1
|
Zhang Y, Wang T, Wang Z, Shi X, Jin J. Functions and Therapeutic Potentials of Long Noncoding RNA in Skeletal Muscle Atrophy and Dystrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13747. [PMID: 40034097 PMCID: PMC11876862 DOI: 10.1002/jcsm.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Skeletal muscle is the most abundant tissue in the human body and is responsible for movement, metabolism, energy production and longevity. Muscle atrophy is a frequent complication of several diseases and occurs when protein degradation exceeds protein synthesis. Genetics, ageing, nerve injury, weightlessness, cancer, chronic diseases, the accumulation of metabolic byproducts and other stimuli can lead to muscle atrophy. Muscular dystrophy is a neuromuscular disorder, part of which is caused by the deficiency of dystrophin protein and is mostly related to genetics. Muscle atrophy and muscular dystrophy are accompanied by dynamic changes in transcriptomic, translational and epigenetic regulation. Multiple signalling pathways, such as the transforming growth factor-β (TGF-β) signalling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, inflammatory signalling pathways, neuromechanical signalling pathways, endoplasmic reticulum stress and glucocorticoids signalling pathways, regulate muscle atrophy. A large number of long noncoding RNAs (lncRNAs) have been found to be abnormally expressed in atrophic muscles and dystrophic muscles and regulate the balance of muscle protein synthesis and degradation or dystrophin protein expression. These lncRNAs may serve as potential targets for treating muscle atrophy and muscular dystrophy. In this review, we summarized the known lncRNAs related to muscular dystrophy and muscle atrophy induced by denervation, ageing, weightlessness, cachexia and abnormal myogenesis, along with their molecular mechanisms. Finally, we explored the potential of using these lncRNAs as therapeutic targets for muscle atrophy and muscular dystrophy, including the methods of discovery and clinical application prospects for functional lncRNAs.
Collapse
Affiliation(s)
- Yidi Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Teng Wang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Ziang Wang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
2
|
Gugnoni M, Kashyap MK, Wary KK, Ciarrocchi A. lncRNAs: the unexpected link between protein synthesis and cancer adaptation. Mol Cancer 2025; 24:38. [PMID: 39891197 PMCID: PMC11783725 DOI: 10.1186/s12943-025-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Cancer progression relies on the ability of cells to adapt to challenging environments overcoming stresses and growth constraints. Such adaptation is a multifactorial process that depends on the rapid reorganization of many basic cellular mechanisms. Protein synthesis is often dysregulated in cancer, and translational reprogramming is emerging as a driving force of cancer adaptive plasticity. Long non-coding RNAs (lncRNAs) represent the main product of genome transcription. They outnumber mRNAs by an order of magnitude and their expression is regulated in an extremely specific manner depending on context, space and time. This heterogeneity is functional and allows lncRNAs to act as context-specific, fine-tuning controllers of gene expression. Multiple recent evidence underlines how, besides their consolidated role in transcription, lncRNAs are major players in translation control. Their capacity to establish multiple and highly dynamic interactions with proteins and other transcripts makes these molecules able to play a central role across all phases of protein synthesis. Even if through a myriad of different mechanisms, the action of these transcripts is dual. On one hand, by modulating the overall translation speed, lncRNAs participate in the process of metabolic adaptation of cancer cells under stress conditions. On the other hand, by prioritizing the synthesis of specific transcripts they help cancer cells to maintain high levels of essential oncogenes. In this review, we aim to discuss the most relevant evidence regarding the involvement of lncRNAs in translation regulation and to discuss how this specific function may affect cancer plasticity and resistance to stress. We also expect to provide one of the first collective perspectives on the way these transcripts modulate gene expression beyond transcription.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
3
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024; 23:695-701. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Soubeyrand S, Lau P, Nikpay M, Ma L, Bjorkegren JLM, McPherson R. Long Noncoding RNA TRIBAL Links the 8q24.13 Locus to Hepatic Lipid Metabolism and Coronary Artery Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004674. [PMID: 39624902 DOI: 10.1161/circgen.124.004674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Genome-wide association studies identified a 20-Kb region of chromosome 8 (8q24.13) associated with plasma lipids, hepatic steatosis, and risk for coronary artery disease. The region is proximal to TRIB1, and given its well-established role in lipid regulation in animal models, TRIB1 has been proposed to mediate the contribution of the 8q24.13 locus to these traits. This region overlaps a gene encoding the primate-specific long noncoding RNA transcript TRIBAL/TRIB1AL (TRIB1-associated locus), but the contribution of TRIBAL to coronary artery disease risk remains untested. METHODS Using recently available expression quantitative trait loci data and hepatocyte models, we further investigated this locus by Mendelian randomization analysis. Following antisense oligonucleotide targeting of TRIBAL, transcription array, quantitative reverse transcription polymerase chain reaction, and enrichment analyses were performed and effects on apoB and triglyceride secretion were determined. RESULTS Mendelian randomization analysis supports a causal relationship between genetically determined hepatic TRIBAL expression and markers of hepatic steatosis and coronary artery disease risk. By contrast, expression data sets did not support expression quantitative trait loci relationships between coronary artery disease-associated variants and TRIB1. TRIBAL suppression reduced the expression of key regulators of triglyceride metabolism and bile acid synthesis. Enrichment analyses identified patterns consistent with impaired metabolic functions, including reduced triglyceride and cholesterol handling ability. Furthermore, TRIBAL suppression was associated with reduced hepatocyte secretion of triglycerides. CONCLUSIONS This work identifies TRIBAL as a gene bridging the genotype-phenotype relationship at the 8q24.13 locus with effects on genes regulating hepatocyte lipid metabolism and triglyceride secretion.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Paulina Lau
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.)
| | - Ruth McPherson
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
- Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Centre (R.M.), University of Ottawa Heart Institute, Canada
| |
Collapse
|
5
|
Mokhtaridoost M, Chalmers JJ, Soleimanpoor M, McMurray BJ, Lato DF, Nguyen SC, Musienko V, Nash JO, Espeso-Gil S, Ahmed S, Delfosse K, Browning JWL, Barutcu AR, Wilson MD, Liehr T, Shlien A, Aref S, Joyce EF, Weise A, Maass PG. Inter-chromosomal contacts demarcate genome topology along a spatial gradient. Nat Commun 2024; 15:9813. [PMID: 39532865 PMCID: PMC11557711 DOI: 10.1038/s41467-024-53983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Non-homologous chromosomal contacts (NHCCs) between different chromosomes participate considerably in gene and genome regulation. Due to analytical challenges, NHCCs are currently considered as singular, stochastic events, and their extent and fundamental principles across cell types remain controversial. We develop a supervised and unsupervised learning algorithm, termed Signature, to call NHCCs in Hi-C datasets to advance our understanding of genome topology. Signature reveals 40,282 NHCCs and their properties across 62 Hi-C datasets of 53 diploid human cell types. Genomic regions of NHCCs are gene-dense, highly expressed, and harbor genes for cell-specific and sex-specific functions. Extensive inter-telomeric and inter-centromeric clustering occurs across cell types [Rabl's configuration] and 61 NHCCs are consistently found at the nuclear speckles. These constitutive 'anchor loci' facilitate an axis of genome activity whilst cell-type-specific NHCCs act in discrete hubs. Our results suggest that non-random chromosome positioning is supported by constitutive NHCCs that shape genome topology along an off-centered spatial gradient of genome activity.
Collapse
Affiliation(s)
- Milad Mokhtaridoost
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Jordan J Chalmers
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marzieh Soleimanpoor
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Brandon J McMurray
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Daniella F Lato
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viktoria Musienko
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Joshua O Nash
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sergio Espeso-Gil
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Sameen Ahmed
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kate Delfosse
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Jared W L Browning
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - A Rasim Barutcu
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Michael D Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Adam Shlien
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samin Aref
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Li D, Liu Z, Zhang L, Bian X, Wu J, Li L, Chen Y, Luo L, Pan L, Kong L, Xiao Y, Wang J, Zhang X, Wang W, Toma M, Piipponen M, Sommar P, Xu Landén N. The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun 2024; 15:8637. [PMID: 39366968 PMCID: PMC11452505 DOI: 10.1038/s41467-024-52783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation. Single-cell transcriptome analysis combined with gain-of-function and loss-of-function of SNHG26 in vitro and ex vivo reveals its specific role in facilitating inflammatory-to-proliferative state transition of keratinocyte progenitors. A mechanistic study unravels that SNHG26 interacts with and relocates the transcription factor ILF2 from inflammatory genomic loci, such as JUN, IL6, IL8, and CCL20, to the genomic locus of LAMB3. Collectively, our findings suggest that lncRNAs play cardinal roles in expediting tissue repair and regeneration and may constitute an invaluable reservoir of therapeutic targets in reparative medicine.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ling Pan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Lingzhuo Kong
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Xiya Zhang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Maria Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
8
|
Yu TWB. A phenotypic drug discovery approach by latent interaction in deep learning. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240720. [PMID: 40191531 PMCID: PMC11972434 DOI: 10.1098/rsos.240720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 04/09/2025]
Abstract
Contemporary drug discovery paradigms rely heavily on binding assays about the bio-physicochemical processes. However, this dominant approach suffers from overlooked higher-order interactions arising from the intricacies of molecular mechanisms, such as those involving cis-regulatory elements. It introduces potential impairments and restrains the potential development of computational methods. To address this limitation, I developed a deep learning model that leverages an end-to-end approach, relying exclusively on therapeutic information about drugs. By transforming textual representations of drug and virus genetic information into high-dimensional latent representations, this method evades the challenges arising from insufficient information about binding specificities. Its strengths lie in its ability to implicitly consider complexities such as epistasis and chemical-genetic interactions, and to handle the pervasive challenge of data scarcity. Through various modeling skills and data augmentation techniques, the proposed model demonstrates outstanding performance in out-of-sample validations, even in scenarios with unknown complex interactions. Furthermore, the study highlights the importance of chemical diversity for model training. While the method showcases the feasibility of deep learning in data-scarce scenarios, it reveals a promising alternative for drug discovery in situations where knowledge of underlying mechanisms is limited.
Collapse
Affiliation(s)
- Tat Wai Billy Yu
- Macao Polytechnic University, Macau SAR, People’s Republic of China
| |
Collapse
|
9
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Desideri F, Grazzi A, Lisi M, Setti A, Santini T, Colantoni A, Proietti G, Carvelli A, Tartaglia GG, Ballarino M, Bozzoni I. CyCoNP lncRNA establishes cis and trans RNA-RNA interactions to supervise neuron physiology. Nucleic Acids Res 2024; 52:9936-9952. [PMID: 38989616 PMCID: PMC11381359 DOI: 10.1093/nar/gkae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The combination of morphogenetic and transcription factors together with the synergic aid of noncoding RNAs and their cognate RNA binding proteins contribute to shape motor neurons (MN) identity. Here, we extend the noncoding perspective of human MN, by detailing the molecular and biological activity of CyCoNP (as Cytoplasmic Coordinator of Neural Progenitors) a highly expressed and MN-enriched human lncRNA. Through in silico prediction, in vivo RNA purification and loss of function experiments followed by RNA-sequencing, we found that CyCoNP sustains a specific neuron differentiation program, required for the physiology of both neuroblastoma cells and hiPSC-derived MN, which mainly involves miR-4492 and NCAM1 mRNA. We propose a novel lncRNA-mediated 'dual mode' of action, in which CyCoNP acts in trans as a classical RNA sponge by sequestering miR-4492 from its pro-neuronal targets, including NCAM1 mRNA, and at the same time it plays an additional role in cis by interacting with NCAM1 mRNA and regulating the availability and localization of the miR-4492 in its proximity. These data highlight novel insights into the noncoding RNA-mediated control of human neuron physiology and point out the importance of lncRNA-mediated interactions for the spatial distribution of regulatory molecules.
Collapse
Affiliation(s)
- Fabio Desideri
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Alessandro Grazzi
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Lisi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gabriele Proietti
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Andrea Carvelli
- Department of Neuroscience, The Scripps Research institute, La Jolla, CA 92037, USA
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
12
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
13
|
Habib AM, Cox JJ, Okorokov AL. Out of the dark: the emerging roles of lncRNAs in pain. Trends Genet 2024; 40:694-705. [PMID: 38926010 DOI: 10.1016/j.tig.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
The dark genome, the nonprotein-coding part of the genome, is replete with long noncoding RNAs (lncRNAs). These functionally versatile transcripts, with specific temporal and spatial expression patterns, are critical gene regulators that play essential roles in health and disease. In recent years, FAAH-OUT was identified as the first lncRNA associated with an inherited human pain insensitivity disorder. Several other lncRNAs have also been studied for their contribution to chronic pain and genome-wide association studies are frequently identifying single nucleotide polymorphisms that map to lncRNAs. For a long time overlooked, lncRNAs are coming out of the dark and into the light as major players in human pain pathways and as potential targets for new RNA-based analgesic medicines.
Collapse
Affiliation(s)
- Abdella M Habib
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - James J Cox
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Scholda J, Nguyen TTA, Kopp F. Long noncoding RNAs as versatile molecular regulators of cellular stress response and homeostasis. Hum Genet 2024; 143:813-829. [PMID: 37782337 PMCID: PMC11294412 DOI: 10.1007/s00439-023-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Normal cell and body functions need to be maintained and protected against endogenous and exogenous stress conditions. Different cellular stress response pathways have evolved that are utilized by mammalian cells to recognize, process and overcome numerous stress stimuli in order to maintain homeostasis and to prevent pathophysiological processes. Although these stress response pathways appear to be quite different on a molecular level, they all have in common that they integrate various stress inputs, translate them into an appropriate stress response and eventually resolve the stress by either restoring homeostasis or inducing cell death. It has become increasingly appreciated that non-protein-coding RNA species, such as long noncoding RNAs (lncRNAs), can play critical roles in the mammalian stress response. However, the precise molecular functions and underlying modes of action for many of the stress-related lncRNAs remain poorly understood. In this review, we aim to provide a framework for the categorization of mammalian lncRNAs in stress response and homeostasis based on their experimentally validated modes of action. We describe the molecular functions and physiological roles of selected lncRNAs and develop a concept of how lncRNAs can contribute as versatile players in mammalian stress response and homeostasis. These concepts may be used as a starting point for the identification of novel lncRNAs and lncRNA functions not only in the context of stress, but also in normal physiology and disease.
Collapse
Affiliation(s)
- Julia Scholda
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Thi Thuy Anh Nguyen
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Florian Kopp
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Ma F, Liu H, Xia T, Zhang Z, Ma S, Hao Y, Shen J, Jiang Y, Li N. HSFAS mediates fibroblast proliferation, migration, trans-differentiation and apoptosis in hypertrophic scars via interacting with ADAMTS8. Acta Biochim Biophys Sin (Shanghai) 2024; 56:440-451. [PMID: 38006215 PMCID: PMC10984868 DOI: 10.3724/abbs.2023274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertrophic scar (HS) is one of the most common sequelae of patients, especially after burns and trauma. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating HS remain underexplored. Human hypertrophic scar-derived fibroblasts (HSFBs) have been shown to exert more potent promoting effects on extracellular matrix (ECM) accumulation than normal skin-derived fibroblasts (NSFBs) and are associated with enhanced HS formation. The purpose of this study is to search for lncRNAs enriched in HSFBs and investigate their roles and mechanisms. LncRNA MSTRG.59347.16 is one of the most highly expressed lncRNAs in HS detected by lncRNA-seq and qRT-PCR and named as hypertrophic scar fibroblast-associated lncRNA (HSFAS). HSFAS overexpression significantly induces fibroblast proliferation, migration, and myofibroblast trans-differentiation and inhibits apoptosis in HSFBs, while knockdown of HSFAS results in augmented apoptosis and attenuated proliferation, migration, and myofibroblast trans-differentiation of HSFBs. Mechanistically, HSFAS suppresses the expression of A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAMTS8). ADAMTS8 knockdown rescues downregulated HSFAS-mediated fibroblast proliferation, migration, myofibroblast trans-differentiation and apoptosis. Thus, our findings uncover a previously unknown lncRNA-dependent regulatory pathway for fibroblast function. Targeted intervention in the HSFAS-ADAMTS8 pathway is a potential therapy for HS.
Collapse
Affiliation(s)
- Fang Ma
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Honglin Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Clinical Medical SchoolNingxia Medical UniversityYinchuan750004China
| | - Tongtong Xia
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Zhenghao Zhang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Clinical Medical SchoolNingxia Medical UniversityYinchuan750004China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Jiangyong Shen
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Nan Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
19
|
Hiers NM, Li T, Traugot CM, Xie M. Target-directed microRNA degradation: Mechanisms, significance, and functional implications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1832. [PMID: 38448799 PMCID: PMC11098282 DOI: 10.1002/wrna.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Ingersoll S, Trouth A, Luo X, Espinoza A, Wen J, Tucker J, Astatike K, Phiel CJ, Kutateladze TG, Wu TP, Ramachandran S, Ren X. Sparse CBX2 nucleates many Polycomb proteins to promote facultative heterochromatinization of Polycomb target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578969. [PMID: 38370615 PMCID: PMC10871256 DOI: 10.1101/2024.02.05.578969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Facultative heterochromatinization of genomic regulators by Polycomb repressive complex (PRC) 1 and 2 is essential in development and differentiation; however, the underlying molecular mechanisms remain obscure. Using genetic engineering, molecular approaches, and live-cell single-molecule imaging, we quantify the number of proteins within condensates formed through liquid-liquid phase separation (LLPS) and find that in mouse embryonic stem cells (mESCs), approximately 3 CBX2 proteins nucleate many PRC1 and PRC2 subunits to form one non-stoichiometric condensate. We demonstrate that sparse CBX2 prevents Polycomb proteins from migrating to constitutive heterochromatin, demarcates the spatial boundaries of facultative heterochromatin, controls the deposition of H3K27me3, regulates transcription, and impacts cellular differentiation. Furthermore, we show that LLPS of CBX2 is required for the demarcation and deposition of H3K27me3 and is essential for cellular differentiation. Our findings uncover new functional roles of LLPS in the formation of facultative heterochromatin and unravel a new mechanism by which low-abundant proteins nucleate many other proteins to form compartments that enable them to execute their functions.
Collapse
Affiliation(s)
- Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Axel Espinoza
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Joey Wen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Joseph Tucker
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Kalkidan Astatike
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Christopher J. Phiel
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tao P. Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| |
Collapse
|
21
|
D'Ambra E, Vitiello E, Santini T, Bozzoni I. In Situ Hybridization of circRNAs in Cells and Tissues through BaseScope™ Strategy. Methods Mol Biol 2024; 2765:63-92. [PMID: 38381334 DOI: 10.1007/978-1-0716-3678-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Imaging-based approaches are powerful strategies that nowadays have been largely used to gain insight into the function of different types of macromolecules. As for RNA, it is becoming clear how important is its intracellular localization for the control of proper cell differentiation and development and how its perturbation can be linked to several pathological states. This aspect is even more important if one thinks of highly polarized cells such as neurons.In this chapter, we describe in detail an innovative RNA-FISH approach for the detection of circular RNAs (circRNAs), a recently discovered class of noncoding RNAs, which display different subcellular localizations and whose functions still largely remain to be elucidated. The detection of these molecules represents a great challenge, above all because they share most of their sequence with the corresponding linear counterparts, from which they differ only for the back-splicing junction (BSJ) originating from the circularization reaction. This implies the use of RNA-FISH probes capable of specifically binding the BSJ and avoiding the detection of the linear counterpart. This requirement imposes the design of probes on a very small region, which implies the risk of obtaining a low and undetectable signal. The BaseScope™ Assay RNA-FISH technology overpasses this problem since it is based on branched-DNA probes. With this approach it is possible to target a specific region of the RNA, even small such as a splicing junction, and at the same time to obtain a strong and well detectable signal. All this is possible thanks to subsequent series of probes that, starting from the first hybridization to the BSJ, build a branched tree of probes that greatly amplifies the signal. Here we provide a detailed step-by-step protocol of BaseScope™ RNA-FISH on circRNAs coupled with immunofluorescence, both in cells and tissues, and we address difficulties which may arise when using this methodology that depend on cell type, specific permeabilization, image acquisition, and post-acquisition analyses.
Collapse
Affiliation(s)
- Eleonora D'Ambra
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Erika Vitiello
- Center for Human Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy.
- Center for Human Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
22
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
23
|
Wei H, Huang L, Lu Q, Huang Z, Huang Y, Xu Z, Li W, Pu J. N 6-Methyladenosine-Modified LEAWBIH Drives Hepatocellular Carcinoma Progression through Epigenetically Activating Wnt/β-Catenin Signaling. J Hepatocell Carcinoma 2023; 10:1991-2007. [PMID: 37954496 PMCID: PMC10637240 DOI: 10.2147/jhc.s433070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) modification plays an important role in regulating RNA maturation, stability, and translation. Thus, m6A modification is involved in various pathophysiological processes including hepatocellular carcinoma (HCC). However, the direct contribution of m6A modifications to RNA function in HCC remains unclear. Here, we identified LEAWBIH (long non-coding RNA epigenetically activating Wnt/β-catenin signalling in HCC) as an m6A-modified long non-coding RNA (lncRNA) and investigated the effects of m6A on the function of LEAWBIH in HCC. Methods Quantitative polymerase chain reaction was performed to measure the gene expression in tissues and cells. The level of m6A modification was detected using a methylated RNA immunoprecipitation assay and single-base elongation- and ligation-based qPCR amplification method. Cell proliferation was evaluated using the Glo cell viability and CCK-8 assays. Cell migration and invasion were evaluated using Transwell migration and invasion assays. The mechanisms of m6A modified LEAWBIH were investigated using chromatin isolation by RNA purification, chromatin immunoprecipitation, and dual-luciferase reporter assays. Results LEAWBIH was highly expressed and correlated with poor survival in HCC patients. LEAWBIH was identified as a m6A-modified transcript. m6A modification increased LEAWBIH transcript stability. The m6A modification level of LEAWBIH was increased in HCC, and a high m6A modification level of LEAWBIH predicted poor survival. LEAWBIH promotes HCC cell proliferation, migration, and invasion in an m6A modification-dependent manner. Mechanistic investigations revealed that m6A-modified LEAWBIH activated Wnt/β-catenin signaling. m6A-modified LEAWBIH binds to the m6A reader YTHDC1, which further interacts with and recruits H3K9me2 demethylase KDM3B to CTNNB1 promoter, leading to H3K9me2 demethylation and CTNNB1 transcription activation. Functional rescue assays showed that blocking Wnt/β-catenin signaling abolished the role of LEAWBIH in HCC. Conclusion m6A-modified LEAWBIH exerts oncogenic effects in HCC by epigenetically activating Wnt/β-catenin signaling, highlighting m6A-modified LEAWBIH as a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
- Guangxi Clinical Medical Research Center of Hepatobiliary Disease, Baise, People’s Republic of China
| |
Collapse
|
24
|
Wang Q, Wang H, Meng W, Liu C, Li R, Zhang M, Liang K, Gao Y, Du T, Zhang J, Han C, Shi L, Meng F. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis affects levodopa-induced dyskinesia in a rat model of Parkinson's disease. Cell Death Discov 2023; 9:342. [PMID: 37714835 PMCID: PMC10504256 DOI: 10.1038/s41420-023-01644-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Levodopa-induced dyskinesia (LID) is a common motor complication in Parkinson's disease. However, few studies have focused on the pathogenesis of LID at the transcriptional level. NONRATT023402.2, a long non-coding RNA (lncRNA) that may be related to LID was discovered in our previous study and characterized in rat models of LID. In the present study, NONRATT023402.2 was overexpressed by injection of adeno-associated virus (AAV) in striatum of LID rats, and 48 potential target genes, including nerve growth factor receptor (NGFR) were screened using next-generation sequencing and target gene predictions. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis was verified using a dual luciferase reporter gene. Overexpression of NONRATT023402.2 significantly increased the abnormal involuntary movements (AIM) score of LID rats, activated the PI3K/Akt signaling pathway, and up-regulated c-Fos in the striatum. NGFR knockdown by injection of ShNGFR-AAV into the striatum of LID rats resulted in a significant decrease in the PI3K/Akt signaling pathway and c-Fos expression. The AIM score of LID rats was positively correlated with the expressions of NONRATT023402.2 and NGFR. A dual luciferase reporter assay showed that c-Fos, as a transcription factor, bound to the NONRATT023402.2 promoter and activated its expression. Together, the results showed that NONRATT023402.2 regulated NGFR expression via a competing endogenous RNA mechanism, which then activated the PI3K/Akt pathway and promoted c-Fos expression. This suggested that c-Fos acted as a transcription factor to activate NONRATT023402.2 expression, and form a positive feedback regulation loop in LID rats, thus, aggravating LID symptoms. NONRATT023402.2 is therefore a possible novel therapeutic target for LID.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizhi Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenjia Meng
- Clinical School, Tianjin Medical University, Tianjin, China
| | - Chong Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Renpeng Li
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Moxuan Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kun Liang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
25
|
Andoh K, Nishimori A, Matsuura Y. The bovine leukemia virus-derived long non-coding RNA AS1-S binds to bovine hnRNPM and alters the interaction between hnRNPM and host mRNAs. Microbiol Spectr 2023; 11:e0085523. [PMID: 37671887 PMCID: PMC10581181 DOI: 10.1128/spectrum.00855-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Viruses utilize several strategies to cause latent infection and evade host immune responses. Long non-coding RNA (lncRNA), a class of non-protein-encoding RNA that regulates various cellular functions by interacting with RNA-binding proteins, plays important roles for viral latency in several viruses, such as herpesviruses and retroviruses, due to its lack of antigenicity. Bovine leukemia virus (BLV), which belongs to the family Retroviridae, encodes the BLV-derived lncRNA AS1-S, which is a major transcript expressed in latently infected cells. We herein identified bovine heterogeneous nuclear ribonucleoprotein M (hnRNPM), an RNA-binding protein located in the nucleus, as the binding partner of AS1-S using an RNA-protein pull-down assay. The pull-down assay using recombinant hnRNPM mutants showed that RNA recognition motifs (RRMs) 1 and 2, located in the N-terminal region of bovine hnRNPM, were responsible for the binding to AS1-S. Furthermore, RNA immunoprecipitation (RIP) assay results showed that the expression of AS1-S increased the number of mRNAs that co-immunoprecipitated with bovine hnRNPM in MDBK cells. These results suggested that AS1-S could alter the interaction between hnRNPM and host mRNAs, potentially interfering with cellular functions during the initial phase of mRNA maturation in the nucleus. Since most of the identified mRNAs that exhibited increased binding to hnRNPM were correlated with the KEGG term "Pathways in cancer," AS1-S might affect the proliferation and expansion of BLV-infected cells and contribute to tumor progression. IMPORTANCE BLV infects bovine B cells and causes malignant lymphoma, a disease that greatly affects the livestock industry. Due to its low incidence and long latent period, the molecular mechanisms underlying the progression of lymphoma remain enigmatic. Several non-coding RNAs (ncRNAs), such as miRNA and lncRNA, have recently been discovered in the BLV genome, and the relationship between BLV pathogenesis and these ncRNAs is attracting attention. However, most of the molecular functions of these transcripts remain unidentified. To the best of our knowledge, this is the first report describing a molecular function for the BLV-derived lncRNA AS1-S. The findings reported herein reveal a novel mechanism underlying BLV pathogenesis that could provide important insights for not only BLV research but also comparative studies of retroviruses.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Asami Nishimori
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Tan C, Huang Y, Huang Z, Ning Y, Huang L, Wu X, Lu Y, Wei H, Pu J. N 6-Methyladenosine-Modified ATP8B1-AS1 Exerts Oncogenic Roles in Hepatocellular Carcinoma via Epigenetically Activating MYC. J Hepatocell Carcinoma 2023; 10:1479-1495. [PMID: 37701563 PMCID: PMC10493143 DOI: 10.2147/jhc.s415318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) modification has shown critical roles in regulating mRNA fate. Non-coding RNAs also have important roles in various diseases, including hepatocellular carcinoma (HCC). However, the potential influences of m6A modification on non-coding RNAs are still unclear. In this study, we identified a novel m6A-modified ATP8B1-AS1 and aimed to investigate the effects of m6A on the expression and role of ATP8B1-AS1 in HCC. Methods qPCR was performed to measure the expression of related genes. The correlation between gene expression and prognosis was analyzed using public database. m6A modification level was measured using MeRIP and single-base elongation- and ligation-based qPCR amplification method. The roles of ATP8B1-AS1 in HCC were investigated using in vitro and in vivo functional assays. The mechanisms underlying the roles of ATP8B1-AS1 were investigated by ChIRP and ChIP assays. Results ATP8B1-AS1 is highly expressed in HCC tissues and cell lines. High expression of ATP8B1-AS1 is correlated with poor overall survival of HCC patients. ATP8B1-AS1 is m6A modified and the 792 site of ATP8B1-AS1 is identified as an m6A modification site. m6A modification increases the stability of ATP8B1-AS1 transcript. m6A modification level of ATP8B1-AS1 is increased in HCC tissues and cell lines, and correlated with poor overall survival of HCC patients. ATP8B1-AS1 promotes HCC cell proliferation, migration, and invasion, which were abolished by the mutation of m6A-modified 792 site. Mechanistic investigation revealed that m6A-modified ATP8B1-AS1 interacts with and recruits m6A reader YTHDC1 and histone demethylase KDM3B to MYC promoter region, leading to the reduction of H3K9me2 level at MYC promoter region and activation of MYC transcription. Functional rescue assays showed that depletion of MYC largely abolished the oncogenic roles of ATP8B1-AS1. Conclusion m6A modification level of ATP8B1-AS1 is increased and correlated with poor prognosis in HCC. m6A-modified ATP8B1-AS1 exerts oncogenic roles in HCC via epigenetically activating MYC expression.
Collapse
Affiliation(s)
- Chuan Tan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuanjia Ning
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| |
Collapse
|
27
|
Yin J, Ding F, Cheng Z, Ge X, Li Y, Zeng A, Zhang J, Yan W, Shi Z, Qian X, You Y, Ding Z, Ji J, Wang X. METTL3-mediated m6A modification of LINC00839 maintains glioma stem cells and radiation resistance by activating Wnt/β-catenin signaling. Cell Death Dis 2023; 14:417. [PMID: 37438359 DOI: 10.1038/s41419-023-05933-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in glioma initiation and progression. Glioma stem cells (GSCs) are essential for tumor initiation, maintenance, and therapeutic resistance. However, the biological functions and underlying mechanisms of lncRNAs in GSCs remain poorly understood. Here, we identified that LINC00839 was overexpressed in GSCs. A high level of LINC00839 was associated with GBM progression and radiation resistance. METTL3-mediated m6A modification on LINC00839 enhanced its expression in a YTHDF2-dependent manner. Mechanistically, LINC00839 functioned as a scaffold promoting c-Src-mediated phosphorylation of β-catenin, thereby inducing Wnt/β-catenin activation. Combinational use of celecoxib, an inhibitor of Wnt/β-catenin signaling, greatly sensitized GSCs to radiation. Taken together, our results showed that LINC00839, modified by METTL3-mediated m6A, exerts tumor progression and radiation resistance by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jianxing Yin
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China
| | - Fangshu Ding
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zhangchun Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xin Ge
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yanhui Li
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhiliang Ding
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China.
| | - Jing Ji
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215006, China.
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
28
|
Li Y, Zhai H, Tong L, Wang C, Xie Z, Zheng K. LncRNA Functional Screening in Organismal Development. Noncoding RNA 2023; 9:36. [PMID: 37489456 PMCID: PMC10366883 DOI: 10.3390/ncrna9040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Controversy continues over the functional prevalence of long non-coding RNAs (lncRNAs) despite their being widely investigated in all kinds of cells and organisms. In animals, lncRNAs have aroused general interest from exponentially increasing transcriptomic repertoires reporting their highly tissue-specific and developmentally dynamic expression, and more importantly, from growing experimental evidence supporting their functionality in facilitating organogenesis and individual fitness. In mammalian testes, while a great multitude of lncRNA species are identified, only a minority of them have been shown to be useful, and even fewer have been demonstrated as true requirements for male fertility using knockout models to date. This noticeable gap is attributed to the virtual existence of a large number of junk lncRNAs, the lack of an ideal germline culture system, difficulty in loss-of-function interrogation, and limited screening strategies. Facing these challenges, in this review, we discuss lncRNA functionality in organismal development and especially in mouse testis, with a focus on lncRNAs with functional screening.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiming Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
29
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
30
|
Talross GJS, Carlson JR. The rich non-coding RNA landscape of the Drosophila antenna. Cell Rep 2023; 42:112482. [PMID: 37167060 PMCID: PMC10431215 DOI: 10.1016/j.celrep.2023.112482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play diverse and critical roles in neural development, function, and disease. Here, we examine neuronal lncRNAs in a model system that offers enormous advantages for deciphering their functions: the Drosophila olfactory system. This system is numerically simple, its neurons are exquisitely well defined, and it drives multiple complex behaviors. We undertake a comprehensive survey of linear and circular lncRNAs in the Drosophila antenna and identify a wealth of lncRNAs enriched in it. We generate an unprecedented lncRNA-to-neuron map, which reveals that olfactory receptor neurons are defined not only by their receptors but also by the combination of lncRNAs they express. We identify species-specific lncRNAs, including many that are expressed primarily in pheromone-sensing neurons and that may act in modulation of pheromonal responses or in speciation. This resource opens many new opportunities for investigating the roles of lncRNAs in the nervous system.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
31
|
Ying L, Wang J, Feng J, Wu Z. Long non-coding RNA SNHG17 contributes to the progression of pancreatic adenocarcinoma by modulating miR-32-5p/EZH2/STAT3 signaling. Mol Biol Rep 2023:10.1007/s11033-023-08530-1. [PMID: 37253918 DOI: 10.1007/s11033-023-08530-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Adenocarcinoma of the pancreas (PAAD) is one of the most malignant tumors in the gastrointestinal tract. Long-chain noncoding RNAs (lncRNAs) are non-coding RNAs that are expressed in a variety of cancers. The purpose of this study is to study the expression, biology functions, and molecular mechanism of lncRNA SNHG17 in PAAD. METHODS In this study, qRT-PCR was used to measure the relative expression of SNHG17 and miR-32-5p in PAAD. In order to investigate the effect of SNHG17 and miR-32-5p on the proliferation, migration and invasion of PAAD cells, we performed a variety of tests including CCK-8, colony formation, scratch and transwell assays. Furthermore, SNHG17 and miR-32-5p interactions were confirmed by a luciferase reporter gene test. RESULTS Our results indicate that the expression of SNHG17 in PAAD is elevated, and in vitro studies have shown that SNHG17 enhances the proliferation of PAAD cells, Mechanistically, it has been shown that SNHG17 can direct target miR-32-5p in PAAD cells, thus promoting the proliferation of PAAD cells, migration, and invasion. Furthermore, SNHG17 has been found to activate EZH2/STAT3 signaling pathway through miR-32-5p in PAAD cells. CONCLUSION Our results show that SNHG17 plays a key role in the progression of PAAD by activating STAT3 signaling via regulation of miR-32-5p and EZH2.Identifying these new regulatory pathways may shed light on the underlying mechanism of PAAD and offer a potential therapeutic target for this fatal disease.
Collapse
Affiliation(s)
- Liping Ying
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, 251 Baizhang East Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - JinBo Wang
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, 251 Baizhang East Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| | - Jiye Feng
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, 251 Baizhang East Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Zongyang Wu
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, 251 Baizhang East Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| |
Collapse
|
32
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Here, we review recent findings on the role of long noncoding RNAs (lncRNAs) in cardiovascular disease (CVD). In addition, we highlight some of the latest findings in lncRNA biology, providing an outlook for future avenues of lncRNA research in CVD. RECENT FINDINGS Recent publications provide translational evidence from patient studies and animal models for the role of specific lncRNAs in CVD. The molecular effector mechanisms of these lncRNAs are diverse. Overall, cell-type selective modulation of gene expression is the largest common denominator. New methods, such as single-cell profiling and CRISPR/Cas9-screening, reveal additional novel mechanistic principles: For example, many lncRNAs establish RNA-based spatial compartments that concentrate effector proteins. Also, RNA modifications and splicing features can be determinants of lncRNA function. SUMMARY lncRNA research is passing the stage of enumerating lncRNAs or recording simplified on-off expression switches. Mechanistic analyses are starting to reveal overarching principles of how lncRNAs can function. Exploring these principles with decisive genetic testing in vivo remains the ultimate test to discern how lncRNA loci, by RNA motifs or DNA elements, affect CVD pathophysiology.
Collapse
|
34
|
Chan SN, Pek JW. Distinct biogenesis pathways may have led to functional divergence of the human and Drosophila Arglu1 sisRNA. EMBO Rep 2023; 24:e54350. [PMID: 36533631 PMCID: PMC9900350 DOI: 10.15252/embr.202154350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Stable intronic sequence RNAs (sisRNAs) are stable, long noncoding RNAs containing intronic sequences. While sisRNAs have been found across diverse species, their level of conservation remains poorly understood. Here we report that the biogenesis and functions of a sisRNA transcribed from the highly conserved Arglu1 locus are distinct in human and Drosophila melanogaster. The Arglu1 genes in both species show similar exon-intron structures where the intron 2 is orthologous and positionally conserved. In humans, Arglu1 sisRNA retains the entire intron 2 and promotes host gene splicing. Mechanistically, Arglu1 sisRNA represses the splicing-inhibitory activity of ARGLU1 protein by binding to ARGLU1 protein and promoting its localization to nuclear speckles, away from the Arglu1 gene locus. In contrast, Drosophila dArglu1 sisRNA forms via premature cleavage of intron 2 and represses host gene splicing. This repression occurs through a local accumulation of dARGLU1 protein and inhibition of telescripting by U1 snRNPs at the dArglu1 locus. We propose that distinct biogenesis of positionally conserved Arglu1 sisRNAs in both species may have led to functional divergence.
Collapse
Affiliation(s)
- Seow Neng Chan
- Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore
| | - Jun Wei Pek
- Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
35
|
Seelan RS, Greene RM, Pisano MM. Role of lncRNAs and circRNAs in Orofacial Clefts. Microrna 2023; 12:171-176. [PMID: 38009000 DOI: 10.2174/2211536612666230524153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 11/28/2023]
Abstract
Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
36
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
37
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
38
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
39
|
Kunkler CN, Schiefelbein GE, O'Leary NJ, McCown PJ, Brown JA. A single natural RNA modification can destabilize a U•A-T-rich RNA•DNA-DNA triple helix. RNA (NEW YORK, N.Y.) 2022; 28:1172-1184. [PMID: 35820700 PMCID: PMC9380742 DOI: 10.1261/rna.079244.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Recent studies suggest noncoding RNAs interact with genomic DNA, forming RNA•DNA-DNA triple helices, as a mechanism to regulate transcription. One way cells could regulate the formation of these triple helices is through RNA modifications. With over 140 naturally occurring RNA modifications, we hypothesize that some modifications stabilize RNA•DNA-DNA triple helices while others destabilize them. Here, we focus on a pyrimidine-motif triple helix composed of canonical U•A-T and C•G-C base triples. We employed electrophoretic mobility shift assays and microscale thermophoresis to examine how 11 different RNA modifications at a single position in an RNA•DNA-DNA triple helix affect stability: 5-methylcytidine (m5C), 5-methyluridine (m5U or rT), 3-methyluridine (m3U), pseudouridine (Ψ), 4-thiouridine (s4U), N 6-methyladenosine (m6A), inosine (I), and each nucleobase with 2'-O-methylation (Nm). Compared to the unmodified U•A-T base triple, some modifications have no significant change in stability (Um•A-T), some have ∼2.5-fold decreases in stability (m5U•A-T, Ψ•A-T, and s4U•A-T), and some completely disrupt triple helix formation (m3U•A-T). To identify potential biological examples of RNA•DNA-DNA triple helices controlled by an RNA modification, we searched RMVar, a database for RNA modifications mapped at single-nucleotide resolution, for lncRNAs containing an RNA modification within a pyrimidine-rich sequence. Using electrophoretic mobility shift assays, the binding of DNA-DNA to a 22-mer segment of human lncRNA Al157886.1 was destabilized by ∼1.7-fold with the substitution of m5C at known m5C sites. Therefore, the formation and stability of cellular RNA•DNA-DNA triple helices could be influenced by RNA modifications.
Collapse
Affiliation(s)
- Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Grace E Schiefelbein
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Phillip J McCown
- Michigan Medicine, Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
40
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|