1
|
Glaser-Schmitt A, Lebherz M, Saydam E, Bornberg-Bauer E, Parsch J. Expression of De Novo Open Reading Frames in Natural Populations of Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025. [PMID: 40231390 DOI: 10.1002/jez.b.23297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
De novo genes, which originate from noncoding DNA, are known to have a high rate of turnover over short evolutionary timescales, such as within a species. Thus, their expression is often lineage- or genetic background-specific. However, little is known about their levels and breadth of expression as populations of a species diverge. In this study, we utilized publicly available RNA-seq data to examine the expression of newly evolved open reading frames (neORFs) in comparison to non- and protein-coding genes in Drosophila melanogaster populations from the derived species range in Europe and the ancestral range in sub-Saharan Africa. Our datasets included two adult tissue types as well as whole bodies at two temperatures for both sexes and three larval/prepupal developmental stages in a single tissue and sex, which allowed us to examine neORF expression and divergence across multiple sample types as well as sex and population. We detected a relatively large proportion (approximately 50%) of annotated neORFs as expressed in the population samples, with neORFs often showing greater expression divergence between populations than non- or protein-coding genes. However, differential expression of neORFs between populations tended to occur in a sample type-specific manner. On the other hand, neORFs displayed less sex-biased expression than the other two gene classes, with the majority of sex-biased neORFs detected in whole bodies, which may be attributable to the presence of the gonads. We also found that neORFs shared among multiple lines in the original set of inbred lines in which they were first detected were more likely to be both expressed and differentially expressed in the new population samples, suggesting that neORFs at a higher frequency (i.e. present in more individuals) within a species are more likely to be functional.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany
| | - Marie Lebherz
- Institute for Evolution and Biodiversity, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Ezgi Saydam
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany
| |
Collapse
|
2
|
Dohmen E, Aubel M, Eicholt LA, Roginski P, Luria V, Karger A, Grandchamp A. DeNoFo: a file format and toolkit for standardised, comparable de novo gene annotation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.644673. [PMID: 40236033 PMCID: PMC11996330 DOI: 10.1101/2025.03.31.644673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Motivation De novo genes emerge from previously non-coding regions of the genome, challenging the traditional view that new genes primarily arise through duplication and adaptation of existing ones. Characterised by their rapid evolution and their novel structural properties or functional roles, de novo genes represent a young area of research. Therefore, the field currently lacks established standards and methodologies, leading to inconsistent terminology and challenges in comparing and reproducing results. Results This work presents a standardised annotation format to document the methodology of de novo gene datasets in a reproducible way. We developed DeNoFo, a toolkit to provide easy access to this format that simplifies annotation of datasets and facilitates comparison across studies. Unifying the different protocols and methods in one standardised format, while providing integration into established file formats, such as fasta or gff, ensures comparability of studies and advances new insights in this rapidly evolving field. Availability and Implementation DeNoFo is available through the official Python Package Index (PyPI) and at https://github.com/EDohmen/denofo . All tools have a graphical user interface and a command line interface. The toolkit is implemented in Python3, available for all major platforms and installable with pip and uv.
Collapse
|
3
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Jin GT, Xu YC, Hou XH, Jiang J, Li XX, Xiao JH, Bian YT, Gong YB, Wang MY, Zhang ZQ, Zhang YE, Zhu WS, Liu YX, Guo YL. A de novo Gene Promotes Seed Germination Under Drought Stress in Arabidopsis. Mol Biol Evol 2025; 42:msae262. [PMID: 39719058 PMCID: PMC11721784 DOI: 10.1093/molbev/msae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
The origin of genes from noncoding sequences is a long-term and fundamental biological question. However, how de novo genes originate and integrate into the existing pathways to regulate phenotypic variations is largely unknown. Here, we selected 7 genes from 782 de novo genes for functional exploration based on transcriptional and translational evidence. Subsequently, we revealed that Sun Wu-Kong (SWK), a de novo gene that originated from a noncoding sequence in Arabidopsis thaliana, plays a role in seed germination under osmotic stress. SWK is primarily expressed in dry seed, imbibing seed and silique. SWK can be fully translated into an 8 kDa protein, which is mainly located in the nucleus. Intriguingly, SWK was integrated into an extant pathway of hydrogen peroxide content (folate synthesis pathway) via the upstream gene cytHPPK/DHPS, an Arabidopsis-specific gene that originated from the duplication of mitHPPK/DHPS, and downstream gene GSTF9, to improve seed germination in osmotic stress. In addition, we demonstrated that the presence of SWK may be associated with drought tolerance in natural populations of Arabidopsis. Overall, our study highlights how a de novo gene originated and integrated into the existing pathways to regulate stress adaptation.
Collapse
Affiliation(s)
- Guang-Teng Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Xin Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Xiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Tao Bian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Wang
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents and Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang-Sheng Zhu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yong-Xiu Liu
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Cao Y, Hong J, Zhao Y, Li X, Feng X, Wang H, Zhang L, Lin M, Cai Y, Han Y. De novo gene integration into regulatory networks via interaction with conserved genes in peach. HORTICULTURE RESEARCH 2024; 11:uhae252. [PMID: 39664695 PMCID: PMC11630308 DOI: 10.1093/hr/uhae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 12/13/2024]
Abstract
De novo genes can evolve "from scratch" from noncoding sequences, acquiring novel functions in organisms and integrating into regulatory networks during evolution to drive innovations in important phenotypes and traits. However, identifying de novo genes is challenging, as it requires high-quality genomes from closely related species. According to the comparison with nine closely related Prunus genomes, we determined at least 178 de novo genes in P. persica "baifeng". The distinct differences were observed between de novo and conserved genes in gene characteristics and expression patterns. Gene ontology enrichment analysis suggested that Type I de novo genes originated from sequences related to plastid modification functions, while Type II genes were inferred to have derived from sequences related to reproductive functions. Finally, transcriptome sequencing across different tissues and developmental stages suggested that de novo genes have been evolutionarily recruited into existing regulatory networks, playing important roles in plant growth and development, which was also supported by WGCNA analysis and quantitative trait loci data. This study lays the groundwork for future research on the origins and functions of genes in Prunus and related taxa.
Collapse
Affiliation(s)
- Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jiayi Hong
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102209, China
| | - Xiaofeng Feng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Han Wang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230000, China
| | - Lin Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330224 Jiangxi, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Zhao L, Svetec N, Begun DJ. De Novo Genes. Annu Rev Genet 2024; 58:211-232. [PMID: 39088850 PMCID: PMC12051474 DOI: 10.1146/annurev-genet-111523-102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Although the majority of annotated new genes in a given genome appear to have arisen from duplication-related mechanisms, recent studies have shown that genes can also originate de novo from ancestrally nongenic sequences. Investigating de novo-originated genes offers rich opportunities to understand the origin and functions of new genes, their regulatory mechanisms, and the associated evolutionary processes. Such studies have uncovered unexpected and intriguing facets of gene origination, offering novel perspectives on the complexity of the genome and gene evolution. In this review, we provide an overview of the research progress in this field, highlight recent advancements, identify key technical and conceptual challenges, and underscore critical questions that remain to be addressed.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California, USA;
| |
Collapse
|
7
|
Papadopoulos C, Arbes H, Cornu D, Chevrollier N, Blanchet S, Roginski P, Rabier C, Atia S, Lespinet O, Namy O, Lopes A. The ribosome profiling landscape of yeast reveals a high diversity in pervasive translation. Genome Biol 2024; 25:268. [PMID: 39402662 PMCID: PMC11472626 DOI: 10.1186/s13059-024-03403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pervasive translation is a widespread phenomenon that plays a critical role in the emergence of novel microproteins, but the diversity of translation patterns contributing to their generation remains unclear. Based on 54 ribosome profiling (Ribo-Seq) datasets, we investigated the yeast Ribo-Seq landscape using a representation framework that allows the comprehensive inventory and classification of the entire diversity of Ribo-Seq signals, including non-canonical ones. RESULTS We show that if coding regions occupy specific areas of the Ribo-Seq landscape, noncoding regions encompass a wide diversity of Ribo-Seq signals and, conversely, populate the entire landscape. Our results show that pervasive translation can, nevertheless, be associated with high specificity, with 1055 noncoding ORFs exhibiting canonical Ribo-Seq signals. Using mass spectrometry under standard conditions or proteasome inhibition with an in-house analysis protocol, we report 239 microproteins originating from noncoding ORFs that display canonical but also non-canonical Ribo-Seq signals. Each condition yields dozens of additional microprotein candidates with comparable translation properties, suggesting a larger population of volatile microproteins that are challenging to detect. Our findings suggest that non-canonical translation signals may harbor valuable information and underscore the significance of considering them in proteogenomic studies. Finally, we show that the translation outcome of a noncoding ORF is primarily determined by the initiating codon and the codon distribution in its two alternative frames, rather than features indicative of functionality. CONCLUSION Our results enable us to propose a topology of a species' Ribo-Seq landscape, opening the way to comparative analyses of this translation landscape under different conditions.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Hugo Arbes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | | | - Sandra Blanchet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Paul Roginski
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Camille Rabier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Safiya Atia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Olivier Lespinet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Anne Lopes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France.
| |
Collapse
|
8
|
Roginski P, Grandchamp A, Quignot C, Lopes A. De Novo Emerged Gene Search in Eukaryotes with DENSE. Genome Biol Evol 2024; 16:evae159. [PMID: 39212967 PMCID: PMC11363675 DOI: 10.1093/gbe/evae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
The discovery of de novo emerged genes, originating from previously noncoding DNA regions, challenges traditional views of species evolution. Indeed, the hypothesis of neutrally evolving sequences giving rise to functional proteins is highly unlikely. This conundrum has sparked numerous studies to quantify and characterize these genes, aiming to understand their functional roles and contributions to genome evolution. Yet, no fully automated pipeline for their identification is available. Therefore, we introduce DENSE (DE Novo emerged gene SEarch), an automated Nextflow pipeline based on two distinct steps: detection of taxonomically restricted genes (TRGs) through phylostratigraphy, and filtering of TRGs for de novo emerged genes via genome comparisons and synteny search. DENSE is available as a user-friendly command-line tool, while the second step is accessible through a web server upon providing a list of TRGs. Highly flexible, DENSE provides various strategy and parameter combinations, enabling users to adapt to specific configurations or define their own strategy through a rational framework, facilitating protocol communication, and study interoperability. We apply DENSE to seven model organisms, exploring the impact of its strategies and parameters on de novo gene predictions. This thorough analysis across species with different evolutionary rates reveals useful metrics for users to define input datasets, identify favorable/unfavorable conditions for de novo gene detection, and control potential biases in genome annotations. Additionally, predictions made for the seven model organisms are compiled into a requestable database, which we hope will serve as a reference for de novo emerged gene lists generated with specific criteria combinations.
Collapse
Affiliation(s)
- Paul Roginski
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Chloé Quignot
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Middendorf L, Ravi Iyengar B, Eicholt LA. Sequence, Structure, and Functional Space of Drosophila De Novo Proteins. Genome Biol Evol 2024; 16:evae176. [PMID: 39212966 PMCID: PMC11363682 DOI: 10.1093/gbe/evae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During de novo emergence, new protein coding genes emerge from previously nongenic sequences. The de novo proteins they encode are dissimilar in composition and predicted biochemical properties to conserved proteins. However, functional de novo proteins indeed exist. Both identification of functional de novo proteins and their structural characterization are experimentally laborious. To identify functional and structured de novo proteins in silico, we applied recently developed machine learning based tools and found that most de novo proteins are indeed different from conserved proteins both in their structure and sequence. However, some de novo proteins are predicted to adopt known protein folds, participate in cellular reactions, and to form biomolecular condensates. Apart from broadening our understanding of de novo protein evolution, our study also provides a large set of testable hypotheses for focused experimental studies on structure and function of de novo proteins in Drosophila.
Collapse
Affiliation(s)
- Lasse Middendorf
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Lars A Eicholt
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| |
Collapse
|
10
|
Lebherz MK, Fouks B, Schmidt J, Bornberg-Bauer E, Grandchamp A. DNA Transposons Favor De Novo Transcript Emergence Through Enrichment of Transcription Factor Binding Motifs. Genome Biol Evol 2024; 16:evae134. [PMID: 38934893 PMCID: PMC11264136 DOI: 10.1093/gbe/evae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
De novo genes emerge from noncoding regions of genomes via succession of mutations. Among others, such mutations activate transcription and create a new open reading frame (ORF). Although the mechanisms underlying ORF emergence are well documented, relatively little is known about the mechanisms enabling new transcription events. Yet, in many species a continuum between absent and very prominent transcription has been reported for essentially all regions of the genome. In this study, we searched for de novo transcripts by using newly assembled genomes and transcriptomes of seven inbred lines of Drosophila melanogaster, originating from six European and one African population. This setup allowed us to detect sample specific de novo transcripts, and compare them to their homologous nontranscribed regions in other samples, as well as genic and intergenic control sequences. We studied the association with transposable elements (TEs) and the enrichment of transcription factor motifs upstream of de novo emerged transcripts and compared them with regulatory elements. We found that de novo transcripts overlap with TEs more often than expected by chance. The emergence of new transcripts correlates with regions of high guanine-cytosine content and TE expression. Moreover, upstream regions of de novo transcripts are highly enriched with regulatory motifs. Such motifs are more enriched in new transcripts overlapping with TEs, particularly DNA TEs, and are more conserved upstream de novo transcripts than upstream their 'nontranscribed homologs'. Overall, our study demonstrates that TE insertion is important for transcript emergence, partly by introducing new regulatory motifs from DNA TE families.
Collapse
Affiliation(s)
| | - Bertrand Fouks
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Julian Schmidt
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Chen J, Li Q, Xia S, Arsala D, Sosa D, Wang D, Long M. The Rapid Evolution of De Novo Proteins in Structure and Complex. Genome Biol Evol 2024; 16:evae107. [PMID: 38753069 PMCID: PMC11149777 DOI: 10.1093/gbe/evae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Recent studies in the rice genome-wide have established that de novo genes, evolving from noncoding sequences, enhance protein diversity through a stepwise process. However, the pattern and rate of their evolution in protein structure over time remain unclear. Here, we addressed these issues within a surprisingly short evolutionary timescale (<1 million years for 97% of Oryza de novo genes) with comparative approaches to gene duplicates. We found that de novo genes evolve faster than gene duplicates in the intrinsically disordered regions (such as random coils), secondary structure elements (such as α helix and β strand), hydrophobicity, and molecular recognition features. In de novo proteins, specifically, we observed an 8% to 14% decay in random coils and intrinsically disordered region lengths and a 2.3% to 6.5% increase in structured elements, hydrophobicity, and molecular recognition features, per million years on average. These patterns of structural evolution align with changes in amino acid composition over time as well. We also revealed higher positive charges but smaller molecular weights for de novo proteins than duplicates. Tertiary structure predictions showed that most de novo proteins, though not typically well folded on their own, readily form low-energy and compact complexes with other proteins facilitated by extensive residue contacts and conformational flexibility, suggesting a faster-binding scenario in de novo proteins to promote interaction. These analyses illuminate a rapid evolution of protein structure in de novo genes in rice genomes, originating from noncoding sequences, highlighting their quick transformation into active, protein complex-forming components within a remarkably short evolutionary timeframe.
Collapse
Affiliation(s)
- Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Qingrong Li
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Middendorf L, Eicholt LA. Random, de novo, and conserved proteins: How structure and disorder predictors perform differently. Proteins 2024; 92:757-767. [PMID: 38226524 DOI: 10.1002/prot.26652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Understanding the emergence and structural characteristics of de novo and random proteins is crucial for unraveling protein evolution and designing novel enzymes. However, experimental determination of their structures remains challenging. Recent advancements in protein structure prediction, particularly with AlphaFold2 (AF2), have expanded our knowledge of protein structures, but their applicability to de novo and random proteins is unclear. In this study, we investigate the structural predictions and confidence scores of AF2 and protein language model-based predictor ESMFold for de novo and conserved proteins from Drosophila and a dataset of comparable random proteins. We find that the structural predictions for de novo and random proteins differ significantly from conserved proteins. Interestingly, a positive correlation between disorder and confidence scores (pLDDT) is observed for de novo and random proteins, in contrast to the negative correlation observed for conserved proteins. Furthermore, the performance of structure predictors for de novo and random proteins is hampered by the lack of sequence identity. We also observe fluctuating median predicted disorder among different sequence length quartiles for random proteins, suggesting an influence of sequence length on disorder predictions. In conclusion, while structure predictors provide initial insights into the structural composition of de novo and random proteins, their accuracy and applicability to such proteins remain limited. Experimental determination of their structures is necessary for a comprehensive understanding. The positive correlation between disorder and pLDDT could imply a potential for conditional folding and transient binding interactions of de novo and random proteins.
Collapse
Affiliation(s)
- Lasse Middendorf
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Lars A Eicholt
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| |
Collapse
|
13
|
Linnenbrink M, Breton G, Misra P, Pfeifle C, Dutheil JY, Tautz D. Experimental Evaluation of a Direct Fitness Effect of the De Novo Evolved Mouse Gene Pldi. Genome Biol Evol 2024; 16:evae084. [PMID: 38742287 PMCID: PMC11091481 DOI: 10.1093/gbe/evae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
De novo evolved genes emerge from random parts of noncoding sequences and have, therefore, no homologs from which a function could be inferred. While expression analysis and knockout experiments can provide insights into the function, they do not directly test whether the gene is beneficial for its carrier. Here, we have used a seminatural environment experiment to test the fitness of the previously identified de novo evolved mouse gene Pldi, which has been implicated to have a role in sperm differentiation. We used a knockout mouse strain for this gene and competed it against its parental wildtype strain for several generations of free reproduction. We found that the knockout (ko) allele frequency decreased consistently across three replicates of the experiment. Using an approximate Bayesian computation framework that simulated the data under a demographic scenario mimicking the experiment's demography, we could estimate a selection coefficient ranging between 0.21 and 0.61 for the wildtype allele compared to the ko allele in males, under various models. This implies a relatively strong selective advantage, which would fix the new gene in less than hundred generations after its emergence.
Collapse
Affiliation(s)
- Miriam Linnenbrink
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Present address: Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Gwenna Breton
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Present address: Clinical Genomics Gothenburg, Science for Life Laboratory, Sahlgrenska Academy, University of Gothenburg, and Center for Medical Genomics, Department of Clinical Genetic and Genomics, Sahlgrenska University Hospital, Sweden
| | - Pallavi Misra
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Present address: Laboratory Corporation of America (LabCorp), Westborough, MA 01581, USA
| | - Christine Pfeifle
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Julien Y Dutheil
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
14
|
Aubel M, Buchel F, Heames B, Jones A, Honc O, Bornberg-Bauer E, Hlouchova K. High-throughput Selection of Human de novo-emerged sORFs with High Folding Potential. Genome Biol Evol 2024; 16:evae069. [PMID: 38597156 PMCID: PMC11024478 DOI: 10.1093/gbe/evae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
De novo genes emerge from previously noncoding stretches of the genome. Their encoded de novo proteins are generally expected to be similar to random sequences and, accordingly, with no stable tertiary fold and high predicted disorder. However, structural properties of de novo proteins and whether they differ during the stages of emergence and fixation have not been studied in depth and rely heavily on predictions. Here we generated a library of short human putative de novo proteins of varying lengths and ages and sorted the candidates according to their structural compactness and disorder propensity. Using Förster resonance energy transfer combined with Fluorescence-activated cell sorting, we were able to screen the library for most compact protein structures, as well as most elongated and flexible structures. We find that compact de novo proteins are on average slightly shorter and contain lower predicted disorder than less compact ones. The predicted structures for most and least compact de novo proteins correspond to expectations in that they contain more secondary structure content or higher disorder content, respectively. Our experiments indicate that older de novo proteins have higher compactness and structural propensity compared with young ones. We discuss possible evolutionary scenarios and their implications underlying the age-dependencies of compactness and structural content of putative de novo proteins.
Collapse
Affiliation(s)
- Margaux Aubel
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Filip Buchel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brennen Heames
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Alun Jones
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Ondrej Honc
- Imaging Methods Core Facility, BIOCEV, Prague, Czech Republic
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
- Department of Protein Evolution, Max Planck-Institute for Biology Tuebingen, Tuebingen, Germany
| | - Klara Hlouchova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Ye W, Krishna Behra PR, Dyrhage K, Seeger C, Joiner JD, Karlsson E, Andersson E, Chi CN, Andersson SGE, Jemth P. Folded Alpha Helical Putative New Proteins from Apilactobacillus kunkeei. J Mol Biol 2024; 436:168490. [PMID: 38355092 DOI: 10.1016/j.jmb.2024.168490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The emergence of new proteins is a central question in biology. Most tertiary protein folds known to date appear to have an ancient origin, but it is clear from bioinformatic analyses that new proteins continuously emerge in all organismal groups. However, there is a paucity of experimental data on new proteins regarding their structure and biophysical properties. We performed a detailed phylogenetic analysis and identified 48 putative open reading frames in the honeybee-associated bacterium Apilactobacillus kunkeei for which no or few homologs could be identified in closely-related species, suggesting that they could be relatively new on an evolutionary time scale and represent recently evolved proteins. Using circular dichroism-, fluorescence- and nuclear magnetic resonance (NMR) spectroscopy we investigated six of these proteins and show that they are not intrinsically disordered, but populate alpha-helical dominated folded states with relatively low thermodynamic stability (0-3 kcal/mol). The NMR and biophysical data demonstrate that small new proteins readily adopt simple folded conformations suggesting that more complex tertiary structures can be continuously re-invented during evolution by fusion of such simple secondary structure elements. These findings have implications for the general view on protein evolution, where de novo emergence of folded proteins may be a common event.
Collapse
Affiliation(s)
- Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Phani Rama Krishna Behra
- Department of Molecular Evolution, Cell and Molecular Biology, Biomedical Centre, Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| | - Karl Dyrhage
- Department of Molecular Evolution, Cell and Molecular Biology, Biomedical Centre, Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| | - Christian Seeger
- Department of Molecular Evolution, Cell and Molecular Biology, Biomedical Centre, Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| | - Joe D Joiner
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden.
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Biomedical Centre, Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden.
| |
Collapse
|
16
|
Peng J, Zhao L. The origin and structural evolution of de novo genes in Drosophila. Nat Commun 2024; 15:810. [PMID: 38280868 PMCID: PMC10821953 DOI: 10.1038/s41467-024-45028-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
Recent studies reveal that de novo gene origination from previously non-genic sequences is a common mechanism for gene innovation. These young genes provide an opportunity to study the structural and functional origins of proteins. Here, we combine high-quality base-level whole-genome alignments and computational structural modeling to study the origination, evolution, and protein structures of lineage-specific de novo genes. We identify 555 de novo gene candidates in D. melanogaster that originated within the Drosophilinae lineage. Sequence composition, evolutionary rates, and expression patterns indicate possible gradual functional or adaptive shifts with their gene ages. Surprisingly, we find little overall protein structural changes in candidates from the Drosophilinae lineage. We identify several candidates with potentially well-folded protein structures. Ancestral sequence reconstruction analysis reveals that most potentially well-folded candidates are often born well-folded. Single-cell RNA-seq analysis in testis shows that although most de novo gene candidates are enriched in spermatocytes, several young candidates are biased towards the early spermatogenesis stage, indicating potentially important but less emphasized roles of early germline cells in the de novo gene origination in testis. This study provides a systematic overview of the origin, evolution, and protein structural changes of Drosophilinae-specific de novo genes.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Grandchamp A, Czuppon P, Bornberg-Bauer E. Quantification and modeling of turnover dynamics of de novo transcripts in Drosophila melanogaster. Nucleic Acids Res 2024; 52:274-287. [PMID: 38000384 PMCID: PMC10783523 DOI: 10.1093/nar/gkad1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Most of the transcribed eukaryotic genomes are composed of non-coding transcripts. Among these transcripts, some are newly transcribed when compared to outgroups and are referred to as de novo transcripts. De novo transcripts have been shown to play a major role in genomic innovations. However, little is known about the rates at which de novo transcripts are gained and lost in individuals of the same species. Here, we address this gap and estimate the de novo transcript turnover rate with an evolutionary model. We use DNA long reads and RNA short reads from seven geographically remote samples of inbred individuals of Drosophila melanogaster to detect de novo transcripts that are gained on a short evolutionary time scale. Overall, each sampled individual contains around 2500 unspliced de novo transcripts, with most of them being sample specific. We estimate that around 0.15 transcripts are gained per year, and that each gained transcript is lost at a rate around 5× 10-5 per year. This high turnover of transcripts suggests frequent exploration of new genomic sequences within species. These rate estimates are essential to comprehend the process and timescale of de novo gene birth.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
18
|
Ardern Z. Alternative Reading Frames are an Underappreciated Source of Protein Sequence Novelty. J Mol Evol 2023; 91:570-580. [PMID: 37326679 DOI: 10.1007/s00239-023-10122-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Protein-coding DNA sequences can be translated into completely different amino acid sequences if the nucleotide triplets used are shifted by a non-triplet amount on the same DNA strand or by translating codons from the opposite strand. Such "alternative reading frames" of protein-coding genes are a major contributor to the evolution of novel protein products. Recent studies demonstrating this include examples across the three domains of cellular life and in viruses. These sequences increase the number of trials potentially available for the evolutionary invention of new genes and also have unusual properties which may facilitate gene origin. There is evidence that the structure of the standard genetic code contributes to the features and gene-likeness of some alternative frame sequences. These findings have important implications across diverse areas of molecular biology, including for genome annotation, structural biology, and evolutionary genomics.
Collapse
|
19
|
Liang X, Heath LS. Towards understanding paleoclimate impacts on primate de novo genes. G3 (BETHESDA, MD.) 2023; 13:jkad135. [PMID: 37313728 PMCID: PMC10468307 DOI: 10.1093/g3journal/jkad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
De novo genes are genes that emerge as new genes in some species, such as primate de novo genes that emerge in certain primate species. Over the past decade, a great deal of research has been conducted regarding their emergence, origins, functions, and various attributes in different species, some of which have involved estimating the ages of de novo genes. However, limited by the number of species available for whole-genome sequencing, relatively few studies have focused specifically on the emergence time of primate de novo genes. Among those, even fewer investigate the association between primate gene emergence with environmental factors, such as paleoclimate (ancient climate) conditions. This study investigates the relationship between paleoclimate and human gene emergence at primate species divergence. Based on 32 available primate genome sequences, this study has revealed possible associations between temperature changes and the emergence of de novo primate genes. Overall, findings in this study are that de novo genes tended to emerge in the recent 13 MY when the temperature continues cooling, which is consistent with past findings. Furthermore, in the context of an overall trend of cooling temperature, new primate genes were more likely to emerge during local warming periods, where the warm temperature more closely resembled the environmental condition that preceded the cooling trend. Results also indicate that both primate de novo genes and human cancer-associated genes have later origins in comparison to random human genes. Future studies can be in-depth on understanding human de novo gene emergence from an environmental perspective as well as understanding species divergence from a gene emergence perspective.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
Peng J, Zhao L. The origin and structural evolution of de novo genes in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532420. [PMID: 37425675 PMCID: PMC10326970 DOI: 10.1101/2023.03.13.532420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Although previously thought to be unlikely, recent studies have shown that de novo gene origination from previously non-genic sequences is a relatively common mechanism for gene innovation in many species and taxa. These young genes provide a unique set of candidates to study the structural and functional origination of proteins. However, our understanding of their protein structures and how these structures originate and evolve are still limited, due to a lack of systematic studies. Here, we combined high-quality base-level whole genome alignments, bioinformatic analysis, and computational structure modeling to study the origination, evolution, and protein structure of lineage-specific de novo genes. We identified 555 de novo gene candidates in D. melanogaster that originated within the Drosophilinae lineage. We found a gradual shift in sequence composition, evolutionary rates, and expression patterns with their gene ages, which indicates possible gradual shifts or adaptations of their functions. Surprisingly, we found little overall protein structural changes for de novo genes in the Drosophilinae lineage. Using Alphafold2, ESMFold, and molecular dynamics, we identified a number of de novo gene candidates with protein products that are potentially well-folded, many of which are more likely to contain transmembrane and signal proteins compared to other annotated protein-coding genes. Using ancestral sequence reconstruction, we found that most potentially well-folded proteins are often born folded. Interestingly, we observed one case where disordered ancestral proteins become ordered within a relatively short evolutionary time. Single-cell RNA-seq analysis in testis showed that although most de novo genes are enriched in spermatocytes, several young de novo genes are biased in the early spermatogenesis stage, indicating potentially important but less emphasized roles of early germline cells in the de novo gene origination in testis. This study provides a systematic overview of the origin, evolution, and structural changes of Drosophilinae-specific de novo genes.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
21
|
Grandchamp A, Kühl L, Lebherz M, Brüggemann K, Parsch J, Bornberg-Bauer E. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in Drosophila melanogaster. Genome Res 2023; 33:872-890. [PMID: 37442576 PMCID: PMC10519401 DOI: 10.1101/gr.277482.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Novel genes are essential for evolutionary innovations and differ substantially even between closely related species. Recently, multiple studies across many taxa showed that some novel genes arise de novo, that is, from previously noncoding DNA. To characterize the underlying mutations that allowed de novo gene emergence and their order of occurrence, homologous regions must be detected within noncoding sequences in closely related sister genomes. So far, most studies do not detect noncoding homologs of de novo genes because of incomplete assemblies and annotations, and long evolutionary distances separating genomes. Here, we overcome these issues by searching for de novo expressed open reading frames (neORFs), the not-yet fixed precursors of de novo genes that emerged within a single species. We sequenced and assembled genomes with long-read technology and the corresponding transcriptomes from inbred lines of Drosophila melanogaster, derived from seven geographically diverse populations. We found line-specific neORFs in abundance but few neORFs shared by lines, suggesting a rapid turnover. Gain and loss of transcription is more frequent than the creation of ORFs, for example, by forming new start and stop codons. Consequently, the gain of ORFs becomes rate limiting and is frequently the initial step in neORFs emergence. Furthermore, transposable elements (TEs) are major drivers for intragenomic duplications of neORFs, yet TE insertions are less important for the emergence of neORFs. However, highly mutable genomic regions around TEs provide new features that enable gene birth. In conclusion, neORFs have a high birth-death rate, are rapidly purged, but surviving neORFs spread neutrally through populations and within genomes.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Lucas Kühl
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Marie Lebherz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kathrin Brüggemann
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Biology Tübingen, Department of Protein Evolution, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Bruley A, Bitard-Feildel T, Callebaut I, Duprat E. A sequence-based foldability score combined with AlphaFold2 predictions to disentangle the protein order/disorder continuum. Proteins 2023; 91:466-484. [PMID: 36306150 DOI: 10.1002/prot.26441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Order and disorder govern protein functions, but there is a great diversity in disorder, from regions that are-and stay-fully disordered to conditional order. This diversity is still difficult to decipher even though it is encoded in the amino acid sequences. Here, we developed an analytic Python package, named pyHCA, to estimate the foldability of a protein segment from the only information of its amino acid sequence and based on a measure of its density in regular secondary structures associated with hydrophobic clusters, as defined by the hydrophobic cluster analysis (HCA) approach. The tool was designed by optimizing the separation between foldable segments from databases of disorder (DisProt) and order (SCOPe [soluble domains] and OPM [transmembrane domains]). It allows to specify the ratio between order, embodied by regular secondary structures (either participating in the hydrophobic core of well-folded 3D structures or conditionally formed in intrinsically disordered regions) and disorder. We illustrated the relevance of pyHCA with several examples and applied it to the sequences of the proteomes of 21 species ranging from prokaryotes and archaea to unicellular and multicellular eukaryotes, for which structure models are provided in the AlphaFold protein structure database. Cases of low-confidence scores related to disorder were distinguished from those of sequences that we identified as foldable but are still excluded from accurate modeling by AlphaFold2 due to a lack of sequence homologs or to compositional biases. Overall, our approach is complementary to AlphaFold2, providing guides to map structural innovations through evolutionary processes, at proteome and gene scales.
Collapse
Affiliation(s)
- Apolline Bruley
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
23
|
Heames B, Buchel F, Aubel M, Tretyachenko V, Loginov D, Novák P, Lange A, Bornberg-Bauer E, Hlouchová K. Experimental characterization of de novo proteins and their unevolved random-sequence counterparts. Nat Ecol Evol 2023; 7:570-580. [PMID: 37024625 PMCID: PMC10089919 DOI: 10.1038/s41559-023-02010-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/10/2023] [Indexed: 04/08/2023]
Abstract
De novo gene emergence provides a route for new proteins to be formed from previously non-coding DNA. Proteins born in this way are considered random sequences and typically assumed to lack defined structure. While it remains unclear how likely a de novo protein is to assume a soluble and stable tertiary structure, intersecting evidence from random sequence and de novo-designed proteins suggests that native-like biophysical properties are abundant in sequence space. Taking putative de novo proteins identified in human and fly, we experimentally characterize a library of these sequences to assess their solubility and structure propensity. We compare this library to a set of synthetic random proteins with no evolutionary history. Bioinformatic prediction suggests that de novo proteins may have remarkably similar distributions of biophysical properties to unevolved random sequences of a given length and amino acid composition. However, upon expression in vitro, de novo proteins exhibit moderately higher solubility which is further induced by the DnaK chaperone system. We suggest that while synthetic random sequences are a useful proxy for de novo proteins in terms of structure propensity, de novo proteins may be better integrated in the cellular system than random expectation, given their higher solubility.
Collapse
Affiliation(s)
- Brennen Heames
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Filip Buchel
- Department of Cell Biology, Charles University, BIOCEV, Prague, Czech Republic
- Department of Biochemistry, Charles University, Prague, Czech Republic
| | - Margaux Aubel
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Dmitry Loginov
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Andreas Lange
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
- Department of Protein Evolution, MPI for Developmental Biology, Tübingen, Germany.
| | - Klára Hlouchová
- Department of Cell Biology, Charles University, BIOCEV, Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
24
|
Papadopoulos C, Albà MM. Newly evolved genes in the human lineage are functional. Trends Genet 2023; 39:235-236. [PMID: 36774242 DOI: 10.1016/j.tig.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Genes restricted to a given species or lineage are mysterious. Many emerged de novo from ancestral noncoding genomic regions rather than from pre-existing genes. A new study by Vakirlis and colleagues shows that, in humans, many of these are associated with phenotypic effects, accelerating our understanding of their functional importance.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Evolutionary Genomics Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona 08003, Spain.
| | - M Mar Albà
- Evolutionary Genomics Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona 08003, Spain.
| |
Collapse
|
25
|
Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem 2023; 299:104671. [PMID: 37019214 DOI: 10.1016/j.jbc.2023.104671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 (CRTC1) nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.
Collapse
|
26
|
Aubel M, Eicholt L, Bornberg-Bauer E. Assessing structure and disorder prediction tools for de novo emerged proteins in the age of machine learning. F1000Res 2023; 12:347. [PMID: 37113259 PMCID: PMC10126731 DOI: 10.12688/f1000research.130443.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Background: De novo protein coding genes emerge from scratch in the non-coding regions of the genome and have, per definition, no homology to other genes. Therefore, their encoded de novo proteins belong to the so-called "dark protein space". So far, only four de novo protein structures have been experimentally approximated. Low homology, presumed high disorder and limited structures result in low confidence structural predictions for de novo proteins in most cases. Here, we look at the most widely used structure and disorder predictors and assess their applicability for de novo emerged proteins. Since AlphaFold2 is based on the generation of multiple sequence alignments and was trained on solved structures of largely conserved and globular proteins, its performance on de novo proteins remains unknown. More recently, natural language models of proteins have been used for alignment-free structure predictions, potentially making them more suitable for de novo proteins than AlphaFold2. Methods: We applied different disorder predictors (IUPred3 short/long, flDPnn) and structure predictors, AlphaFold2 on the one hand and language-based models (Omegafold, ESMfold, RGN2) on the other hand, to four de novo proteins with experimental evidence on structure. We compared the resulting predictions between the different predictors as well as to the existing experimental evidence. Results: Results from IUPred, the most widely used disorder predictor, depend heavily on the choice of parameters and differ significantly from flDPnn which has been found to outperform most other predictors in a comparative assessment study recently. Similarly, different structure predictors yielded varying results and confidence scores for de novo proteins. Conclusions: We suggest that, while in some cases protein language model based approaches might be more accurate than AlphaFold2, the structure prediction of de novo emerged proteins remains a difficult task for any predictor, be it disorder or structure.
Collapse
Affiliation(s)
- Margaux Aubel
- Institute for Evolution and Bidiversity, University of Muenster, Muenster, 48149, Germany
| | - Lars Eicholt
- Institute for Evolution and Bidiversity, University of Muenster, Muenster, 48149, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Bidiversity, University of Muenster, Muenster, 48149, Germany
- Department Protein Evolution, Max Planck-Institute for Biology, Tuebingen, 72076, Germany
| |
Collapse
|
27
|
Evolution and implications of de novo genes in humans. Nat Ecol Evol 2023:10.1038/s41559-023-02014-y. [PMID: 36928843 DOI: 10.1038/s41559-023-02014-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
Genes and translated open reading frames (ORFs) that emerged de novo from previously non-coding sequences provide species with opportunities for adaptation. When aberrantly activated, some human-specific de novo genes and ORFs have disease-promoting properties-for instance, driving tumour growth. Thousands of putative de novo coding sequences have been described in humans, but we still do not know what fraction of those ORFs has readily acquired a function. Here, we discuss the challenges and controversies surrounding the detection, mechanisms of origin, annotation, validation and characterization of de novo genes and ORFs. Through manual curation of literature and databases, we provide a thorough table with most de novo genes reported for humans to date. We re-evaluate each locus by tracing the enabling mutations and list proposed disease associations, protein characteristics and supporting evidence for translation and protein detection. This work will support future explorations of de novo genes and ORFs in humans.
Collapse
|
28
|
An NA, Zhang J, Mo F, Luan X, Tian L, Shen QS, Li X, Li C, Zhou F, Zhang B, Ji M, Qi J, Zhou WZ, Ding W, Chen JY, Yu J, Zhang L, Shu S, Hu B, Li CY. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat Ecol Evol 2023; 7:264-278. [PMID: 36593289 PMCID: PMC9911349 DOI: 10.1038/s41559-022-01925-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/04/2022] [Indexed: 01/03/2023]
Abstract
Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs. The functional new genes actively passing through it thus showed a mode of pre-adaptive origin, in that they acquire functions along with the achievement of their coding potential. As a proof of concept, we verified the regulations of splicing and U1 recognition on the nuclear export efficiency of one of these genes, the ENSG00000205704, in human neural progenitor cells. Notably, knock-out or over-expression of this gene in human embryonic stem cells accelerates or delays the neuronal maturation of cortical organoids, respectively. The transgenic mice with ectopically expressed ENSG00000205704 showed enlarged brains with cortical expansion. We thus demonstrate the key roles of nuclear export in de novo gene origin. These newly originated genes should reflect the novel uniqueness of human brain development.
Collapse
Affiliation(s)
- Ni A An
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuke Luan
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lu Tian
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiangshang Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjun Ji
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Shaokun Shu
- Peking University International Cancer Institute, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
29
|
Vakirlis N, Vance Z, Duggan KM, McLysaght A. De novo birth of functional microproteins in the human lineage. Cell Rep 2022; 41:111808. [PMID: 36543139 PMCID: PMC10073203 DOI: 10.1016/j.celrep.2022.111808] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Small open reading frames (sORFs) can encode functional "microproteins" that perform crucial biological tasks. However, their size makes them less amenable to genomic analysis, and their origins and conservation are poorly understood. Given their short length, it is plausible that some of these functional microproteins have recently originated entirely de novo from noncoding sequences. Here we sought to identify such cases in the human lineage by reconstructing the evolutionary origins of human microproteins previously found to have measurable, statistically significant fitness effects. By tracing the formation of each ORF and its transcriptional activation, we show that novel microproteins with significant phenotypic effects have emerged de novo throughout animal evolution, including two after the human-chimpanzee split. Notably, traditional methods for assessing coding potential would miss most of these cases. This evidence demonstrates that the functional potential intrinsic to sORFs can be relatively rapidly and frequently realized through de novo gene emergence.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Zoe Vance
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kate M Duggan
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Prabh N, Rödelsperger C. Multiple Pristionchus pacificus genomes reveal distinct evolutionary dynamics between de novo candidates and duplicated genes. Genome Res 2022; 32:1315-1327. [PMID: 35618417 PMCID: PMC9341508 DOI: 10.1101/gr.276431.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/20/2022] [Indexed: 01/03/2023]
Abstract
The birth of new genes is a major molecular innovation driving phenotypic diversity across all domains of life. Although repurposing of existing protein-coding material by duplication is considered the main process of new gene formation, recent studies have discovered thousands of transcriptionally active sequences as a rich source of new genes. However, differential loss rates have to be assumed to reconcile the high birth rates of these incipient de novo genes with the dominance of ancient gene families in individual genomes. Here, we test this rapid turnover hypothesis in the context of the nematode model organism Pristionchus pacificus We extended the existing species-level phylogenomic framework by sequencing the genomes of six divergent P. pacificus strains. We used these data to study the evolutionary dynamics of different age classes and categories of origin at a population level. Contrasting de novo candidates with new families that arose by duplication and divergence from known genes, we find that de novo candidates are typically shorter, show less expression, and are overrepresented on the sex chromosome. Although the contribution of de novo candidates increases toward young age classes, multiple comparisons within the same age class showed significantly higher attrition in de novo candidates than in known genes. Similarly, young genes remain under weak evolutionary constraints with de novo candidates representing the fastest evolving subcategory. Altogether, this study provides empirical evidence for the rapid turnover hypothesis and highlights the importance of the evolutionary timescale when quantifying the contribution of different mechanisms toward new gene formation.
Collapse
Affiliation(s)
- Neel Prabh
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Suenaga Y, Kato M, Nagai M, Nakatani K, Kogashi H, Kobatake M, Makino T. Open reading frame dominance indicates protein‐coding potential of RNAs. EMBO Rep 2022; 23:e54321. [PMID: 35438231 PMCID: PMC9171421 DOI: 10.15252/embr.202154321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have identified numerous RNAs with both coding and noncoding functions. However, the sequence characteristics that determine this bifunctionality remain largely unknown. In the present study, we develop and test the open reading frame (ORF) dominance score, which we define as the fraction of the longest ORF in the sum of all putative ORF lengths. This score correlates with translation efficiency in coding transcripts and with translation of noncoding RNAs. In bacteria and archaea, coding and noncoding transcripts have narrow distributions of high and low ORF dominance, respectively, whereas those of eukaryotes show relatively broader ORF dominance distributions, with considerable overlap between coding and noncoding transcripts. The extent of overlap positively and negatively correlates with the mutation rate of genomes and the effective population size of species, respectively. Tissue‐specific transcripts show higher ORF dominance than ubiquitously expressed transcripts, and the majority of tissue‐specific transcripts are expressed in mature testes. These data suggest that the decrease in population size and the emergence of testes in eukaryotic organisms allowed for the evolution of potentially bifunctional RNAs.
Collapse
Affiliation(s)
- Yusuke Suenaga
- Department of Molecular Carcinogenesis Chiba Cancer Centre Research Institute Chiba Japan
| | - Mamoru Kato
- Division of Bioinformatics National Cancer Centre Research Institute Tokyo Japan
| | - Momoko Nagai
- Division of Bioinformatics National Cancer Centre Research Institute Tokyo Japan
| | - Kazuma Nakatani
- Department of Molecular Carcinogenesis Chiba Cancer Centre Research Institute Chiba Japan
- Department of Molecular Biology and Oncology Chiba University School of Medicine Chiba Japan
- Innovative Medicine CHIBA Doctoral WISE Program Chiba University School of Medicine Chiba Japan
| | - Hiroyuki Kogashi
- Department of Molecular Carcinogenesis Chiba Cancer Centre Research Institute Chiba Japan
- Department of Molecular Biology and Oncology Chiba University School of Medicine Chiba Japan
| | - Miho Kobatake
- Department of Molecular Carcinogenesis Chiba Cancer Centre Research Institute Chiba Japan
| | - Takashi Makino
- Laboratory of Evolutionary Genomics Graduate School of Life Sciences Tohoku University Sendai Japan
| |
Collapse
|
32
|
Li J, Singh U, Bhandary P, Campbell J, Arendsee Z, Seetharam AS, Wurtele ES. Foster thy young: enhanced prediction of orphan genes in assembled genomes. Nucleic Acids Res 2021; 50:e37. [PMID: 34928390 PMCID: PMC9023268 DOI: 10.1093/nar/gkab1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins encoded by newly-emerged genes ('orphan genes') share no sequence similarity with proteins in any other species. They provide organisms with a reservoir of genetic elements to quickly respond to changing selection pressures. Here, we systematically assess the ability of five gene prediction pipelines to accurately predict genes in genomes according to phylostratal origin. BRAKER and MAKER are existing, popular ab initio tools that infer gene structures by machine learning. Direct Inference is an evidence-based pipeline we developed to predict gene structures from alignments of RNA-Seq data. The BIND pipeline integrates ab initio predictions of BRAKER and Direct inference; MIND combines Direct Inference and MAKER predictions. We use highly-curated Arabidopsis and yeast annotations as gold-standard benchmarks, and cross-validate in rice. Each pipeline under-predicts orphan genes (as few as 11 percent, under one prediction scenario). Increasing RNA-Seq diversity greatly improves prediction efficacy. The combined methods (BIND and MIND) yield best predictions overall, BIND identifying 68% of annotated orphan genes, 99% of ancient genes, and give the highest sensitivity score regardless dataset in Arabidopsis. We provide a light weight, flexible, reproducible, and well-documented solution to improve gene prediction.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA
| | - Urminder Singh
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Jacqueline Campbell
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agriculture Research Service, Ames, IA 50014, USA
| | - Zebulun Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Ames, IA 50014, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
33
|
Cherezov RO, Vorontsova JE, Simonova OB. The Phenomenon of Evolutionary “De Novo Generation” of Genes. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Papadopoulos C, Callebaut I, Gelly JC, Hatin I, Namy O, Renard M, Lespinet O, Lopes A. Intergenic ORFs as elementary structural modules of de novo gene birth and protein evolution. Genome Res 2021; 31:2303-2315. [PMID: 34810219 PMCID: PMC8647833 DOI: 10.1101/gr.275638.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
The noncoding genome plays an important role in de novo gene birth and in the emergence of genetic novelty. Nevertheless, how noncoding sequences' properties could promote the birth of novel genes and shape the evolution and the structural diversity of proteins remains unclear. Therefore, by combining different bioinformatic approaches, we characterized the fold potential diversity of the amino acid sequences encoded by all intergenic open reading frames (ORFs) of S. cerevisiae with the aim of (1) exploring whether the structural states' diversity of proteomes is already present in noncoding sequences, and (2) estimating the potential of the noncoding genome to produce novel protein bricks that could either give rise to novel genes or be integrated into pre-existing proteins, thus participating in protein structure diversity and evolution. We showed that amino acid sequences encoded by most yeast intergenic ORFs contain the elementary building blocks of protein structures. Moreover, they encompass the large structural state diversity of canonical proteins, with the majority predicted as foldable. Then, we investigated the early stages of de novo gene birth by reconstructing the ancestral sequences of 70 yeast de novo genes and characterized the sequence and structural properties of intergenic ORFs with a strong translation signal. This enabled us to highlight sequence and structural factors determining de novo gene emergence. Finally, we showed a strong correlation between the fold potential of de novo proteins and one of their ancestral amino acid sequences, reflecting the relationship between the noncoding genome and the protein structure universe.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, 75015 Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Renard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
35
|
Castro JF, Tautz D. The Effects of Sequence Length and Composition of Random Sequence Peptides on the Growth of E. coli Cells. Genes (Basel) 2021; 12:1913. [PMID: 34946861 PMCID: PMC8702183 DOI: 10.3390/genes12121913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
We study the potential for the de novo evolution of genes from random nucleotide sequences using libraries of E. coli expressing random sequence peptides. We assess the effects of such peptides on cell growth by monitoring frequency changes in individual clones in a complex library through four serial passages. Using a new analysis pipeline that allows the tracing of peptides of all lengths, we find that over half of the peptides have consistent effects on cell growth. Across nine different experiments, around 16% of clones increase in frequency and 36% decrease, with some variation between individual experiments. Shorter peptides (8-20 residues), are more likely to increase in frequency, longer ones are more likely to decrease. GC content, amino acid composition, intrinsic disorder, and aggregation propensity show slightly different patterns between peptide groups. Sequences that increase in frequency tend to be more disordered with lower aggregation propensity. This coincides with the observation that young genes with more disordered structures are better tolerated in genomes. Our data indicate that random sequences can be a source of evolutionary innovation, since a large fraction of them are well tolerated by the cells or can provide a growth advantage.
Collapse
Affiliation(s)
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306 Plön, Germany;
| |
Collapse
|
36
|
Rivard EL, Ludwig AG, Patel PH, Grandchamp A, Arnold SE, Berger A, Scott EM, Kelly BJ, Mascha GC, Bornberg-Bauer E, Findlay GD. A putative de novo evolved gene required for spermatid chromatin condensation in Drosophila melanogaster. PLoS Genet 2021; 17:e1009787. [PMID: 34478447 PMCID: PMC8445463 DOI: 10.1371/journal.pgen.1009787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics has enabled the identification of genes that potentially evolved de novo from non-coding sequences. Many such genes are expressed in male reproductive tissues, but their functions remain poorly understood. To address this, we conducted a functional genetic screen of over 40 putative de novo genes with testis-enriched expression in Drosophila melanogaster and identified one gene, atlas, required for male fertility. Detailed genetic and cytological analyses showed that atlas is required for proper chromatin condensation during the final stages of spermatogenesis. Atlas protein is expressed in spermatid nuclei and facilitates the transition from histone- to protamine-based chromatin packaging. Complementary evolutionary analyses revealed the complex evolutionary history of atlas. The protein-coding portion of the gene likely arose at the base of the Drosophila genus on the X chromosome but was unlikely to be essential, as it was then lost in several independent lineages. Within the last ~15 million years, however, the gene moved to an autosome, where it fused with a conserved non-coding RNA and evolved a non-redundant role in male fertility. Altogether, this study provides insight into the integration of novel genes into biological processes, the links between genomic innovation and functional evolution, and the genetic control of a fundamental developmental process, gametogenesis.
Collapse
Affiliation(s)
- Emily L. Rivard
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Andrew G. Ludwig
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Prajal H. Patel
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | | | - Sarah E. Arnold
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | | | - Emilie M. Scott
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Brendan J. Kelly
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Grace C. Mascha
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Erich Bornberg-Bauer
- University of Münster, Münster, Germany
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Geoffrey D. Findlay
- College of the Holy Cross, Worcester, Massachusetts, United States of America
| |
Collapse
|
37
|
Majic P, Payne JL. Enhancers Facilitate the Birth of De Novo Genes and Gene Integration into Regulatory Networks. Mol Biol Evol 2021; 37:1165-1178. [PMID: 31845961 PMCID: PMC7086177 DOI: 10.1093/molbev/msz300] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulatory networks control the spatiotemporal gene expression patterns that give rise to and define the individual cell types of multicellular organisms. In eumetazoa, distal regulatory elements called enhancers play a key role in determining the structure of such networks, particularly the wiring diagram of “who regulates whom.” Mutations that affect enhancer activity can therefore rewire regulatory networks, potentially causing adaptive changes in gene expression. Here, we use whole-tissue and single-cell transcriptomic and chromatin accessibility data from mouse to show that enhancers play an additional role in the evolution of regulatory networks: They facilitate network growth by creating transcriptionally active regions of open chromatin that are conducive to de novo gene evolution. Specifically, our comparative transcriptomic analysis with three other mammalian species shows that young, mouse-specific intergenic open reading frames are preferentially located near enhancers, whereas older open reading frames are not. Mouse-specific intergenic open reading frames that are proximal to enhancers are more highly and stably transcribed than those that are not proximal to enhancers or promoters, and they are transcribed in a limited diversity of cellular contexts. Furthermore, we report several instances of mouse-specific intergenic open reading frames proximal to promoters showing evidence of being repurposed enhancers. We also show that open reading frames gradually acquire interactions with enhancers over macroevolutionary timescales, helping integrate genes—those that have arisen de novo or by other means—into existing regulatory networks. Taken together, our results highlight a dual role of enhancers in expanding and rewiring gene regulatory networks.
Collapse
Affiliation(s)
- Paco Majic
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Corresponding author: E-mail:
| |
Collapse
|
38
|
Lange A, Patel PH, Heames B, Damry AM, Saenger T, Jackson CJ, Findlay GD, Bornberg-Bauer E. Structural and functional characterization of a putative de novo gene in Drosophila. Nat Commun 2021; 12:1667. [PMID: 33712569 PMCID: PMC7954818 DOI: 10.1038/s41467-021-21667-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/03/2021] [Indexed: 11/26/2022] Open
Abstract
Comparative genomic studies have repeatedly shown that new protein-coding genes can emerge de novo from noncoding DNA. Still unknown is how and when the structures of encoded de novo proteins emerge and evolve. Combining biochemical, genetic and evolutionary analyses, we elucidate the function and structure of goddard, a gene which appears to have evolved de novo at least 50 million years ago within the Drosophila genus. Previous studies found that goddard is required for male fertility. Here, we show that Goddard protein localizes to elongating sperm axonemes and that in its absence, elongated spermatids fail to undergo individualization. Combining modelling, NMR and circular dichroism (CD) data, we show that Goddard protein contains a large central α-helix, but is otherwise partially disordered. We find similar results for Goddard's orthologs from divergent fly species and their reconstructed ancestral sequences. Accordingly, Goddard's structure appears to have been maintained with only minor changes over millions of years.
Collapse
Affiliation(s)
- Andreas Lange
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Prajal H Patel
- Department of Biology, College of the Holy Cross, Worcester, MA, USA
| | - Brennen Heames
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Adam M Damry
- Research School of Chemistry, ANU College of Science, Canberra, Australia
| | - Thorsten Saenger
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Colin J Jackson
- Research School of Chemistry, ANU College of Science, Canberra, Australia
| | | | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
39
|
Structure and function of naturally evolved de novo proteins. Curr Opin Struct Biol 2021; 68:175-183. [PMID: 33567396 DOI: 10.1016/j.sbi.2020.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023]
Abstract
Comparative evolutionary genomics has revealed that novel protein coding genes can emerge randomly from non-coding DNA. While most of the myriad of transcripts which continuously emerge vanish rapidly, some attain regulatory regions, become translated and survive. More surprisingly, sequence properties of de novo proteins are almost indistinguishable from randomly obtained sequences, yet de novo proteins may gain functions and integrate into eukaryotic cellular networks quite easily. We here discuss current knowledge on de novo proteins, their structures, functions and evolution. Since the existence of de novo proteins seems at odds with decade-long attempts to construct proteins with novel structures and functions from scratch, we suggest that a better understanding of de novo protein evolution may fuel new strategies for protein design.
Collapse
|
40
|
Uncovering de novo gene birth in yeast using deep transcriptomics. Nat Commun 2021; 12:604. [PMID: 33504782 PMCID: PMC7841160 DOI: 10.1038/s41467-021-20911-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
De novo gene origination has been recently established as an important mechanism for the formation of new genes. In organisms with a large genome, intergenic and intronic regions provide plenty of raw material for new transcriptional events to occur, but little is know about how de novo transcripts originate in more densely-packed genomes. Here, we identify 213 de novo originated transcripts in Saccharomyces cerevisiae using deep transcriptomics and genomic synteny information from multiple yeast species grown in two different conditions. We find that about half of the de novo transcripts are expressed from regions which already harbor other genes in the opposite orientation; these transcripts show similar expression changes in response to stress as their overlapping counterparts, and some appear to translate small proteins. Thus, a large fraction of de novo genes in yeast are likely to co-evolve with already existing genes.
Collapse
|
41
|
Puntambekar S, Newhouse R, San-Miguel J, Chauhan R, Vernaz G, Willis T, Wayland MT, Umrania Y, Miska EA, Prabakaran S. Evolutionary divergence of novel open reading frames in cichlids speciation. Sci Rep 2020; 10:21570. [PMID: 33299045 PMCID: PMC7726158 DOI: 10.1038/s41598-020-78555-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023] Open
Abstract
Novel open reading frames (nORFs) with coding potential may arise from noncoding DNA. Not much is known about their emergence, functional role, fixation in a population or contribution to adaptive radiation. Cichlids fishes exhibit extensive phenotypic diversification and speciation. Encounters with new environments alone are not sufficient to explain this striking diversity of cichlid radiation because other taxa coexistent with the Cichlidae demonstrate lower species richness. Wagner et al. analyzed cichlid diversification in 46 African lakes and reported that both extrinsic environmental factors and intrinsic lineage-specific traits related to sexual selection have strongly influenced the cichlid radiation, which indicates the existence of unknown molecular mechanisms responsible for rapid phenotypic diversification, such as emergence of novel open reading frames (nORFs). In this study, we integrated transcriptomic and proteomic signatures from two tissues of two cichlids species, identified nORFs and performed evolutionary analysis on these nORF regions. Our results suggest that the time scale of speciation of the two species and evolutionary divergence of these nORF genomic regions are similar and indicate a potential role for these nORFs in speciation of the cichlid fishes.
Collapse
Affiliation(s)
- Shraddha Puntambekar
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Rachel Newhouse
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jaime San-Miguel
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Ruchi Chauhan
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Grégoire Vernaz
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Thomas Willis
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Matthew T Wayland
- Department of Zoology, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Eric A Miska
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Sudhakaran Prabakaran
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
- St. Edmund's College, University of Cambridge, Cambridge, CB3 0BN, UK.
| |
Collapse
|
42
|
Dowling D, Schmitz JF, Bornberg-Bauer E. Stochastic Gain and Loss of Novel Transcribed Open Reading Frames in the Human Lineage. Genome Biol Evol 2020; 12:2183-2195. [PMID: 33210146 PMCID: PMC7674706 DOI: 10.1093/gbe/evaa194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to known genes, much of the human genome is transcribed into RNA. Chance formation of novel open reading frames (ORFs) can lead to the translation of myriad new proteins. Some of these ORFs may yield advantageous adaptive de novo proteins. However, widespread translation of noncoding DNA can also produce hazardous protein molecules, which can misfold and/or form toxic aggregates. The dynamics of how de novo proteins emerge from potentially toxic raw materials and what influences their long-term survival are unknown. Here, using transcriptomic data from human and five other primates, we generate a set of transcribed human ORFs at six conservation levels to investigate which properties influence the early emergence and long-term retention of these expressed ORFs. As these taxa diverged from each other relatively recently, we present a fine scale view of the evolution of novel sequences over recent evolutionary time. We find that novel human-restricted ORFs are preferentially located on GC-rich gene-dense chromosomes, suggesting their retention is linked to pre-existing genes. Sequence properties such as intrinsic structural disorder and aggregation propensity-which have been proposed to play a role in survival of de novo genes-remain unchanged over time. Even very young sequences code for proteins with low aggregation propensities, suggesting that genomic regions with many novel transcribed ORFs are concomitantly less likely to produce ORFs which code for harmful toxic proteins. Our data indicate that the survival of these novel ORFs is largely stochastic rather than shaped by selection.
Collapse
Affiliation(s)
- Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Jonathan F Schmitz
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | |
Collapse
|
43
|
Evolution of novel genes in three-spined stickleback populations. Heredity (Edinb) 2020; 125:50-59. [PMID: 32499660 PMCID: PMC7413265 DOI: 10.1038/s41437-020-0319-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes frequently acquire new protein-coding genes which may significantly impact an organism’s fitness. Novel genes can be created, for example, by duplication of large genomic regions or de novo, from previously non-coding DNA. Either way, creation of a novel transcript is an essential early step during novel gene emergence. Most studies on the gain-and-loss dynamics of novel genes so far have compared genomes between species, constraining analyses to genes that have remained fixed over long time scales. However, the importance of novel genes for rapid adaptation among populations has recently been shown. Therefore, since little is known about the evolutionary dynamics of transcripts across natural populations, we here study transcriptomes from several tissues and nine geographically distinct populations of an ecological model species, the three-spined stickleback. Our findings suggest that novel genes typically start out as transcripts with low expression and high tissue specificity. Early expression regulation appears to be mediated by gene-body methylation. Although most new and narrowly expressed genes are rapidly lost, those that survive and subsequently spread through populations tend to gain broader and higher expression levels. The properties of the encoded proteins, such as disorder and aggregation propensity, hardly change. Correspondingly, young novel genes are not preferentially under positive selection but older novel genes more often overlap with FST outlier regions. Taken together, expression of the surviving novel genes is rapidly regulated, probably via epigenetic mechanisms, while structural properties of encoded proteins are non-debilitating and might only change much later.
Collapse
|
44
|
Heames B, Schmitz J, Bornberg-Bauer E. A Continuum of Evolving De Novo Genes Drives Protein-Coding Novelty in Drosophila. J Mol Evol 2020; 88:382-398. [PMID: 32253450 PMCID: PMC7162840 DOI: 10.1007/s00239-020-09939-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
Orphan genes, lacking detectable homologs in outgroup species, typically represent 10-30% of eukaryotic genomes. Efforts to find the source of these young genes indicate that de novo emergence from non-coding DNA may in part explain their prevalence. Here, we investigate the roots of orphan gene emergence in the Drosophila genus. Across the annotated proteomes of twelve species, we find 6297 orphan genes within 4953 taxon-specific clusters of orthologs. By inferring the ancestral DNA as non-coding for between 550 and 2467 (8.7-39.2%) of these genes, we describe for the first time how de novo emergence contributes to the abundance of clade-specific Drosophila genes. In support of them having functional roles, we show that de novo genes have robust expression and translational support. However, the distinct nucleotide sequences of de novo genes, which have characteristics intermediate between intergenic regions and conserved genes, reflect their recent birth from non-coding DNA. We find that de novo genes encode more disordered proteins than both older genes and intergenic regions. Together, our results suggest that gene emergence from non-coding DNA provides an abundant source of material for the evolution of new proteins. Following gene birth, gradual evolution over large evolutionary timescales moulds sequence properties towards those of conserved genes, resulting in a continuum of properties whose starting points depend on the nucleotide sequences of an initial pool of novel genes.
Collapse
Affiliation(s)
- Brennen Heames
- Institute for Evolution and Biodiversity, 48149, Münster, Germany
| | - Jonathan Schmitz
- Institute for Evolution and Biodiversity, 48149, Münster, Germany
| | | |
Collapse
|
45
|
Ruiz-Orera J, Villanueva-Cañas JL, Albà MM. Evolution of new proteins from translated sORFs in long non-coding RNAs. Exp Cell Res 2020; 391:111940. [PMID: 32156600 DOI: 10.1016/j.yexcr.2020.111940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/07/2023]
Abstract
High throughput RNA sequencing techniques have revealed that a large fraction of the genome is transcribed into long non-coding RNAs (lncRNAs). Unlike canonical protein-coding genes, lncRNAs do not contain long open reading frames (ORFs) and tend to be poorly conserved across species. However, many of them contain small ORFs (sORFs) that exhibit translation signatures according to ribosome profiling or proteomics data. These sORFs are a source of putative novel proteins; some of them may confer a selective advantage and be maintained over time, a process known as de novo gene birth. Here we review the mechanisms by which randomly occurring sORFs in lncRNAs can become new functional proteins.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - M Mar Albà
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital Del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
46
|
Vakirlis N, Acar O, Hsu B, Castilho Coelho N, Van Oss SB, Wacholder A, Medetgul-Ernar K, Bowman RW, Hines CP, Iannotta J, Parikh SB, McLysaght A, Camacho CJ, O'Donnell AF, Ideker T, Carvunis AR. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat Commun 2020; 11:781. [PMID: 32034123 PMCID: PMC7005711 DOI: 10.1038/s41467-020-14500-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/20/2019] [Indexed: 11/14/2022] Open
Abstract
Recent evidence demonstrates that novel protein-coding genes can arise de novo from non-genic loci. This evolutionary innovation is thought to be facilitated by the pervasive translation of non-genic transcripts, which exposes a reservoir of variable polypeptides to natural selection. Here, we systematically characterize how these de novo emerging coding sequences impact fitness in budding yeast. Disruption of emerging sequences is generally inconsequential for fitness in the laboratory and in natural populations. Overexpression of emerging sequences, however, is enriched in adaptive fitness effects compared to overexpression of established genes. We find that adaptive emerging sequences tend to encode putative transmembrane domains, and that thymine-rich intergenic regions harbor a widespread potential to produce transmembrane domains. These findings, together with in-depth examination of the de novo emerging YBR196C-A locus, suggest a novel evolutionary model whereby adaptive transmembrane polypeptides emerge de novo from thymine-rich non-genic regions and subsequently accumulate changes molded by natural selection. There is increasing evidence that protein-coding genes can emerge de novo from noncoding genomic regions. Vakirlis et al. propose that sequences encoding transmembrane polypeptides can emerge de novo in thymine-rich genomic regions and provide organisms with fitness benefits.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, 2, Ireland
| | - Omer Acar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Brian Hsu
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - S Branden Van Oss
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Kate Medetgul-Ernar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States
| | - Ray W Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Cameron P Hines
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States
| | - John Iannotta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Saurin Bipin Parikh
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, 2, Ireland
| | - Carlos J Camacho
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Allyson F O'Donnell
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States. .,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States.
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States. .,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
47
|
Rödelsperger C, Prabh N, Sommer RJ. New Gene Origin and Deep Taxon Phylogenomics: Opportunities and Challenges. Trends Genet 2019; 35:914-922. [DOI: 10.1016/j.tig.2019.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023]
|
48
|
Dunn CD, Paavilainen VO. Wherever I may roam: organellar protein targeting and evolvability. Curr Opin Genet Dev 2019; 58-59:9-16. [DOI: 10.1016/j.gde.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/20/2019] [Indexed: 02/08/2023]
|
49
|
Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, Skrabar N, Ullrich KK, Tautz D. A de novo evolved gene in the house mouse regulates female pregnancy cycles. eLife 2019; 8:44392. [PMID: 31436535 PMCID: PMC6760900 DOI: 10.7554/elife.44392] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation. Different species have specific genes that set them apart from other species. Yet exactly how these species-specific genes originate is not fully known. The traditional view is that existing old genes are duplicated to make a ‘spare’ copy, which can change through mutations into a new gene with a new role gradually over time. Despite there being lots of evidence supporting this theory, not all new genes found in recent years can be traced back to older genes. This led to an alternative view – that recently evolved genes can also appear ‘de novo’, and come from regions of random DNA sequences that did not previously code for a protein. So far, the possibility of genes forming de novo during evolution has largely been supported by comparing and analyzing the genomes of related species. However, very little is known about the biological role these de novo genes play. Now, Xie et al. have generated a list of recently evolved de novo mouse genes, and carried out a detailed analysis of one de novo gene expressed in females at the time when embryos implant into the uterus wall. To study the role of this gene, Xie et al. created a strain of knock-out mice that have a defunct version of the protein coded by the gene. Loss of this protein caused female mice to have their second litter after a shorter period of time and increased the likelihood that female mice would terminate their newborn pups. This suggests that this newly discovered de novo gene is involved in regulating the female reproductive cycles of mice. Further analysis showed that this de novo gene counteracts the action of an older gene that promotes the implantation of embryos. This gene has therefore likely evolved due to the benefit it offers mothers, as it protects them from experiencing the increased physiological stress caused by a premature second pregnancy. These findings support the idea that genes which have evolved de novo can have an essential biological purpose despite coming from random DNA sequences. This establishes that de novo evolution of genes is the second major mechanism of how new genes with significant biological roles can form in the genome.
Collapse
Affiliation(s)
- Chen Xie
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cemalettin Bekpen
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rebecca Krebs-Wheaton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Neva Skrabar
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kristian Karsten Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
50
|
Prabh N, Rödelsperger C. De Novo, Divergence, and Mixed Origin Contribute to the Emergence of Orphan Genes in Pristionchus Nematodes. G3 (BETHESDA, MD.) 2019; 9:2277-2286. [PMID: 31088903 PMCID: PMC6643871 DOI: 10.1534/g3.119.400326] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
Abstract
Homology is a fundamental concept in comparative biology. It is extensively used at the sequence level to make phylogenetic hypotheses and functional inferences. Nonetheless, the majority of eukaryotic genomes contain large numbers of orphan genes lacking homologs in other taxa. Generally, the fraction of orphan genes is higher in genomically undersampled clades, and in the absence of closely related genomes any hypothesis about their origin and evolution remains untestable. Previously, we sequenced ten genomes with an underlying ladder-like phylogeny to establish a phylogenomic framework for studying genome evolution in diplogastrid nematodes. Here, we use this deeply sampled data set to understand the processes that generate orphan genes in our focal species Pristionchus pacificus Based on phylostratigraphic analysis and additional bioinformatic filters, we obtained 29 high-confidence candidate genes for which mechanisms of orphan origin were proposed based on manual inspection. This revealed diverse mechanisms including annotation artifacts, chimeric origin, alternative reading frame usage, and gene splitting with subsequent gain of de novo exons. In addition, we present two cases of complete de novo origination from non-coding regions, which represents one of the first reports of de novo genes in nematodes. Thus, we conclude that de novo emergence, divergence, and mixed mechanisms contribute to novel gene formation in Pristionchus nematodes.
Collapse
Affiliation(s)
- Neel Prabh
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, August Thienemann Str. 2, 24306 Plön, Germany
| | - Christian Rödelsperger
- Department of Integrative Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|