chao Cheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|