1
|
Cecchetto M, Dettai A, Gallut C, Obst M, Kuklinski P, Balazy P, Chelchowski M, Małachowicz M, Poćwierz-Kotus A, Zbawicka M, Reiss H, Eléaume MP, Ficetola GF, Pavloudi C, Exter K, Fontaneto D, Schiaparelli S. Seasonality of primary production explains the richness of pioneering benthic communities. Nat Commun 2024; 15:8340. [PMID: 39333524 PMCID: PMC11436788 DOI: 10.1038/s41467-024-52673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality.
Collapse
Affiliation(s)
- Matteo Cecchetto
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy.
| | - Agnès Dettai
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA Station Marine de Concarneau, Concarneau, France
| | - Matthias Obst
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Piotr Kuklinski
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Maciej Chelchowski
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Magdalena Małachowicz
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Anita Poćwierz-Kotus
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Henning Reiss
- Nord University, Faculty of Biosciences and Aquaculture, 8049, Bodø, Norway
| | - Marc P Eléaume
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA Station Marine de Concarneau, Concarneau, France
| | | | | | - Katrina Exter
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium
| | - Diego Fontaneto
- National Research Council of Italy-Water Research Institute (CNR-IRSA), I-28922, Verbania, Italy
- National Biodiversity Future Center (NBFC), I-90133, Palermo, Italy
| | - Stefano Schiaparelli
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Schmidt LA, Brix S, Rossel S, Forster S, Eichsteller A. Unveiling ophiuroid biodiversity across North Atlantic habitats via an integrative perspective. Sci Rep 2024; 14:20405. [PMID: 39223179 PMCID: PMC11369278 DOI: 10.1038/s41598-024-71178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The depths of the North Atlantic Ocean host a species-rich fauna providing heterogeneous habitats from thermal vent fields to cold-water coral reefs. With the increasing threat of destruction of deep-sea habitats due to human impacts, such as demersal fishing and the beginning of deep-sea mining, an analysis of the diversity and distribution of species is crucial for conservation efforts. Brittle stars occur in high biomasses, contributing to the biodiversity of the seafloor. Specimens were collected during several scientific expeditions to gain a more detailed insight into the brittle star diversity in the North Atlantic Ocean. An integrative approach to identify the species with DNA barcoding (mtCOI) in combination with morphological studies revealed 24 species. Most species have been previously identified in the North Atlantic, but sequences for 13 species are newly added to public repositories. Additionally, the MALDI-TOF-MS proteomic analysis was successfully applied for 197 specimens with known COI barcodes. Results are congruent with other molecular species delimitations demonstrating the functionality of proteomics for the identification of brittle stars. This dataset significantly expands our understanding of the taxonomic and genetic diversity of brittle stars and contributes to publicly available data. It emphasizes the importance of considering habitat heterogeneity for large scale patterns of biodiversity.
Collapse
Affiliation(s)
- Lydia Anastasia Schmidt
- Institute of Biological Science, University of Rostock, Albert-Einsteinstraße 3, 18059, Rostock, Germany.
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Saskia Brix
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany
| | - Stefan Forster
- Institute of Biological Science, University of Rostock, Albert-Einsteinstraße 3, 18059, Rostock, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany
| |
Collapse
|
3
|
Mohd Nasir N, Barnes DKA, Wan Hussin WMR. Benthic functionality under climate-induced environment changes offshore on the Antarctic Peninsula continental shelf. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106341. [PMID: 38183736 DOI: 10.1016/j.marenvres.2024.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Marine ecosystems in Antarctica are thought to be highly vulnerable to aspects of dynamic global climate change, such as warming. In deep-water ecosystems, there has been little physico-chemical change in seawater there for millions of years. Thus, some benthic organisms are likely to include strong potential indicators of environmental changes and give early warnings of ecosystem vulnerability. In 2017 we sampled deep-water benthic assemblages across a continental shelf trough in outer Marguerite Bay, West Antarctic Peninsula (WAP). This region is one of the hotspots of climate-related physical change on Earth in terms of seasonal sea ice loss. Video and images of the seabed were captured at 5 stations, each with 20 replicates. From these, we identified substratum types and biota to functional groups to assess variability in benthic composition and diversity. We also collected coincident environmental information on depth, temperature, salinity, oxygen and chlorophyll-a (using a CTD). Climax sessile suspension feeders were the most spatially dominant group, comprising 539 individuals (39% of total abundance) that included Porifera, Brachiopoda and erect Bryozoa. ST5, the shallowest station was functionally contrasting with other stations. This functional difference was also influenced by hard substrata of ST5, which is typically preferred by climax sessile suspension feeders. Depth (or an associated driver) and hard substrates were the most apparent key factor which functionally characterised the communities, shown by the abundance of climax sessile suspension feeders. Our study showed that non-invasive, low taxonomic skill requirement, functional group approach is not only valuable in providing functional perspective on environment status, but such groupings also proved to be sensitive to environmental variability.
Collapse
Affiliation(s)
- Najib Mohd Nasir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - David K A Barnes
- British Antarctic Survey, Natural Environment Research Council, UKRI, High Cross, Cambridge, United Kingdom
| | - Wan Mohd Rauhan Wan Hussin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; National Antarctic Research Centre (NARC) - UMT, ICAMB Building, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
4
|
Antarctic Seabed Assemblages in an Ice-Shelf-Adjacent Polynya, Western Weddell Sea. BIOLOGY 2022; 11:biology11121705. [PMID: 36552215 PMCID: PMC9774262 DOI: 10.3390/biology11121705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.
Collapse
|
5
|
Guillaumot C, Belmaker J, Buba Y, Fourcy D, Dubois P, Danis B, Le Moan E, Saucède T. Classic or hybrid? The performance of next generation ecological models to study the response of Southern Ocean species to changing environmental conditions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Charlène Guillaumot
- Marine Biology Lab Université Libre de Bruxelles Bruxelles Belgium
- Biogéosciences, UMR 6282 CNRS Université Bourgogne Franche‐Comté Dijon France
| | - Jonathan Belmaker
- School of Zoology, George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Yehezkel Buba
- School of Zoology, George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Damien Fourcy
- ESE, Ecology and Ecosystem Health, INRAE Rennes France
| | - Philippe Dubois
- Marine Biology Lab Université Libre de Bruxelles Bruxelles Belgium
| | - Bruno Danis
- Marine Biology Lab Université Libre de Bruxelles Bruxelles Belgium
| | - Eline Le Moan
- Biogéosciences, UMR 6282 CNRS Université Bourgogne Franche‐Comté Dijon France
| | - Thomas Saucède
- Biogéosciences, UMR 6282 CNRS Université Bourgogne Franche‐Comté Dijon France
| |
Collapse
|
6
|
Recent Ostracod Fauna of the Western Ross Sea (Antarctica): A Poorly Known Ingredient of Polar Carbonate Factories. MINERALS 2022. [DOI: 10.3390/min12080937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ostracoda are a minor but recurrent component of Southern Ocean marine carbonate factories, and their low-Mg calcitic skeletal mineralogy helps in ensuring a noteworthy post-mortem resilience. Our study, based upon surface sediment occurrences, contributes to the better definition of their distribution vs. potential controlling factors in Antarctic waters. The ostracod fauna from the Western Ross Sea Shelf appears dominated by Australicythere polylyca, Australicythere devexa, Xestoleberis rigusa, Loxoreticulatum fallax, Cativella bensoni, Austrotrachyleberis antarctica and Patagonacythere longiducta, colonizing a variety of shelf environments along a wide bathymetric range. The abundance and richness values correlate well to nutrient distribution and sediment supply, primarily related to the circulation of different oceanographic regimes affecting the floor of the Ross Sea Shelf. Circumpolar Deep Water could represent the main factor controlling the distribution of ostracods. Similar results (high abundance and richness in ostracod values) were also recorded in the Terra Nova Bay and in a nearby area characterized by warm water rich in nutrients and composed of water of circumpolar origin flowing from the open ocean southwards onto the continental shelf. Particulate Fe (pFe), in suspended particulate matter (SPM), and other particulate trace metals in TNB could support the hypothesis that biogenic iron may significantly contribute to the bioavailable iron pool, sustaining both primary production and ostracod fauna richness in this area.
Collapse
|
7
|
Arce F, Hindell MA, McMahon CR, Wotherspoon SJ, Guinet C, Harcourt RG, Bestley S. Elephant seal foraging success is enhanced in Antarctic coastal polynyas. Proc Biol Sci 2022; 289:20212452. [PMID: 35078353 PMCID: PMC8790345 DOI: 10.1098/rspb.2021.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 01/28/2023] Open
Abstract
Antarctic polynyas are persistent open water areas which enable early and large seasonal phytoplankton blooms. This high primary productivity, boosted by iron supply from coastal glaciers, attracts organisms from all trophic levels to form a rich and diverse community. How the ecological benefit of polynya productivity is translated to the highest trophic levels remains poorly resolved. We studied 119 southern elephant seals feeding over the Antarctic shelf and demonstrated that: (i) 96% of seals foraging here used polynyas, with individuals spending on average 62% of their time there; (ii) the seals exhibited more area-restricted search behaviour when in polynyas; and (iii) these seals gained more energy (indicated by increased buoyancy from greater fat stores) when inside polynyas. This higher-quality foraging existed even when ice was not present in the study area, indicating that these are important and predictable foraging grounds year-round. Despite these energetic advantages from using polynyas, not all the seals used them extensively. Factors other than food supply may influence an individual's choice in their use of feeding grounds, such as exposure to predation or the probability of being able to return to distant sub-Antarctic breeding sites.
Collapse
Affiliation(s)
- Fernando Arce
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
| | - Clive R. McMahon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Simon J. Wotherspoon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, Villiers en Bois 79360, France
| | - Robert G. Harcourt
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
| |
Collapse
|
8
|
Zinkann AC, Wooller MJ, O'Brien D, Iken K. Does feeding type matter? Contribution of organic matter sources to benthic invertebrates on the Arctic Chukchi Sea shelf. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Intermediate ice scour disturbance is key to maintaining a peak in biodiversity within the shallows of the Western Antarctic Peninsula. Sci Rep 2021; 11:16712. [PMID: 34408210 PMCID: PMC8373922 DOI: 10.1038/s41598-021-96269-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Climate-related disturbance regimes are changing rapidly with profound consequences for ecosystems. Disturbance is often perceived as detrimental to biodiversity; however, the literature is divided on how they influence each other. Disturbance events in nature are diverse, occurring across numerous interacting trophic levels and multiple spatial and temporal scales, leading to divergence between empirical and theoretical studies. The shallow Antarctic seafloor has one of the largest disturbance gradients on earth, due to iceberg scouring. Scour rates are changing rapidly along the Western Antarctic Peninsula because of climate change and with further changes predicted, the Antarctic benthos will likely undergo dramatic shifts in diversity. We investigated benthic macro and megafaunal richness across 10–100 m depth range, much of which, 40–100 m, has rarely been sampled. Macro and megafauna species richness peaked at 50–60 m depth, a depth dominated by a diverse range of sessile suspension feeders, with an intermediate level of iceberg disturbance. Our results show that a broad range of disturbance values are required to detect the predicted peak in biodiversity that is consistent with the Intermediate Disturbance Hypothesis, suggesting ice scour is key to maintaining high biodiversity in Antarctica’s shallows.
Collapse
|
10
|
Torre L, Alurralde G, Lagger C, Abele D, Schloss IR, Sahade R. Antarctic ascidians under increasing sedimentation: Physiological thresholds and ecosystem hysteresis. MARINE ENVIRONMENTAL RESEARCH 2021; 167:105284. [PMID: 33730611 DOI: 10.1016/j.marenvres.2021.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Glacier melting sediment inputs affect coastal ecosystems on the Antarctic Peninsula. In Potter Cove (South Shetland Islands, Antarctica), the shift from an "ascidian dominated" to a "mixed" assemblage has been linked to sedimentation. However, in recently described newly ice-free areas ascidians became dominant in spite of total suspended particulate matter (TSPM) concentrations, which are the highest measured in Potter Cove. Here, we compared the gut content and energy reserve of three ascidian species at three stations under different TSPM regimes. All analysed species had a higher gut content with lower %OM at these newly areas. A theoretical relationship between the scope for growth for the targeted ascidians and TSPM explained assemblages' recorded change but failed to explain current ascidians distribution. The results may indicate the existence of a TSPM threshold that allows the spatial coexistence of alternative stable states at benthic Potter Cove system.
Collapse
Affiliation(s)
- L Torre
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas), Córdoba, Argentina.
| | - G Alurralde
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas), Córdoba, Argentina
| | - C Lagger
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas), Córdoba, Argentina
| | - D Abele
- Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research. Bremerhaven, Germany
| | - I R Schloss
- Instituto Antártico Argentino, San Martín, Provincia de Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas, CONICET, Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (Consejo Nacional de Investigaciones Científicas y Técnicas), Córdoba, Argentina.
| |
Collapse
|
11
|
Fabri-Ruiz S, Danis B, Navarro N, Koubbi P, Laffont R, Saucède T. Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change. GLOBAL CHANGE BIOLOGY 2020; 26:2161-2180. [PMID: 31919925 DOI: 10.1111/gcb.14988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The Southern Ocean (SO) is among the regions on Earth that are undergoing regionally the fastest environmental changes. The unique ecological features of its marine life make it particularly vulnerable to the multiple effects of climate change. A network of Marine Protected Areas (MPAs) has started to be implemented in the SO to protect marine ecosystems. However, considering future predictions of the Intergovernmental Panel on Climate Change (IPCC), the relevance of current, static, MPAs may be questioned under future scenarios. In this context, the ecoregionalization approach can prove promising in identifying well-delimited regions of common species composition and environmental settings. These so-called ecoregions are expected to show similar biotic responses to environmental changes and can be used to define priority areas for the designation of new MPAs and the update of their current delimitation. In the present work, a benthic ecoregionalization of the entire SO is proposed for the first time based on abiotic environmental parameters and the distribution of echinoid fauna, a diversified and common member of Antarctic benthic ecosystems. A novel two-step approach was developed combining species distribution modeling with Random Forest and Gaussian Mixture modeling from species probabilities to define current ecoregions and predict future ecoregions under IPCC scenarios RCP 4.5 and 8.5. The ecological representativity of current and proposed MPAs of the SO is discussed with regard to the modeled benthic ecoregions. In all, 12 benthic ecoregions were determined under present conditions, they are representative of major biogeographic patterns already described. Our results show that the most dramatic changes can be expected along the Antarctic Peninsula, in East Antarctica and the sub-Antarctic islands under both IPCC scenarios. Our results advocate for a dynamic definition of MPAs, they also argue for improving the representativity of Antarctic ecoregions in proposed MPAs and support current proposals of Conservation of Antarctic Marine Living Resources for the creation of Antarctic MPAs.
Collapse
Affiliation(s)
- Salomé Fabri-Ruiz
- Biogéosciences, UMR CNRS/EPHE 6282, Université Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Danis
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Navarro
- Biogéosciences, UMR CNRS/EPHE 6282, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Paris, France
| | - Philippe Koubbi
- UFR 918 Terre Environnement et Biodiversité, Sorbonne Université, Paris Cedex 05, France
- IFREMER, Centre Manche mer du Nord. Laboratoire Halieutique de Manche-Mer du Nord, Boulogne-sur-Mer, France
| | - Rémi Laffont
- Biogéosciences, UMR CNRS/EPHE 6282, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Saucède
- Biogéosciences, UMR CNRS/EPHE 6282, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
Jansen J, Dunstan PK, Hill NA, Koubbi P, Melbourne-Thomas J, Causse R, Johnson CR. Integrated assessment of the spatial distribution and structural dynamics of deep benthic marine communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02065. [PMID: 31872512 DOI: 10.1002/eap.2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 08/15/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Characterizing the spatial distribution and variation of species communities and validating these characteristics with data from the field are key elements for an ecosystem-based approach to management. However, models of species distributions that yield community structure are usually not linked to models of community dynamics, constraining understanding and management of the ecosystem, particularly in data-poor regions. Here we use a qualitative network model to predict changes in Antarctic benthic community structure between major marine habitats characterized largely by seafloor depth and slope, and use multivariate mixture models of species distributions to validate the community dynamics. We then assess how future increases in primary production associated with anticipated loss of sea-ice may affect the ecosystem. Our study shows how both spatial and structural features of ecosystems in data-poor regions can be analyzed and possible futures assessed, with direct relevance for ecosystem-based management.
Collapse
Affiliation(s)
- Jan Jansen
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania, 7004, Australia
| | | | - Nicole A Hill
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania, 7004, Australia
| | - Philippe Koubbi
- UFR 918 Terre Environnement Biodiversité, Sorbonne Université, Paris, France
- Channel and North Sea Fisheries Research Unit, IFREMER, Boulogne-sur-Mer, France
| | | | - Romain Causse
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Craig R Johnson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania, 7004, Australia
| |
Collapse
|
13
|
Alurralde G, Fuentes VL, Maggioni T, Movilla J, Olariaga A, Orejas C, Schloss IR, Tatián M. Role of suspension feeders in antarctic pelagic-benthic coupling: Trophic ecology and potential carbon sinks under climate change. MARINE ENVIRONMENTAL RESEARCH 2019; 152:104790. [PMID: 31537412 DOI: 10.1016/j.marenvres.2019.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Sea-ice and coastal glacier loss in the Western Antarctic Peninsula open new ice-free areas. They allowing primary production and providing new seabed for colonisation, both acting as a negative feedback of climate change. However, the injection of sediment-laden runoff from the melting of land-terminating glaciers may reduce this feedback. Changes in particulate matter will affect nutrition and excretion (faeces stoichiometry and properties) of suspension feeders, reshaping coastal carbon dynamics and pelagic-benthic coupling. Absorption efficiency and biodeposition of Euphausia superba and Cnemidocarpa verrucosa were quantified for different food treatments and varying sediment concentrations. Both species showed high overall absorption efficiency for free-sediment diets, but were negatively affected by sediment addition. High sediment conditions increased krill biodeposition, while it decreased in ascidians. Energy balance estimation indicated high carbon sink potential in ascidians, but it is modulated by food characteristics and negatively affected by sediment inputs in the water column.
Collapse
Affiliation(s)
- Gastón Alurralde
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Ecología Marina, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Córdoba, Argentina.
| | | | - Tamara Maggioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Ecología Marina, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Córdoba, Argentina
| | - Juancho Movilla
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain; Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume Ferrer, Mahón, Spain
| | | | - Covadonga Orejas
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Mallorca, Spain
| | - Irene R Schloss
- Instituto Antártico Argentino, Ciudad de Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas, CONICET, Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - Marcos Tatián
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Ecología Marina, Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Córdoba, Argentina
| |
Collapse
|
14
|
Michel LN, Danis B, Dubois P, Eleaume M, Fournier J, Gallut C, Jane P, Lepoint G. Increased sea ice cover alters food web structure in East Antarctica. Sci Rep 2019; 9:8062. [PMID: 31147605 PMCID: PMC6542827 DOI: 10.1038/s41598-019-44605-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/21/2019] [Indexed: 11/29/2022] Open
Abstract
In recent years, sea ice cover along coasts of East Antarctica has tended to increase. To understand ecological implications of these environmental changes, we studied benthic food web structure on the coasts of Adélie Land during an event of unusually high sea ice cover (i.e. two successive austral summers without seasonal breakup). We used integrative trophic markers (stable isotope ratios of carbon, nitrogen and sulfur) to build ecological models and explored feeding habits of macroinvertebrates. In total, 28 taxa spanning most present animal groups and functional guilds were investigated. Our results indicate that the absence of seasonal sea ice breakup deeply influenced benthic food webs. Sympagic algae dominated the diet of many key consumers, and the trophic levels of invertebrates were low, suggesting omnivore consumers did not rely much on predation and/or scavenging. Our results provide insights about how Antarctic benthic consumers, which typically live in an extremely stable environment, might adapt their feeding habits in response to sudden changes in environmental conditions and trophic resource availability. They also show that local and/or global trends of sea ice increase in Antarctica have the potential to cause drastic changes in food web structure, and therefore to impact benthic communities.
Collapse
Affiliation(s)
- Loïc N Michel
- Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of reSearch (FOCUS), University of Liège (ULg), Liège, Belgium. .,Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, Plouzané, France.
| | - Bruno Danis
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Dubois
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Eleaume
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Jérôme Fournier
- CNRS, UMR 7208 BOREA, Biological Marine Station, National Museum of Natural History (MNHN), Concarneau, France
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, MNHN, EPHE, Station marine de Concarneau, Concarneau, France
| | | | - Gilles Lepoint
- Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of reSearch (FOCUS), University of Liège (ULg), Liège, Belgium
| |
Collapse
|
15
|
Watson LA, Stark JS, Johnstone GJ, Wapstra E, Miller K. Patterns in the distribution and abundance of sea anemones off Dumont d’Urville Station, Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2332-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Gómez CE, Wickes L, Deegan D, Etnoyer PJ, Cordes EE. Growth and feeding of deep-sea coral Lophelia pertusa from the California margin under simulated ocean acidification conditions. PeerJ 2018; 6:e5671. [PMID: 30280039 PMCID: PMC6164558 DOI: 10.7717/peerj.5671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 01/28/2023] Open
Abstract
The global decrease in seawater pH known as ocean acidification has important ecological consequences and is an imminent threat for numerous marine organisms. Even though the deep sea is generally considered to be a stable environment, it can be dynamic and vulnerable to anthropogenic disturbances including increasing temperature, deoxygenation, ocean acidification and pollution. Lophelia pertusa is among the better-studied cold-water corals but was only recently documented along the US West Coast, growing in acidified conditions. In the present study, coral fragments were collected at ∼300 m depth along the southern California margin and kept in recirculating tanks simulating conditions normally found in the natural environment for this species. At the collection site, waters exhibited persistently low pH and aragonite saturation states (Ωarag) with average values for pH of 7.66 ± 0.01 and Ωarag of 0.81 ± 0.07. In the laboratory, fragments were grown for three weeks in "favorable" pH/Ωarag of 7.9/1.47 (aragonite saturated) and "unfavorable" pH/Ωarag of 7.6/0.84 (aragonite undersaturated) conditions. There was a highly significant treatment effect (P < 0.001) with an average% net calcification for favorable conditions of 0.023 ± 0.009% d-1 and net dissolution of -0.010 ± 0.014% d-1 for unfavorable conditions. We did not find any treatment effect on feeding rates, which suggests that corals did not depress feeding in low pH/ Ωarag in an attempt to conserve energy. However, these results suggest that the suboptimal conditions for L. pertusa from the California margin could potentially threaten the persistence of this cold-water coral with negative consequences for the future stability of this already fragile ecosystem.
Collapse
Affiliation(s)
- Carlos E Gómez
- Department of Biology, Temple University, Philadelphia, PA, United States of America
| | - Leslie Wickes
- JHT, Inc, Orlando, FL, United States of America.,Thrive Blue, LLC, Denver, CO, United States of America
| | - Dan Deegan
- Department of Biology, Temple University, Philadelphia, PA, United States of America
| | - Peter J Etnoyer
- NOAA National Center for Coastal Ocean Science, Charleston, SC, United States of America
| | - Erik E Cordes
- Department of Biology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Zaferani S, Pérez-Rodríguez M, Biester H. Diatom ooze—A large marine mercury sink. Science 2018; 361:797-800. [DOI: 10.1126/science.aat2735] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/07/2018] [Indexed: 11/02/2022]
Affiliation(s)
- Sara Zaferani
- Institut für Geoökologie AG Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marta Pérez-Rodríguez
- Institut für Geoökologie AG Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Harald Biester
- Institut für Geoökologie AG Umweltgeochemie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
18
|
Jansen J, Hill NA, Dunstan PK, Cougnon EA, Galton-Fenzi BK, Johnson CR. Mapping Antarctic Suspension Feeder Abundances and Seafloor Food-Availability, and Modeling Their Change After a Major Glacier Calving. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Jansen J, Hill NA, Dunstan PK, Eléaume MP, Johnson CR. Taxonomic Resolution, Functional Traits, and the Influence of Species Groupings on Mapping Antarctic Seafloor Biodiversity. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|