1
|
Wu T, Chen X, Fei Y, Huang G, Deng Y, Wang Y, Yang A, Chen Z, Lemcoff NG, Feng X, Bai Y. Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis. Nat Chem Biol 2025; 21:779-789. [PMID: 39779903 DOI: 10.1038/s41589-024-01819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein. The approach allows for high ArM loading and stabilization by localizing the ArMs within the phase-separated regions. Consequently, the performance of ArM-based whole-cell catalysts is improved, with a demonstrated turnover per cell of up to 7.1 × 109 for the olefin metathesis reaction. Furthermore, we apply this to an engineered E. coli system in live mice, where host bacterial cells confine the metal catalytic species, and in a mouse colorectal cancer model, where ArM-containing whole-cell catalysts mediate concurrent reactions to activate prodrugs.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xianhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yating Fei
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Guopu Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yingjiao Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - N Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
2
|
André AAM, Rehnberg N, Garg A, Kjærgaard M. Toward Design Principles for Biomolecular Condensates for Metabolic Pathways. Adv Biol (Weinh) 2025:e2400672. [PMID: 40195042 DOI: 10.1002/adbi.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Indexed: 04/09/2025]
Abstract
Biology uses membrane-less organelles or biomolecular condensates as dynamic reaction compartments that can form or dissolve to regulate biochemical pathways. This has led to a flurry of research aiming to design new synthetic organelles that function as reaction crucibles for enzymes and biomolecular cascades in biotechnology. The mechanisms by which a condensate can enhance multistep biochemical processes including mass action, tuning the chemical environment, scaffolding and metabolic channelling is reviewed. These mechanisms are not inherently beneficial for the rate of enzymatic processes but can also inhibit a reaction. Similarly, some aspects of condensates are likely intrinsically inhibitory including retardation of diffusion, where the net effect of a condensate will be a trade-off between inhibitory and stimulatory effects. It is discussed which generalizable conclusions can be drawn so far and how close it is to design principles for condensates for enzyme cascades in microbial cell factories including which reactions are likely to be enhanced by condensates and which type of condensate will be suited for which reaction.
Collapse
Affiliation(s)
- Alain A M André
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Nikita Rehnberg
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Denmark
| |
Collapse
|
3
|
Wang D, Zhou L, Zhang X, Zhou Z, Huang Z, Gao N. Supramolecular Switching of Liquid-Liquid Phase Separation for Orchestrating Enzyme Kinetics. Angew Chem Int Ed Engl 2025; 64:e202422601. [PMID: 39833115 DOI: 10.1002/anie.202422601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Dynamic liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and associated assembly and disassembly of biomolecular condensates play crucial roles in cellular organization and metabolic networks. These processes are often regulated by supramolecular interactions. However, the complex and disordered structures of IDPs, coupled with their rapid conformational fluctuations, pose significant challenges for reconstructing supramolecularly-regulated dynamic LLPS systems and quantitatively illustrating variations in molecular interactions. Inspired by the structural feature of IDPs that facilitates LLPS, we designed a simplified phase-separating molecule, Nap-o-Nap, consisting of two naphthalene moieties linked by an ethylene glycol derivative. This compound exhibits LLPS under physiological conditions, forming coacervate microdroplets that undergo multiple cycles of disassembly and reassembly upon stoichiometric addition of Cucurbit[7]uril and Adamantane, respectively, based upon competitive host-guest interactions. Importantly, such reversible control offers a unique route to quantify entropically dominant nature (ΔS=14.0 cal ⋅ mol-1 ⋅ K-1) within the LLPS process, in which the binding affinity of host-guest interactions (ΔG=-14.9 kcal ⋅ mol-1) surpass that of the LLPS of Nap-o-Nap (ΔG=-2.1 kcal ⋅ mol-1), enabling the supramolecular regulation process. The supramolecularly switched LLPS, along with selective client recruitment and exclusion by resultant coacervates, provides a promising platform for either boosting or retarding enzymatic reactions, thereby orchestrating biological enzyme kinetics.
Collapse
Affiliation(s)
- Deyi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Lingying Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xiaokun Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zixiang Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zehuan Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ning Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
4
|
Snoj J, Zhou W, Ljubetič A, Jerala R. Advances in designed bionanomolecular assemblies for biotechnological and biomedical applications. Curr Opin Biotechnol 2025; 92:103256. [PMID: 39827499 DOI: 10.1016/j.copbio.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in protein engineering have revolutionized the design of bionanomolecular assemblies for functional therapeutic and biotechnological applications. This review highlights the progress in creating complex protein architectures, encompassing both finite and extended assemblies. AI tools, including AlphaFold, RFDiffusion, and ProteinMPNN, have significantly enhanced the scalability and success of de novo designs. Finite assemblies, like nanocages and coiled-coil-based structures, enable precise molecular encapsulation or functional protein domain presentation. Extended assemblies, including filaments and 2D/3D lattices, offer unparalleled structural versatility for applications such as vaccine development, responsive biomaterials, and engineered cellular scaffolds. The convergence of artificial intelligence-driven design and experimental validation promises strong acceleration of the development of tailored protein assemblies, offering new opportunities in synthetic biology, materials science, biotechnology, and biomedicine.
Collapse
Affiliation(s)
- Jaka Snoj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Nie J, Zhang X, Hu Z, Wang W, Schroer MA, Ren J, Svergun D, Chen A, Yang P, Zeng AP. A globular protein exhibits rare phase behavior and forms chemically regulated orthogonal condensates in cells. Nat Commun 2025; 16:2449. [PMID: 40069234 PMCID: PMC11897184 DOI: 10.1038/s41467-025-57886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
Proteins with chemically regulatable phase separation are of great interest in the fields of biomolecular condensates and synthetic biology. Intrinsically disordered proteins (IDPs) are the dominating building blocks of biomolecular condensates which often lack orthogonality and small-molecule regulation desired to create synthetic biomolecular condensates or membraneless organelles (MLOs). Here, we discover a well-folded globular protein, lipoate-protein ligase A (LplA) from E. coli involved in lipoylation of enzymes essential for one-carbon and energy metabolisms, that exhibits structural homomeric oligomerization and a rare LCST-type reversible phase separation in vitro. In both E. coli and human U2OS cells, LplA can form orthogonal condensates, which can be specifically dissolved by its natural substrate, the small molecule lipoic acid and its analogue lipoamide. The study of LplA phase behavior and its regulatability expands our understanding and toolkit of small-molecule regulatable protein phase behavior with impacts on biomedicine and synthetic biology.
Collapse
Affiliation(s)
- Jinglei Nie
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xinyi Zhang
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Zhijuan Hu
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Low-Carbon Synthetic Biology, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology (NPPT), University of Duisburg-Essen, Duisburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Hamburg, Germany
- BIOSAXS GmbH, Hamburg, Germany
| | - Anyang Chen
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
| | - Peiguo Yang
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - An-Ping Zeng
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Intelligent Low-Carbon Synthetic Biology, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Jin K, Yu W, Liu Y, Li J, Du G, Chen J, Liu L, Lv X. Light-induced programmable solid-liquid phase transition of biomolecular condensates for improved biosynthesis. Trends Biotechnol 2025:S0167-7799(25)00049-6. [PMID: 40082181 DOI: 10.1016/j.tibtech.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Keeping condensates in liquid-like states throughout the biosynthesis process in microbial cell factories remains an ongoing challenge. Here, we present a light-controlled phase regulator, which maintains the liquid-like features of synthetic condensates on demand throughout the biosynthesis process upon light induction, as demonstrated by various live cell-imaging techniques. Specifically, the tobacco etch virus (TEV) protease controlled by light cleaves intrinsically disordered proteins (IDPs) to alter their valency and concentration for controlled phase transition and programmable fluidity of cellular condensates. As a proof of concept, we harness this capability to significantly improve the production of squalene and ursolic acid (UA) in engineered Saccharomyces cerevisiae. Our work provides a powerful approach to program the solid-liquid phase transition of biomolecular condensates for improved biosynthesis.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Yu W, Jin K, Xu X, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives. Biotechnol Adv 2025; 79:108497. [PMID: 39645209 DOI: 10.1016/j.biotechadv.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Hess N, Joseph JA. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function. Trends Biochem Sci 2025; 50:206-223. [PMID: 39827079 DOI: 10.1016/j.tibs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates are membraneless organelles that concentrate proteins and nucleic acids. One of the primary components of condensates is multidomain proteins, whose domains can be broadly classified as structured and disordered. While structured protein domains are ubiquitous within biomolecular condensates, the physical ramifications of their unique properties have been relatively underexplored. Therefore, this review synthesizes current literature pertaining to structured protein domains within the context of condensates. We examine how the propensity of structured domains for high interaction specificity and low conformational heterogeneity contributes to the formation, material properties, and functions of biomolecular condensates. Finally, we propose unanswered questions on the behavior of structured protein domains within condensates, the answers of which will contribute to a more complete understanding of condensate biophysics.
Collapse
Affiliation(s)
- Nathaniel Hess
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Li Z, Tan W, Zhao GP, Zeng X, Zhao W. Recent advances in the synthesis and application of biomolecular condensates. J Biol Chem 2025; 301:108188. [PMID: 39814227 PMCID: PMC11847540 DOI: 10.1016/j.jbc.2025.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Biomolecular condensates (BMCs) represent a group of organized and programmed systems that participate in gene transcription, chromosome organization, cell division, tumorigenesis, and aging. However, the understanding of BMCs in terms of internal organizations and external regulations remains at an early stage. Recently, novel approaches such as synthetic biology have been used for de novo synthesis of BMCs. These synthesized BMCs (SBMCs) driven by phase separation adeptly resemble the self-assembly and dynamics of natural BMCs, offering vast potentials in basic and applied research. This review introduces recent progresses in phase separation-induced SBMCs, attempting to elaborate on the intrinsic principles and regulatory methodologies used to construct SBMCs. Furthermore, the scientific applications of SBMCs are illustrated, as indicated by the studies of chromosome structure, pathogenesis, biomanufacturing, artificial cell design, and drug delivery. The controllable SBMCs offer a powerful tool for understanding metabolic regulations, cellular organizations, and disease-associated protein aggregations, raising both opportunities and challenges in the future of biomaterial, biotechnology, and biomedicine.
Collapse
Affiliation(s)
- Zhongyue Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Wang S, Sigl J, Allmendinger L, Maurizot V, Huc I. Design of an abiotic unimolecular three-helix bundle. Chem Sci 2025; 16:1136-1146. [PMID: 39640026 PMCID: PMC11615733 DOI: 10.1039/d4sc07336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Starting from the solid state structure of C 3-symmetrical homochiral parallel trimolecular bundle of three aromatic helices held together by intermolecular hydrogen bonds, we have used simple rational principles and molecular modelling to design a similar heterochiral structure where one helix had an opposite orientation and handedness. A rigid and a flexible linker to connect these helices and transform the bundle into a unimolecular object were designed and synthesized. Model sequences with two helices and one linker were then prepared. Their conformations were investigated in solution by nuclear magnetic resonance and circular dichroism, in the solid state by X-ray crystallography, and by molecular dynamics simulations, overall supporting the initial design. A final 6.9 kDa unimolecular three-helix bundle was then prepared using a fragment condensation approach. Solution studies support the formation of the targetted tertiary fold in the case of the rigid linker, thereby validating the overall approach.
Collapse
Affiliation(s)
- Shuhe Wang
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| | - Johannes Sigl
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| | - Lars Allmendinger
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| | - Victor Maurizot
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie Biologie 2 Rue Escarpit Pessac 33600 France
| | - Ivan Huc
- Department Pharmazie, Ludwig-Maximilians-Universität München Butenandtstraße 5-13 Munich D-81377 Germany
| |
Collapse
|
11
|
Li W, Shao Y, Xu Z, Ge Y, Wang Z, Jiang H, Dong Z. Heterochiral π-Stacking Dimerization of Helical Secondary Structures with Emerging Supramolecular Chirality. Angew Chem Int Ed Engl 2025; 64:e202414317. [PMID: 39171890 DOI: 10.1002/anie.202414317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
A specific interface mode type was observed between helical secondary structures, in which a left-handed (M) helix binds specifically to a right-handed (P) helix along the helical axis, leading to the formation of discrete heterochiral helical dimers. Moreover, a concealed supramolecular chirality within the meso-supramolecular dimers was unexpectedly discovered by chiral induction, and was further underpinned by covalent meso-helix structures.
Collapse
Affiliation(s)
- Wencan Li
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yiqi Shao
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhaocheng Xu
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yunpeng Ge
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhenzhu Wang
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
12
|
Wan L, Ke J, Zhu Y, Zhang W, Mu W. Recent advances in engineering synthetic biomolecular condensates. Biotechnol Adv 2024; 77:108452. [PMID: 39271032 DOI: 10.1016/j.biotechadv.2024.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates are intriguing entities found within living cells. These structures possess the ability to selectively concentrate specific components through phase separation, thereby playing a crucial role in the spatiotemporal regulation of a wide range of cellular processes and metabolic activities. To date, extensive studies have been dedicated to unraveling the intricate connections between molecular features, physical properties, and cellular functions of condensates. This collective effort has paved the way for deliberate engineering of tailor-made condensates with specific applications. In this review, we comprehensively examine the underpinnings governing condensate formation. Next, we summarize the material states of condensates and delve into the design of synthetic intrinsically disordered proteins with tunable phase behaviors and physical properties. Subsequently, we review the diverse biological functions demonstrated by synthetic biomolecular condensates, encompassing gene regulation, cellular behaviors, modulation of biochemical reactions, and manipulation of endogenous protein activities. Lastly, we discuss future challenges and opportunities in constructing synthetic condensates with tunable physical properties and customized cellular functions, which may shed light on the development of new types of sophisticated condensate systems with distinct functions applicable to various scenarios.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Wang S, Allmendinger L, Huc I. Abiotic Foldamer Quaternary Structures. Angew Chem Int Ed Engl 2024; 63:e202413252. [PMID: 39230977 DOI: 10.1002/anie.202413252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Abiotic aromatic foldamer sequences have been previously shown to fold in helix-turn-helix motifs in organic solvents. Using simple computational tools, a new helix-turn-helix motif was designed that bears additional hydrogen bond donor OH groups to promote its aggregation into a genuine, trimeric, abiotic quaternary structure. This sequence was synthesized and its self-assembly in solution was investigated by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Molecular Dynamics (MD) simulations. The existence of two stable discrete aggregates was evidenced, one assigned to the initially designed trimer, the other to a dimer including multiple water molecules. The two species may be quantitatively interconverted upon changing the water content of the solution or the temperature. These results represent important steps in the design of protein-like abiotic architectures.
Collapse
Affiliation(s)
- Shuhe Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
14
|
Bucci J, Malouf L, Tanase DA, Farag N, Lamb JR, Rubio-Sánchez R, Gentile S, Del Grosso E, Kaminski CF, Di Michele L, Ricci F. Enzyme-Responsive DNA Condensates. J Am Chem Soc 2024; 146:31529-31537. [PMID: 39503320 PMCID: PMC11583213 DOI: 10.1021/jacs.4c08919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Membrane-less compartments and organelles are widely acknowledged for their role in regulating cellular processes, and there is an urgent need to harness their full potential as both structural and functional elements of synthetic cells. Despite rapid progress, synthetically recapitulating the nonequilibrium, spatially distributed responses of natural membrane-less organelles remains elusive. Here, we demonstrate that the activity of nucleic-acid cleaving enzymes can be localized within DNA-based membrane-less compartments by sequestering the respective DNA or RNA substrates. Reaction-diffusion processes lead to complex nonequilibrium patterns, dependent on enzyme concentration. By arresting similar dynamic patterns, we spatially organize different substrates in concentric subcompartments, which can be then selectively addressed by different enzymes, demonstrating spatial distribution of enzymatic activity. Besides expanding our ability to engineer advanced biomimetic functions in synthetic membrane-less organelles, our results may facilitate the deployment of DNA-based condensates as microbioreactors or platforms for the detection and quantitation of enzymes and nucleic acids.
Collapse
Affiliation(s)
- Juliette Bucci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Layla Malouf
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Diana A Tanase
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nada Farag
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Jacob R Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Roger Rubio-Sánchez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
15
|
Zhang R, Kang SY, Gaascht F, Peña EL, Schmidt-Dannert C. Design of a Genetically Programmable and Customizable Protein Scaffolding System for the Hierarchical Assembly of Robust, Functional Macroscale Materials. ACS Synth Biol 2024; 13:3724-3745. [PMID: 39480180 DOI: 10.1021/acssynbio.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications. By controlling the coexpression in Escherichia coli of self-assembling scaffold building blocks with and without modifications for covalent attachment of cross-linking cargo proteins, hybrid scaffolds with spatially organized conjugation sites are overproduced that can be readily isolated. Cargo proteins, including enzymes, are rapidly cross-linked onto scaffolds for the formation of functional materials. We show that these materials can be used for the in vitro operation of a coimmobilized two-enzyme reaction and that the protein material can be recovered and reused. We believe that this work will provide a versatile platform for the design and scalable production of functional materials with customizable properties and the robustness required for biotechnological applications.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Sun-Young Kang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - François Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Eliana L Peña
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
16
|
Hua Y, Zhang J, Yang MY, Ren JY, Suo F, Liang L, Dong MQ, Ye K, Du LL. Structural duality enables a single protein to act as a toxin-antidote pair for meiotic drive. Proc Natl Acad Sci U S A 2024; 121:e2408618121. [PMID: 39485800 PMCID: PMC11551426 DOI: 10.1073/pnas.2408618121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
In sexual reproduction, selfish genetic elements known as killer meiotic drivers (KMDs) bias inheritance by eliminating gametes that do not carry them. The selective killing behavior of most KMDs can be explained by a toxin-antidote model, where a toxin harms all gametes while an antidote provides resistance to the toxin in carriers. This study investigates whether and how the KMD element tdk1 in the fission yeast Schizosaccharomyces pombe deploys this strategy. Intriguingly, tdk1 relies on a single protein product, Tdk1, for both killing and resistance. We show that Tdk1 exists in a nontoxic tetrameric form during vegetative growth and meiosis but transforms into a distinct toxic form in spores. This toxic form acquires the ability to interact with the histone reader Bdf1 and assembles into supramolecular foci that disrupt mitosis in noncarriers after spore germination. In contrast, Tdk1 synthesized during germination of carrier spores is nontoxic and acts as an antidote, dismantling the preformed toxic Tdk1 assemblies. Replacement of the N-terminal region of Tdk1 with a tetramer-forming peptide reveals its dual roles in imposing an autoinhibited tetrameric conformation and facilitating the assembly of supramolecular foci when autoinhibition is released. Moreover, we successfully reconstituted a functional KMD element by combining a construct that exclusively expresses Tdk1 during meiosis ("toxin-only") with another construct that expresses Tdk1 specifically during germination ("antidote-only"). This work uncovers a remarkable example of a single protein employing structural duality to form a toxin-antidote pair, expanding our understanding of the mechanisms underlying toxin-antidote systems.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing102206, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing102206, China
| | - Lingfei Liang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
17
|
Miki T, Hashimoto M, Takahashi H, Shimizu M, Nakayama S, Furuta T, Mihara H. De novo designed YK peptides forming reversible amyloid for synthetic protein condensates in mammalian cells. Nat Commun 2024; 15:8503. [PMID: 39424799 PMCID: PMC11489810 DOI: 10.1038/s41467-024-52708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
In mammalian cells, protein condensates underlie diverse cell functions. Intensive synthetic biological research has been devoted to fabricating liquid droplets using de novo peptides/proteins designed from scratch in test tubes or bacterial cells. However, the development of de novo sequences for synthetic droplets forming in eukaryotes is challenging. Here, we report YK peptides, comprising 9-15 residues of alternating repeats of tyrosine and lysine, which form reversible amyloid-like fibrils accompanied by binding with poly-anion species such as ATP. By genetically tagging the YK peptide, superfolder GFPs assemble into artificial liquid-like droplets in living cells. Rational design of the YK system allows fine-tuning of the fluidity and construction of multi-component droplets. The YK system not only facilitates intracellular reconstitution of simplified models for natural protein condensates, but it also provides a toolbox for the systematic creation of droplets with different dynamics and composition for in situ evaluation.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hiroki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Masatoshi Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sae Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
18
|
Yu W, Jin K, Wang D, Wang N, Li Y, Liu Y, Li J, Du G, Lv X, Chen J, Ledesma-Amaro R, Liu L. De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis. Nat Commun 2024; 15:7989. [PMID: 39284811 PMCID: PMC11405872 DOI: 10.1038/s41467-024-52411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
There is a growing interest in the creation of engineered condensates formed via liquid-liquid phase separation (LLPS) to exert precise cellular control in prokaryotes. However, de novo design of cellular condensates to control metabolic flux or protein translation remains a challenge. Here, we present a synthetic condensate platform, generated through the incorporation of artificial, disordered proteins to realize specific functions in Bacillus subtilis. To achieve this, the "stacking blocks" strategy is developed to rationally design a series of LLPS-promoting proteins for programming condensates. Through the targeted recruitment of biomolecules, our investigation demonstrates that cellular condensates effectively sequester biosynthetic pathways. We successfully harness this capability to enhance the biosynthesis of 2'-fucosyllactose by 123.3%. Furthermore, we find that condensates can enhance the translation specificity of tailored enzyme fourfold, and can increase N-acetylmannosamine titer by 75.0%. Collectively, these results lay the foundation for the design of engineered condensates endowed with multifunctional capacities.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Dandan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Nankai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
19
|
Wan L, Zhu Y, Ke J, Zhang W, Mu W. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli. Metab Eng 2024; 85:167-179. [PMID: 39163974 DOI: 10.1016/j.ymben.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Advancing the formation of artificial membraneless compartments with organizational complexity and diverse functionality remains a challenge. Typically, synthetic compartments or membraneless organelles are made up of intrinsically disordered proteins featuring low-complexity sequences or polypeptides with repeated distinctive short linear motifs. In order to expand the repertoire of tools available for the formation of synthetic membraneless compartments, here, a range of DIshevelled and aXin (DIX) or DIX-like domains undergoing head-to-tail polymerization were demonstrated to self-assemble into aggregates and generate synthetic compartments within E. coli cells. Then, synthetic complex compartments with diverse intracellular morphologies were generated by coexpressing different DIX domains. Further, we genetically incorporated a pair of interacting motifs, comprising a homo-dimeric domain and its anchoring peptide, into the DIX domain and cargo proteins, respectively, resulting in the alteration of both material properties and client recruitment of synthetic compartments. As a proof-of-concept, several human milk oligosaccharide biosynthesis pathways were chosen as model systems. The findings indicated that the recruitment of pathway sequential enzymes into synthetic compartments formed by DIX-DIX heterotypic interactions or by DIX domains embedded with specific interacting motifs efficiently boosted metabolic pathway flux and improved the production of desired chemicals. We propose that these synthetic compartment systems present a potent and adaptable toolkit for controlling metabolic flux and facilitating cellular engineering.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
20
|
Plaper T, Rihtar E, Železnik Ramuta T, Forstnerič V, Jazbec V, Ivanovski F, Benčina M, Jerala R. The art of designed coiled-coils for the regulation of mammalian cells. Cell Chem Biol 2024; 31:1460-1472. [PMID: 38971158 PMCID: PMC11335187 DOI: 10.1016/j.chembiol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Synthetic biology aims to engineer complex biological systems using modular elements, with coiled-coil (CC) dimer-forming modules are emerging as highly useful building blocks in the regulation of protein assemblies and biological processes. Those small modules facilitate highly specific and orthogonal protein-protein interactions, offering versatility for the regulation of diverse biological functions. Additionally, their design rules enable precise control and tunability over these interactions, which are crucial for specific applications. Recent advancements showcase their potential for use in innovative therapeutic interventions and biomedical applications. In this review, we discuss the potential of CCs, exploring their diverse applications in mammalian cells, such as synthetic biological circuit design, transcriptional and allosteric regulation, cellular assemblies, chimeric antigen receptor (CAR) T cell regulation, and genome editing and their role in advancing the understanding and regulation of cellular processes.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Erik Rihtar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
21
|
Nestl BM, Nebel BA, Resch V, Schürmann M, Tischler D. The Development and Opportunities of Predictive Biotechnology. Chembiochem 2024; 25:e202300863. [PMID: 38713151 DOI: 10.1002/cbic.202300863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Indexed: 05/08/2024]
Abstract
Recent advances in bioeconomy allow a holistic view of existing and new process chains and enable novel production routines continuously advanced by academia and industry. All this progress benefits from a growing number of prediction tools that have found their way into the field. For example, automated genome annotations, tools for building model structures of proteins, and structural protein prediction methods such as AlphaFold2TM or RoseTTAFold have gained popularity in recent years. Recently, it has become apparent that more and more AI-based tools are being developed and used for biocatalysis and biotechnology. This is an excellent opportunity for academia and industry to accelerate advancements in the field further. Biotechnology, as a rapidly growing interdisciplinary field, stands to benefit greatly from these developments.
Collapse
Affiliation(s)
- Bettina M Nestl
- Joint working group on biotransformations of the Association for General and Applied Microbiology VAAM, the Society for Chemical Engineering, Biotechnology DECHEMA, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
- Innophore GmbH, Am Eisernen Tor 3, 8010, Graz, Austria
| | - Bernd A Nebel
- Innophore GmbH, Am Eisernen Tor 3, 8010, Graz, Austria
| | - Verena Resch
- Innophore GmbH, Am Eisernen Tor 3, 8010, Graz, Austria
| | - Martin Schürmann
- Joint working group on biotransformations of the Association for General and Applied Microbiology VAAM, the Society for Chemical Engineering, Biotechnology DECHEMA, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
- InnoSyn B. V., Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
- SynSilico B. V., Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| | - Dirk Tischler
- Joint working group on biotransformations of the Association for General and Applied Microbiology VAAM, the Society for Chemical Engineering, Biotechnology DECHEMA, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
22
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Boyer NP, Sharma R, Wiesner T, Delamare A, Pelletier F, Leterrier C, Roy S. Spectrin condensates provide a nidus for assembling the periodic axonal structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597638. [PMID: 38895400 PMCID: PMC11185721 DOI: 10.1101/2024.06.05.597638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coordinated assembly of individual components into higher-order structures is a defining theme in biology, but underlying principles are not well-understood. In neurons, α/β spectrins, adducin, and actinfilaments assemble into a lattice wrapping underneath the axonal plasma membrane, but mechanistic events leading to this periodic axonal structure (PAS) are unclear. Visualizing PAS components in axons as they develop, we found focal patches in distal axons containing spectrins and adducin (but sparse actin filaments) with biophysical properties reminiscent of biomolecular condensation. Overexpressing spectrin-repeats - constituents of α/β-spectrins - in heterologous cells triggered condensate formation, and preventing association of βII-spectrin with actin-filaments/membranes also facilitated condensation. Finally, overexpressing condensate-triggering spectrin repeats in neurons before PAS establishment disrupted the lattice, presumably by competing with innate assembly, supporting a functional role for biomolecular condensation. We propose a condensation-assembly model where PAS components form focal phase-separated condensates that eventually unfurl into a stable lattice-structure by associating with subplasmalemmal actin. By providing local 'depots' of assembly parts, biomolecular condensation may play a wider role in the construction of intricate cytoskeletal structures.
Collapse
|
24
|
Hilditch AT, Romanyuk A, Hodgson LR, Mantell J, Neal CR, Verkade P, Obexer R, Serpell LC, McManus JJ, Woolfson DN. Maturation and Conformational Switching of a De Novo Designed Phase-Separating Polypeptide. J Am Chem Soc 2024; 146:10240-10245. [PMID: 38578222 PMCID: PMC11027135 DOI: 10.1021/jacs.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Cellular compartments formed by biomolecular condensation are widespread features of cell biology. These organelle-like assemblies compartmentalize macromolecules dynamically within the crowded intracellular environment. However, the intermolecular interactions that produce condensed droplets may also create arrested states and potentially pathological assemblies such as fibers, aggregates, and gels through droplet maturation. Protein liquid-liquid phase separation is a metastable process, so maturation may be an intrinsic property of phase-separating proteins, where nucleation of different phases or states arises in supersaturated condensates. Here, we describe the formation of both phase-separated droplets and proteinaceous fibers driven by a de novo designed polypeptide. We characterize the formation of supramolecular fibers in vitro and in bacterial cells. We show that client proteins can be targeted to the fibers in cells using a droplet-forming construct. Finally, we explore the interplay between phase separation and fiber formation of the de novo polypeptide, showing that the droplets mature with a post-translational switch to largely β conformations, analogous to models of pathological phase separation.
Collapse
Affiliation(s)
- Alexander T. Hilditch
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Andrey Romanyuk
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Lorna R. Hodgson
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
| | - Judith Mantell
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
| | - Christopher R. Neal
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
| | - Paul Verkade
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
- Bristol
BioDesign Institute, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Richard Obexer
- Department
of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K.
| | - Louise C. Serpell
- School
of Life Sciences, University of Sussex, Falmer, Brighton, JMS 3B17, U.K.
| | - Jennifer J. McManus
- Bristol
BioDesign Institute, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- HH Wills
Physics Laboratory, School of Physics, University
of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
- Bristol
BioDesign Institute, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
25
|
Cao N, Guo R, Song P, Wang S, Liu G, Shi J, Wang L, Li M, Zuo X, Yang X, Fan C, Li M, Zhang Y. DNA Framework-Programmed Nanoscale Enzyme Assemblies. NANO LETTERS 2024; 24:4682-4690. [PMID: 38563501 DOI: 10.1021/acs.nanolett.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.
Collapse
Affiliation(s)
- Nan Cao
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiyan Guo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Ping Song
- State Key Laboratory of Oncogenes and Related Genes School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Min Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiurong Yang
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyue Zhang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
26
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models. Biophys J 2024; 123:703-717. [PMID: 38356260 PMCID: PMC10995412 DOI: 10.1016/j.bpj.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions that support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as the multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and have implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
- Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
27
|
Dolgin E. Fresh tools for watching the 'lava lamps' of living cells. Nature 2024; 626:1152-1154. [PMID: 38413751 DOI: 10.1038/d41586-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
|
28
|
Ramšak M, Ramirez DA, Hough LE, Shirts MR, Vidmar S, Eleršič Filipič K, Anderluh G, Jerala R. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells. Nat Commun 2023; 14:7973. [PMID: 38042897 PMCID: PMC10693550 DOI: 10.1038/s41467-023-43742-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes.
Collapse
Affiliation(s)
- Maruša Ramšak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Eleršič Filipič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|