1
|
Raiff A, Zhao S, Bekturova A, Zenge C, Mazor S, Chen X, Ru W, Makaros Y, Ast T, Ordureau A, Xu C, Koren I. TOM20-driven E3 ligase recruitment regulates mitochondrial dynamics through PLD6. Nat Chem Biol 2025:10.1038/s41589-025-01894-4. [PMID: 40263465 DOI: 10.1038/s41589-025-01894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
Mitochondrial homeostasis is maintained through complex regulatory mechanisms, including the balance of mitochondrial dynamics involving fusion and fission processes. A central player in this regulation is the ubiquitin-proteasome system (UPS), which controls the degradation of pivotal mitochondrial proteins. In this study, we identified cullin-RING E3 ligase 2 (CRL2) and its substrate receptor, FEM1B, as critical regulators of mitochondrial dynamics. Through proteomic analysis, we demonstrate here that FEM1B controls the turnover of PLD6, a key regulator of mitochondrial dynamics. Using structural and biochemical approaches, we show that FEM1B physically interacts with PLD6 and that this interaction is facilitated by the direct association of FEM1B with the mitochondrial import receptor TOM20. Ablation of FEM1B or disruption of the FEM1B-TOM20 interaction impairs PLD6 degradation and induces mitochondrial defects, phenocopying PLD6 overexpression. These findings underscore the importance of FEM1B in maintaining mitochondrial morphology and provide further mechanistic insights into how the UPS regulates mitochondrial homeostasis.
Collapse
Affiliation(s)
- Anat Raiff
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shidong Zhao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aizat Bekturova
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shir Mazor
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xinyan Chen
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenwen Ru
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaara Makaros
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Itay Koren
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Pilcher C, Buco PAV, Truong JQ, Ramsland PA, Smeets MF, Walkley CR, Holien JK. Characteristics of the Kelch domain containing (KLHDC) subfamily and relationships with diseases. FEBS Lett 2025; 599:1094-1112. [PMID: 39887712 PMCID: PMC12035522 DOI: 10.1002/1873-3468.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The Kelch protein superfamily is an evolutionary conserved family containing 63 alternate protein coding members. The superfamily is split into three subfamilies: Kelch like (KLHL), Kelch-repeat and bric-a-bracs (BTB) domain containing (KBTBD) and Kelch domain containing protein (KLHDC). The KLHDC subfamily is one of the smallest within the Kelch superfamily, containing 10 primary members. There is little known about the structures and functions of the subfamily; however, they are thought to be involved in several cellular and molecular processes. Recently, there have been significant structural and biochemical advances for KLHDC2, which has aided our understanding of other KLHDC family members. Furthermore, small molecules directly targeting KLHDC2 have been identified, which act as tools for targeted protein degradation. This review utilises this information, in conjunction with a thorough exploration of the structural aspects and potential biological functions to summarise the relationship between KLHDCs and human disease.
Collapse
Affiliation(s)
- Courtney Pilcher
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- St Vincent's Institute of Medical ResearchFitzroyAustralia
| | - Paula Armina V. Buco
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
| | - Jia Q. Truong
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
| | - Paul A. Ramsland
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- Department of ImmunologyMonash UniversityMelbourneAustralia
- Department of Surgery, Austin HealthThe University of MelbourneMelbourneAustralia
| | | | - Carl R. Walkley
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchMelbourneAustralia
- Department of Molecular and Translational ScienceMonash UniversityMelbourneAustralia
| | - Jessica K. Holien
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
| |
Collapse
|
3
|
Larsen-Ledet S, Panfilova A, Stein A. Disentangling the mutational effects on protein stability and interaction of human MLH1. PLoS Genet 2025; 21:e1011681. [PMID: 40294053 PMCID: PMC12064032 DOI: 10.1371/journal.pgen.1011681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 05/09/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Missense mutations can have diverse effects on proteins, depending on their location within the protein and the specific amino acid substitution. Mutations in the DNA mismatch repair gene MLH1 are associated with Lynch syndrome, yet the underlying mechanism of most disease-causing mutations remains elusive. To address this gap, we aim to disentangle the mutational effects on two essential properties for MLH1 function: protein stability and protein-protein interaction. We systematically examine the cellular abundance and interaction with PMS2 of 4839 (94%) MLH1 variants in the C-terminal domain. Our combined data shows that most MLH1 variants lose interaction with PMS2 due to reduced cellular abundance. However, substitutions to charged residues in the canonical interface lead to reduced interaction with PMS2. Unexpectedly, we also identify a distal region in the C-terminal domain of MLH1 where substitutions cause both decreased and increased binding with PMS2, and propose a region in PMS2 as the binding site. Our data correlate with clinical classifications of benign and pathogenic MLH1 variants and align with thermodynamic stability predictions and evolutionary conservation. This work provides mechanistic insights into variant consequences and may help interpret MLH1 variants.
Collapse
Affiliation(s)
- Sven Larsen-Ledet
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Amelie Stein
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Krone MW, Crews CM. Next steps for targeted protein degradation. Cell Chem Biol 2025; 32:219-226. [PMID: 39500325 DOI: 10.1016/j.chembiol.2024.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 02/23/2025]
Abstract
Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.
Collapse
Affiliation(s)
- Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Suiter CC, Calderon D, Lee DS, Chiu M, Jain S, Chardon FM, Lee C, Daza RM, Trapnell C, Zheng N, Shendure J. Combinatorial mapping of E3 ubiquitin ligases to their target substrates. Mol Cell 2025; 85:829-842.e6. [PMID: 39919746 PMCID: PMC11845296 DOI: 10.1016/j.molcel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
E3 ubiquitin ligases (E3s) confer specificity of protein degradation through ubiquitination of substrate proteins. Yet, the vast majority of the >600 human E3s have no known substrates. To identify proteolytic E3-substrate pairs at scale, we developed combinatorial mapping of E3 targets (COMET), a framework for testing the role of many E3s in degrading many candidate substrates within a single experiment. We applied COMET to SCF ubiquitin ligase subunits that mediate degradation of target substrates (6,716 F-box-ORF [open reading frame] combinations) and E3s that degrade short-lived transcription factors (TFs) (26,028 E3-TF combinations). Our data suggest that many E3-substrate relationships are complex rather than 1:1 associations. Finally, we leverage deep learning to predict the structural basis of E3-substrate interactions and probe the strengths and limits of such models. Looking forward, we consider the practicality of transposing this framework, i.e., computational structural prediction of all possible E3-substrate interactions, followed by multiplex experimental validation.
Collapse
Affiliation(s)
- Chase C Suiter
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA.
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David S Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melodie Chiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shruti Jain
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Florence M Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jay Shendure
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang X, Wu Z, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Han Y, Liao Q, Zhou Y. Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential. J Hematol Oncol 2025; 18:20. [PMID: 39972384 PMCID: PMC11841355 DOI: 10.1186/s13045-025-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Applications, Public Service Platform of Tumor Organoid Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Harris TJ, Trader DJ. Exploration of degrons and their ability to mediate targeted protein degradation. RSC Med Chem 2025:d4md00787e. [PMID: 39867589 PMCID: PMC11758578 DOI: 10.1039/d4md00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Degrons are short amino acid sequences that can facilitate the degradation of protein substrates. They can be classified as either ubiquitin-dependent or -independent based on their interactions with the ubiquitin proteasome system (UPS). These amino acid sequences are often found in exposed regions of proteins serving as either a tethering point for an interaction with an E3 ligase or initiating signaling for the direct degradation of the protein. Recent advancements in the protein degradation field have shown the therapeutic potential of both classes of degrons through leveraging their degradative effects to engage specific protein targets. This review explores what targeted protein degradation applications degrons can be used in and how they have inspired new degrader technology to target a wide variety of protein substrates.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
- Department of Chemistry, University of California Irvine California 92617 USA
| |
Collapse
|
8
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
9
|
Scott DC, Chittori S, Purser N, King MT, Maiwald SA, Churion K, Nourse A, Lee C, Paulo JA, Miller DJ, Elledge SJ, Harper JW, Kleiger G, Schulman BA. Structural basis for C-degron selectivity across KLHDCX family E3 ubiquitin ligases. Nat Commun 2024; 15:9899. [PMID: 39548056 PMCID: PMC11568203 DOI: 10.1038/s41467-024-54126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Specificity of the ubiquitin-proteasome system depends on E3 ligase-substrate interactions. Many such pairings depend on E3 ligases binding to peptide-like sequences - termed N- or C-degrons - at the termini of substrates. However, our knowledge of structural features distinguishing closely related C-degron substrate-E3 pairings is limited. Here, by systematically comparing ubiquitylation activities towards a suite of common model substrates, and defining interactions by biochemistry, crystallography, and cryo-EM, we reveal principles of C-degron recognition across the KLHDCX family of Cullin-RING ligases (CRLs). First, a motif common across these E3 ligases anchors a substrate's C-terminus. However, distinct locations of this C-terminus anchor motif in different blades of the KLHDC2, KLHDC3, and KLHDC10 β-propellers establishes distinct relative positioning and molecular environments for substrate C-termini. Second, our structural data show KLHDC3 has a pre-formed pocket establishing preference for an Arg or Gln preceding a C-terminal Gly, whereas conformational malleability contributes to KLHDC10's recognition of varying features adjacent to substrate C-termini. Finally, additional non-consensus interactions, mediated by C-degron binding grooves and/or by distal propeller surfaces and substrate globular domains, can substantially impact substrate binding and ubiquitylatability. Overall, the data reveal combinatorial mechanisms determining specificity and plasticity of substrate recognition by KLDCX-family C-degron E3 ligases.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar Chittori
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel A Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kelly Churion
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chan Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
10
|
Sreepangi S, Baha H, Opoku LA, Jones NX, Konadu M, Alem F, Barrera MD, Narayanan A. Host-Driven Ubiquitination Events in Vector-Transmitted RNA Virus Infections as Options for Broad-Spectrum Therapeutic Intervention Strategies. Viruses 2024; 16:1727. [PMID: 39599842 PMCID: PMC11599102 DOI: 10.3390/v16111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Many vector-borne viruses are re-emerging as public health threats, yet our understanding of the virus-host interactions critical for productive infection remains limited. The ubiquitination of proteins, including host- and pathogen-derived proteins is a highly prominent and consistent post-translational modification that regulates protein function through signaling and degradation. Viral proteins are documented to hijack the host ubiquitination machinery to modulate multiple host processes including antiviral defense mechanisms. The engagement of the host ubiquitination machinery in the post-translational modification of viral proteins to support aspects of the viral life cycle including assembly and egress is also well documented. Exploring the role ubiquitination plays in the life cycle of vector-transmitted viral pathogens will increase the knowledge base pertinent to the impact of host-enabled ubiquitination of viral and host proteins and the consequences on viral pathogenesis. In this review, we explore E3 ligase-regulated ubiquitination pathways functioning as proviral and viral restriction factors in the context of acutely infectious, vector-transmitted viral pathogens and the potential for therapeutically targeting them for countermeasures development.
Collapse
Affiliation(s)
- Sanskruthi Sreepangi
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Lorreta Aboagyewa Opoku
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Naomi X. Jones
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Maame Konadu
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Michael D. Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
11
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
12
|
Zheng M, Lin S, Chen K, Hu R, Wang L, Zhao Z, Xu H. MetaDegron: multimodal feature-integrated protein language model for predicting E3 ligase targeted degrons. Brief Bioinform 2024; 25:bbae519. [PMID: 39431517 PMCID: PMC11491831 DOI: 10.1093/bib/bbae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor.com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate the mechanisms of regulation of protein homeostasis, cancer research, and drug development.
Collapse
Affiliation(s)
- Mengqiu Zheng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shaofeng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou 350004, China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou 350004, China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Ruifeng Hu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Liming Wang
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, United States
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| |
Collapse
|
13
|
Shimshon A, Dahan K, Israel-Gueta M, Olmayev-Yaakobov D, Timms RT, Bekturova A, Makaros Y, Elledge SJ, Koren I. Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability. J Cell Biol 2024; 223:e202311035. [PMID: 38874443 PMCID: PMC11178506 DOI: 10.1083/jcb.202311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
N-degrons are short sequences located at protein N-terminus that mediate the interaction of E3 ligases (E3s) with substrates to promote their proteolysis. It is well established that N-degrons can be exposed following protease cleavage to allow recognition by E3s. However, our knowledge regarding how proteases and E3s cooperate in protein quality control mechanisms remains minimal. Using a systematic approach to monitor the protein stability of an N-terminome library, we found that proline residue at the third N-terminal position (hereafter "P+3") promotes instability. Genetic perturbations identified the dipeptidyl peptidases DPP8 and DPP9 and the primary E3s of N-degron pathways, UBR proteins, as regulators of P+3 bearing substrate turnover. Interestingly, P+3 UBR substrates are significantly enriched for secretory proteins. We found that secretory proteins relying on a signal peptide (SP) for their targeting contain a "built-in" N-degron within their SP. This degron becomes exposed by DPP8/9 upon translocation failure to the designated compartments, thus enabling clearance of mislocalized proteins by UBRs to maintain proteostasis.
Collapse
Affiliation(s)
- Adi Shimshon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mor Israel-Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Olmayev-Yaakobov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Richard T. Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
14
|
Chen X, Raiff A, Li S, Guo Q, Zhang J, Zhou H, Timms RT, Yao X, Elledge SJ, Koren I, Zhang K, Xu C. Mechanism of Ψ-Pro/C-degron recognition by the CRL2 FEM1B ubiquitin ligase. Nat Commun 2024; 15:3558. [PMID: 38670995 PMCID: PMC11053023 DOI: 10.1038/s41467-024-47890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.
Collapse
Affiliation(s)
- Xinyan Chen
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Qiong Guo
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hualin Zhou
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
15
|
Kuemper S, Cairns AG, Birchall K, Yao Z, Large JM. Targeted protein degradation in CNS disorders: a promising route to novel therapeutics? Front Mol Neurosci 2024; 17:1370509. [PMID: 38685916 PMCID: PMC11057381 DOI: 10.3389/fnmol.2024.1370509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Targeted protein degradation (TPD) is a rapidly expanding field, with various PROTACs (proteolysis-targeting chimeras) in clinical trials and molecular glues such as immunomodulatory imide drugs (IMiDs) already well established in the treatment of certain blood cancers. Many current approaches are focused on oncology targets, leaving numerous potential applications underexplored. Targeting proteins for degradation offers a novel therapeutic route for targets whose inhibition remains challenging, such as protein aggregates in neurodegenerative diseases. This mini review focuses on the prospect of utilizing TPD for neurodegenerative disease targets, particularly PROTAC and molecular glue formats and opportunities for novel CNS E3 ligases. Some key challenges of utilizing such modalities including molecular design of degrader molecules, drug delivery and blood brain barrier penetrance will be discussed.
Collapse
Affiliation(s)
- Sandra Kuemper
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Andrew G. Cairns
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | | | | | | |
Collapse
|
16
|
Liu Y, Liang J, Zhu R, Yang Y, Wang Y, Wei W, Li H, Chen L. Application of PROTACs in Target Identification and Target Validation. ACTA MATERIA MEDICA 2024; 3:72-87. [PMID: 39373008 PMCID: PMC11452161 DOI: 10.15212/amm-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PROTAC, as a novel therapeutic drug model, has received widespread attention from the academic and pharmaceutical industries. At the same time, PROTAC technology has led many researchers to focus on developing chemical biology tool properties due to its unique operating mechanism and protein dynamic regulatory properties. In recent years, the rapid development of PROTAC technology has gradually made it an essential tool for target identification and target validation. To further promote the application of PROTAC tools in drug discovery and basic medical sciences research, this review distinguished between target identification and target validation concepts. It summarized the research progress of PROTAC technology in these aspects.
Collapse
Affiliation(s)
- Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yali Wang
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
17
|
Das A, Cheng H, Wang Y, Kinch LN, Liang G, Hong S, Hobbs HH, Cohen JC. The ubiquitin E3 ligase BFAR promotes degradation of PNPLA3. Proc Natl Acad Sci U S A 2024; 121:e2312291121. [PMID: 38294943 PMCID: PMC10861911 DOI: 10.1073/pnas.2312291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.
Collapse
Affiliation(s)
- Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Haili Cheng
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Helen H. Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jonathan C. Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
18
|
Kumar M, Michael S, Alvarado-Valverde J, Zeke A, Lazar T, Glavina J, Nagy-Kanta E, Donagh J, Kalman Z, Pascarelli S, Palopoli N, Dobson L, Suarez C, Van Roey K, Krystkowiak I, Griffin J, Nagpal A, Bhardwaj R, Diella F, Mészáros B, Dean K, Davey N, Pancsa R, Chemes L, Gibson T. ELM-the Eukaryotic Linear Motif resource-2024 update. Nucleic Acids Res 2024; 52:D442-D455. [PMID: 37962385 PMCID: PMC10767929 DOI: 10.1093/nar/gkad1058] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - András Zeke
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Eszter Nagy-Kanta
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Juan Mac Donagh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - Zsofia E Kalman
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Stefano Pascarelli
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - László Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Kim Van Roey
- Health Services Research, Sciensano, Brussels, Belgium
| | - Izabella Krystkowiak
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Juan Esteban Griffin
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Buenos Aires, Argentina
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Rajesh Bhardwaj
- Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Bálint Mészáros
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kellie Dean
- School of Biochemistry and Cell Biology, 3.91 Western Gateway Building, University College Cork, Cork, Ireland
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1650, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|