1
|
Sánchez N, Goldenberg SU, Brüggemann D, Jaspers C, Taucher J, Riebesell U. Plankton food web structure and productivity under ocean alkalinity enhancement. SCIENCE ADVANCES 2024; 10:eado0264. [PMID: 39642213 PMCID: PMC11623272 DOI: 10.1126/sciadv.ado0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Ocean alkalinity enhancement (OAE) is a nature-based technology for CO2 removal and storage, but little is known about its environmental safety. We tested a CO2-equilibrated OAE deployment in a close-to-natural community using in situ mesocosms in the oligotrophic subtropical North Atlantic and assessed metazoan zooplankton to inform about food web stability, structure, and production. In addition, a literature review complemented experimental results by summarizing physiological responses of marine animals to decreasing proton concentrations, or increased pH. The food web studied proved resistant, and zooplankton physiologically tolerant, to the OAE tested. We observed short-term effects of OAE on zooplankton reproduction and productivity, which were likely trophically mediated. Yet, these did not affect zooplankton populations or their nutritional value as food for fish. Our study demonstrates an environmentally safe OAE application, but also stresses the risks of more intense OAE options, and the vulnerabilities of other marine ecosystems.
Collapse
Affiliation(s)
- Nicolás Sánchez
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
| | - Silvan U. Goldenberg
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Daniel Brüggemann
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Cornelia Jaspers
- Centre for Gelatinous Plankton Ecology & Evolution, Technical University of Denmark, DTU Aqua, Kongens Lyngby, Denmark
| | - Jan Taucher
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
2
|
Huang R, Zhang P, Zhang X, Chen S, Sun J, Jiang X, Zhang D, Li H, Yi X, Qu L, Wang T, Gao K, Hall-Spencer JM, Adams J, Gao G, Lin X. Ocean acidification alters microeukaryotic and bacterial food web interactions in a eutrophic subtropical mesocosm. ENVIRONMENTAL RESEARCH 2024; 257:119084. [PMID: 38823617 DOI: 10.1016/j.envres.2024.119084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
Ocean acidification (OA) is known to influence biological and ecological processes, mainly focusing on its impacts on single species, but little has been documented on how OA may alter plankton community interactions. Here, we conducted a mesocosm experiment with ambient (∼410 ppmv) and high (1000 ppmv) CO2 concentrations in a subtropical eutrophic region of the East China Sea and examined the community dynamics of microeukaryotes, bacterioplankton and microeukaryote-attached bacteria in the enclosed coastal seawater. The OA treatment with elevated CO2 affected taxa as the phytoplankton bloom stages progressed, with a 72.89% decrease in relative abundance of the protist Cercozoa on day 10 and a 322% increase in relative abundance of Stramenopile dominated by diatoms, accompanied by a 29.54% decrease in relative abundance of attached Alphaproteobacteria on day 28. Our study revealed that protozoans with different prey preferences had differing sensitivity to high CO2, and attached bacteria were more significantly affected by high CO2 compared to bacterioplankton. Our findings indicate that high CO2 changed the co-occurrence network complexity and stability of microeukaryotes more than those of bacteria. Furthermore, high CO2 was found to alter the proportions of potential interactions between phytoplankton and their predators, as well as microeukaryotes and their attached bacteria in the networks. The changes in the relative abundances and interactions of microeukaryotes between their predators in response to high CO2 revealed in our study suggest that high CO2 may have profound impacts on marine food webs.
Collapse
Affiliation(s)
- Ruiping Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Ping Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China
| | - Xu Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China
| | - Shouchang Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiazhen Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowen Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Di Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - He Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Liming Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tifeng Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan; School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Jonathan Adams
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China.
| |
Collapse
|
3
|
Ullah H, Fordham DA, Goldenberg SU, Nagelkerken I. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2977. [PMID: 38706047 DOI: 10.1002/eap.2977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 05/07/2024]
Abstract
Ocean warming and species exploitation have already caused large-scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time-dynamic integrated food web modeling approach (Ecosim) with previous data from community-level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well-managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near-future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human-driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade-off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate-driven biodiversity change and its effects on ecosystem processes.
Collapse
Affiliation(s)
- Hadayet Ullah
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Damien A Fordham
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Silvan U Goldenberg
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Zhang Z, Yi L, Hu Y, Liu N, Ren L. Submarine groundwater discharge and ocean acidification: Implications from China's coastal waters. MARINE POLLUTION BULLETIN 2024; 201:116252. [PMID: 38479328 DOI: 10.1016/j.marpolbul.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Ocean acidification (OA) is a global environmental concern, and submarine groundwater discharge (SGD) is a potentially process that enhances OA. This review summarizes the relationship between two types of constituents carried by SGD into China's seawater and OA. 1) Current research predominantly concentrates on constituent fluxes from SGD, neglecting its ecological impacts on carbon and nutrients budgets, as well as the mechanisms between carbon and nutrients. 2) Uncertainties persist in SGD research methods and acidification characterization. 3) There's a need to enhance quantitative research methods of SGD-OA, particularly in areas with intricate biogeochemical processes. Effective identification methods are crucial to quantify SGD's contribution to OA. Investigating core scientific questions, including SGD's impact on OA rates and scales, is paramount. While the primary focus is on SGD-OA research in China, insights gained from novel perspectives could have broader value for coastal management globally.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lixin Yi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Nan Liu
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lu Ren
- College of Environment Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
5
|
Yang L, He X, Ru S, Zhang Y. Herbicide leakage into seawater impacts primary productivity and zooplankton globally. Nat Commun 2024; 15:1783. [PMID: 38413588 PMCID: PMC10899588 DOI: 10.1038/s41467-024-46059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Predicting the magnitude of herbicide impacts on marine primary productivity remains challenging because the extent of worldwide herbicide pollution in coastal waters and the concentration-response relationships of phytoplankton communities to multiple herbicides are unclear. By analyzing the spatiotemporal distribution of herbicides at 661 bay and gulf stations worldwide from 1990 to 2022, we determined median, third quartile and maximum concentrations of 12 triazine herbicides of 0.18 nmol L-1, 1.27 nmol L-1 and 29.50 nmol L-1 (95%Confidence Interval: CI 1.06, 1.47), respectively. Under current herbicide stress, phytoplankton primary productivity was inhibited by more than 5% at 25% of the sites and by more than 10% at 10% of the sites (95%CI 3.67, 4.34), due to the inhibition of highly abundant sensitive species, community structure/particle size succession (from Bacillariophyta to Dinophyceae and from nano-phytoplankton to micro-phytoplankton), and resulting growth rate reduction. Concurrently, due to food chain cascade effects, the dominant micro-zooplankton population shifted from larger copepod larvae to smaller unicellular ciliates, which might prolong the transmission process in marine food chain and reduce the primary productivity transmission efficiency. As herbicide application rates on farmlands worldwide are correlated with residues in their adjacent seas, a continued future increase in herbicide input may seriously affect the stability of coastal waters.
Collapse
Affiliation(s)
- Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
| | - Xiaotong He
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
| |
Collapse
|
6
|
Dutkiewicz S, Boyd PW, Riebesell U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. GLOBAL CHANGE BIOLOGY 2021; 27:1196-1213. [PMID: 33342048 PMCID: PMC7986797 DOI: 10.1111/gcb.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/01/2023]
Abstract
Climate-change-induced alterations of oceanic conditions will lead to the ecological niches of some marine phytoplankton species disappearing, at least regionally. How will such losses affect the ecosystem and the coupled biogeochemical cycles? Here, we couch this question in terms of ecological redundancy (will other species be able to fill the ecological roles of the extinct species) and biogeochemical redundancy (can other species replace their biogeochemical roles). Prior laboratory and field studies point to a spectrum in the degree of redundancy. We use a global three-dimensional computer model with diverse planktonic communities to explore these questions further. The model includes 35 phytoplankton types that differ in size, biogeochemical function and trophic strategy. We run two series of experiments in which single phytoplankton types are either partially or fully eliminated. The niches of the targeted types were not completely reoccupied, often with a reduction in the transfer of matter from autotrophs to heterotrophs. Primary production was often decreased, but sometimes increased due to reduction in grazing pressure. Complex trophic interactions (such as a decrease in the stocks of a predator's grazer) led to unexpected reshuffling of the community structure. Alterations in resource utilization may cause impacts beyond the regions where the type went extinct. Our results suggest a lack of redundancy, especially in the 'knock on' effects on higher trophic levels. Redundancy appeared lowest for types on the edges of trait space (e.g. smallest) or with unique competitive strategies. Though highly idealized, our modelling findings suggest that the results from laboratory or field studies often do not adequately capture the ramifications of functional redundancy. The modelled, often counterintuitive, responses-via complex food web interactions and bottom-up versus top-down controls-indicate that changes in planktonic community will be key determinants of future ocean global change ecology and biogeochemistry.
Collapse
Affiliation(s)
- Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Global Change ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Philip W. Boyd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| |
Collapse
|
7
|
Han Y, Shi W, Tang Y, Zhao X, Du X, Sun S, Zhou W, Liu G. Ocean acidification increases polyspermy of a broadcast spawning bivalve species by hampering membrane depolarization and cortical granule exocytosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105740. [PMID: 33440272 DOI: 10.1016/j.aquatox.2020.105740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Ensuring that oocytes are fertilized by a single sperm during broadcast spawning is crucial for the fertilization success of many marine invertebrates. Although the adverse impacts of ocean acidification (OA) on various marine species have been revealed in recent years, its impact on polyspermy and the underlying mechanisms involved remain largely unknown. Therefore, in the present study, the effect of OA on polyspermy risk was assessed in a broadcast spawning bivalve, Tegillarca granosa. In addition, the impacts of OA on the two polyspermy blocking processes, the fast block (membrane depolarization) and the permanent block (cortical reaction), were investigated. The results show that the exposure of oocytes to two future OA scenarios (pH 7.8 and pH 7.4) leads to significant increases in polyspermy risk, about 1.70 and 2.38 times higher than the control, respectively. The maximum change in the membrane potential during oocyte membrane depolarization markedly decreased to 15.79 % (pH 7.8) and 34.06 % (pH 7.4) of the control value. Moreover, the duration of oocyte membrane depolarization was significantly reduced to approximately 63.38 % (pH 7.8) and 21.91 % (pH 7.4) of the control. In addition, cortical granule exocytosis, as well as microfilament migration, were significantly arrested by OA treatment. Exposure to future OA scenarios also led to significant reductions in the ATP and Ca2+ content of the oocytes, which may explain the hampered polyspermy blocking. Overall, the present study suggests that OA may significantly increase polyspermy risk in T. granosa by inhibiting membrane depolarization and arresting cortical granule exocytosis.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xinguo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
8
|
Ocean acidification boosts reproduction in fish via indirect effects. PLoS Biol 2021; 19:e3001033. [PMID: 33465064 PMCID: PMC7815143 DOI: 10.1371/journal.pbio.3001033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Ocean acidification affects species populations and biodiversity through direct negative effects on physiology and behaviour. The indirect effects of elevated CO2 are less well known and can sometimes be counterintuitive. Reproduction lies at the crux of species population replenishment, but we do not know how ocean acidification affects reproduction in the wild. Here, we use natural CO2 vents at a temperate rocky reef and show that even though ocean acidification acts as a direct stressor, it can indirectly increase energy budgets of fish to stimulate reproduction at no cost to physiological homeostasis. Female fish maintained energy levels by compensation: They reduced activity (foraging and aggression) to increase reproduction. In male fish, increased reproductive investment was linked to increased energy intake as mediated by intensified foraging on more abundant prey. Greater biomass of prey at the vents was linked to greater biomass of algae, as mediated by a fertilisation effect of elevated CO2 on primary production. Additionally, the abundance and aggression of paternal carers were elevated at the CO2 vents, which may further boost reproductive success. These positive indirect effects of elevated CO2 were only observed for the species of fish that was generalistic and competitively dominant, but not for 3 species of subordinate and more specialised fishes. Hence, species that capitalise on future resource enrichment can accelerate their reproduction and increase their populations, thereby altering species communities in a future ocean. Ocean acidification affects species populations and diversity through direct negative effects on physiology and behavior, but the indirect effects are less clear. Using volcanic carbon dioxide vents as natural analogues of future ocean acidification, this study shows that elevated CO2 can stimulate fish reproduction in the wild through increased food abundance, leading to increased energy budgets at no cost to physiological homeostasis.
Collapse
|
9
|
Cominassi L, Moyano M, Claireaux G, Howald S, Mark FC, Zambonino-Infante JL, Peck MA. Food availability modulates the combined effects of ocean acidification and warming on fish growth. Sci Rep 2020; 10:2338. [PMID: 32047178 PMCID: PMC7012865 DOI: 10.1038/s41598-020-58846-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
When organisms are unable to feed ad libitum they may be more susceptible to negative effects of environmental stressors such as ocean acidification and warming (OAW). We reared sea bass (Dicentrarchus labrax) at 15 or 20 °C and at ambient or high PCO2 (650 versus 1750 µatm PCO2; pH = 8.1 or 7.6) at ad libitum feeding and observed no discernible effect of PCO2 on the size-at-age of juveniles after 277 (20 °C) and 367 (15 °C) days. Feeding trials were then conducted including a restricted ration (25% ad libitum). At 15 °C, growth rate increased with ration but was unaffected by PCO2. At 20 °C, acidification and warming acted antagonistically and low feeding level enhanced PCO2 effects. Differences in growth were not merely a consequence of lower food intake but also linked to changes in digestive efficiency. The specific activity of digestive enzymes (amylase, trypsin, phosphatase alkaline and aminopeptidase N) at 20 °C was lower at the higher PCO2 level. Our study highlights the importance of incorporating restricted feeding into experimental designs examining OAW and suggests that ad libitum feeding used in the majority of the studies to date may not have been suitable to detect impacts of ecological significance.
Collapse
Affiliation(s)
- Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany.
| | - Marta Moyano
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, 29280, Plouzané, France
| | - Sarah Howald
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | - José-Luis Zambonino-Infante
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, Reproduction and Nutrition of Fish, Centre Ifremer de Bretagne, 29280, Plouzané, France
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
| |
Collapse
|
10
|
George HCPH, Miles G, Bemrose J, White A, Bond MN, Cameron TC. Intergenerational effects of CO 2-induced stream acidification in the Trinidadian guppy ( Poecilia reticulata). Ecol Evol 2019; 9:12836-12845. [PMID: 31788218 PMCID: PMC6875657 DOI: 10.1002/ece3.5761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Rising atmospheric carbon dioxide levels are driving decreases in aquatic pH. As a result, there has been a surge in the number of studies examining the impact of acidification on aquatic fauna over the past decade. Thus far, both positive and negative impacts on the growth of fish have been reported, creating a disparity in results. Food availability and single-generation exposure have been proposed as some of the reasons for these variable results, where unrealistically high food treatments lead to fish overcoming the energetic costs associated with acclimating to decreased pH. Likewise, exposure of fish to lower pH for only one generation may not capture the likely ecological response to acidification that wild populations might experience over two or more generations. Here we compare somatic growth rates of laboratory populations of the Trinidadian guppy (Poecilia reticulata) exposed to pH levels that represent the average and lowest levels observed in streams in its native range. Specifically, we test the role of maternal acclimation and resource availability on the response of freshwater fishes to acidification. Acidification had a negative impact on growth at more natural, low food treatments. With high food availability, fish whose mothers were acclimated to the acidified treatment showed no reduction in growth, compared to controls. Compensatory growth was observed in both control-acidified (maternal-natal environment) and acidified-control groups, where fish that did not experience intergenerational effects achieved the same size in response to acidification as those that did, after an initial period of stunted growth. These results suggest that future studies on the effects of shifting mean of aquatic pH on fishes should take account of intergenerational effects and compensatory growth, as otherwise effects of acidification may be overestimated.
Collapse
Affiliation(s)
| | - George Miles
- School of Life SciencesUniversity of EssexColchesterUK
| | - James Bemrose
- School of Life SciencesUniversity of EssexColchesterUK
| | - Amelia White
- School of Life SciencesUniversity of EssexColchesterUK
| | | | | |
Collapse
|
11
|
Baumann H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0198] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental studies assessing the potential impacts of ocean acidification on marine organisms have rapidly expanded and produced a wealth of empirical data over the past decade. This perspective examines four key areas of transformative developments in experimental approaches: (1) methodological advances; (2) advances in elucidating physiological and molecular mechanisms behind observed CO2effects; (3) recognition of short-term CO2variability as a likely modifier of species sensitivities (Ocean Variability Hypothesis); and (4) consensus on the multistressor nature of marine climate change where effect interactions are still challenging to anticipate. No single experiment allows predicting the fate of future populations. But sustaining the accumulation of empirical evidence is critical for more robust estimates of species reaction norms and thus for enabling better modeling approaches. Moreover, advanced experimental approaches are needed to address knowledge gaps including changes in species interactions and intraspecific variability in sensitivity and its importance for the adaptation potential of marine organisms to a high CO2world.
Collapse
Affiliation(s)
- Hannes Baumann
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340, USA
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340, USA
| |
Collapse
|
12
|
Doubleday ZA, Nagelkerken I, Coutts MD, Goldenberg SU, Connell SD. A triple trophic boost: How carbon emissions indirectly change a marine food chain. GLOBAL CHANGE BIOLOGY 2019; 25:978-984. [PMID: 30500999 DOI: 10.1111/gcb.14536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The pervasive enrichment of CO2 in our oceans is a well-documented stressor to marine life. Yet, there is little understanding about how CO2 affects species indirectly in naturally complex communities. Using natural CO2 vents, we investigated the indirect effects of CO2 enrichment through a marine food chain. We show how CO2 boosted the biomass of three trophic levels: from the primary producers (algae), through to their grazers (gastropods), and finally through to their predators (fish). We also found that consumption by both grazers and predators intensified under CO2 enrichment, but, ultimately, this top-down control failed to compensate for the boosted biomass of both primary producers and herbivores (bottom-up control). Our study suggests that indirect effects can buffer the ubiquitous and direct, negative effects of CO2 enrichment by allowing the upward propagation of resources through the food chain. Maintaining the natural complexity of food webs in our ocean communities could, therefore, help minimize the future impacts of CO2 enrichment.
Collapse
Affiliation(s)
- Zoë A Doubleday
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Ivan Nagelkerken
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Madeleine D Coutts
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Silvan U Goldenberg
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Sean D Connell
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
13
|
Stiasny MH, Sswat M, Mittermayer FH, Falk-Petersen IB, Schnell NK, Puvanendran V, Mortensen A, Reusch TBH, Clemmesen C. Divergent responses of Atlantic cod to ocean acidification and food limitation. GLOBAL CHANGE BIOLOGY 2019; 25:839-849. [PMID: 30570815 DOI: 10.1111/gcb.14554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35-36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
Collapse
Affiliation(s)
- Martina H Stiasny
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
- Department of Economics, Sustainable Fisheries, University of Kiel, Kiel, Germany
| | - Michael Sswat
- GEOMAR Helmholtz Centre for Ocean Research, Biological Oceanography, Kiel, Germany
| | - Felix H Mittermayer
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
| | | | - Nalani K Schnell
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universities, Paris, France
| | | | | | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
| | - Catriona Clemmesen
- GEOMAR Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Kiel, Germany
| |
Collapse
|
14
|
Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Adult Antarctic krill proves resilient in a simulated high CO 2 ocean. Commun Biol 2018; 1:190. [PMID: 30456311 PMCID: PMC6233221 DOI: 10.1038/s42003-018-0195-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022] Open
Abstract
Antarctic krill (Euphausia superba) have a keystone role in the Southern Ocean, as the primary prey of Antarctic predators. Decreases in krill abundance could result in a major ecological regime shift, but there is limited information on how climate change may affect krill. Increasing anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification, as absorption of atmospheric CO2 in seawater alters ocean chemistry. Ocean acidification increases mortality and negatively affects physiological functioning in some marine invertebrates, and is predicted to occur most rapidly at high latitudes. Here we show that, in the laboratory, adult krill are able to survive, grow, store fat, mature, and maintain respiration rates when exposed to near-future ocean acidification (1000-2000 μatm pCO2) for one year. Despite differences in seawater pCO2 incubation conditions, adult krill are able to actively maintain the acid-base balance of their body fluids in near-future pCO2, which enhances their resilience to ocean acidification.
Collapse
|
16
|
Stiasny MH, Mittermayer FH, Göttler G, Bridges CR, Falk-Petersen IB, Puvanendran V, Mortensen A, Reusch TBH, Clemmesen C. Effects of parental acclimation and energy limitation in response to high CO 2 exposure in Atlantic cod. Sci Rep 2018; 8:8348. [PMID: 29844541 PMCID: PMC5974321 DOI: 10.1038/s41598-018-26711-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification.
Collapse
Affiliation(s)
- M H Stiasny
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.,University of Kiel, Department of Economics, Wilhelm-Seelig-Platz 1, 24118, Kiel, Germany
| | - F H Mittermayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - G Göttler
- Heinrich-Heine Universität Düsseldorf, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - C R Bridges
- Heinrich-Heine Universität Düsseldorf, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - I-B Falk-Petersen
- University of Tromsø, Faculty of Biosciences, Fisheries and Economics, Tromsø, Norway
| | | | - A Mortensen
- Nofima AS, Postboks 6122, NO-9291, Tromsø, Norway
| | - T B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - C Clemmesen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| |
Collapse
|
17
|
Boxhammer T, Taucher J, Bach LT, Achterberg EP, Algueró-Muñiz M, Bellworthy J, Czerny J, Esposito M, Haunost M, Hellemann D, Ludwig A, Yong JC, Zark M, Riebesell U, Anderson LG. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach. PLoS One 2018; 13:e0197502. [PMID: 29799856 PMCID: PMC5969766 DOI: 10.1371/journal.pone.0197502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/03/2018] [Indexed: 02/03/2023] Open
Abstract
Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.
Collapse
Affiliation(s)
- Tim Boxhammer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- * E-mail:
| | - Jan Taucher
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - María Algueró-Muñiz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biological Institute Helgoland, Helgoland, Germany
| | - Jessica Bellworthy
- Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | - Jan Czerny
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mario Esposito
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | - Mathias Haunost
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Dana Hellemann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Andrea Ludwig
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jaw C. Yong
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maren Zark
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Carl von Ossietzky University, Oldenburg, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Leif G. Anderson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|