1
|
Kaufmann P, Rönn JL, Immonen E, Arnqvist G. Sex-Specific Dominance of Gene Expression in Seed Beetles. Mol Biol Evol 2024; 41:msae244. [PMID: 39692633 DOI: 10.1093/molbev/msae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
When different alleles are favored in different environments, dominance reversal where alternate alleles are dominant in the environment in which they are favored can generate net balancing selection. The sexes represent two distinct genetic environments and sexually antagonistic (SA) selection can maintain genetic variation, especially when the alleles involved show sex-specific dominance. Sexual dimorphism in gene expression is pervasive and has been suggested to result from SA selection. Yet, whether gene-regulatory variation shows sex-specific dominance is poorly understood. We tested for sex-specific dominance in gene expression using three crosses between homozygous lines derived from a population of a seed beetle, where a previous study documented a signal of dominance reversal for fitness between the sexes. Overall, we found that the dominance effects of variants affecting gene expression were positively correlated between the sexes (r = 0.33 to 0.44). Yet, 586 transcripts showed significant differences in dominance between the sexes. Sex-specific dominance was significantly more common in transcripts with more sex-biased expression, in two of three of our crosses. Among transcripts showing sex-specific dominance, lesser sexual dimorphism in gene expression among heterozygotes was somewhat more common than greater. Gene ontology enrichment analyses showed that functional categories associated with known SA phenotypes in Callosobruchus maculatus were overrepresented among transcripts with sex-specific dominance, including genes involved in metabolic processes and the target-of-rapamycin pathway. Our results support the suggestion that sex-specific dominance of regulatory variants contributes to the maintenance of genetic variation in fitness mediated by SA selection in this species.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | | | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75234 Uppsala, Sweden
| |
Collapse
|
2
|
Chen Q, Li Y, Fang Z, Wu Q, Tan L, Weng Q. CYP4BN4v7 regulates the population density dependent oocyte maturity rate in bean beetles. Sci Rep 2024; 14:28574. [PMID: 39562601 PMCID: PMC11576951 DOI: 10.1038/s41598-024-79866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
The bean beetle (Callosobruchus maculatus) clearly exhibits population density-dependent polymorphism. Cytochrome P450 (CYP) is involved in many aspects of the physiological activities of insects. However, the role of CYP in population density-dependent polymorphisms remains unknown. The terminal oocyte maturity rate of high-population-density individuals (H) was faster than that of low-population-density individuals (L). A total of 56 CYP-like genes were identified from transcriptomic and genomic data, including seven clan 2 CYP-like genes, seven mitochondrial CYP-like genes, 19 clan 3 CYP-like genes, and 23 clan 4 CYP-like genes. Gene duplication might occur in CYP9Z4-like, CYP345A1-like, CYP345A2-like, CYP349A1-like, CYP349A2-like, and CYP4BN4-like. Thirteen and two CYP-like genes were up-regulated and down-regulated, respectively, in H. Among these CYP-like genes, CYP4BN4v7-like was the most abundant CYP. CYP4BN4v7-like was more highly expressed in the head than in the thorax and abdomen. Its mRNA levels in the head, thorax, and abdomen were greater in H than in L. After RNA interference decreased its mRNA level, the terminal oocyte maturity rate decreased. Moreover, the expression level of insulin-like peptide 1 (ILP1), which plays a vital role in regulating terminal oocyte development, decreased in the head. In conclusion, CYP4BN4v7-like modulated the population density-dependent terminal oocyte maturity rate by regulating the expression of ILP1.
Collapse
Affiliation(s)
- Qianquan Chen
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
| | - Yongqin Li
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Gui'an, Guizhou, China.
- Qiannan Normal University for Nationalities, Duyun, Guizhou, China.
| |
Collapse
|
3
|
McCaw BA, Leonard AM, Lancaster LT. Nonlinear transcriptomic responses to compounded environmental changes across temperature and resources in a pest beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:11. [PMID: 39670892 PMCID: PMC11638975 DOI: 10.1093/jisesa/ieae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
Many species are experiencing drastic and multidimensional changes to their environment due to anthropogenic events. These multidimensional changes may act nonadditively on physiological and life history responses, and thus may not be predicted by responses to single dimensional environmental changes. Therefore, work is needed to understand species' responses to multiple aspects of change. We used whole-transcriptomic RNA-Sequencing and life history assays to uncover responses to singly-applied shifts in resource or temperature environmental dimensions, in comparison to combined, multidimensional change, in the crop pest seed beetle, Callosobruchus maculatus. We found that multidimensional change caused larger fecundity, developmental period and offspring viability life history changes than predicted by additive effects of 1-dimensional changes. In addition, there was little overlap between genes differentially expressed under multidimensional treatment versus under altered resource or temperature conditions alone. Moreover, 115 genes exhibited significant resource × temperature interaction effects on expression, including those involved in energy metabolism, detoxification, and enhanced formation of cuticle structural components. We conclude that single dimensional changes alone cannot determine life history and transcriptomic responses to multidimensional environmental change. These results highlight the importance of studying multidimensional environmental change for understanding the molecular and phenotypic responses that may allow organisms including insects to rapidly adapt simultaneously to multiple aspects of environmental change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Aoife M Leonard
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | | |
Collapse
|
4
|
McCaw BA, Leonard AM, Stevenson TJ, Lancaster LT. A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle. INSECT MOLECULAR BIOLOGY 2024; 33:516-533. [PMID: 38864655 DOI: 10.1111/imb.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Aoife M Leonard
- Centre for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tyler J Stevenson
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
5
|
Castano-Sanz V, Gomez-Mestre I, Rodriguez-Exposito E, Garcia-Gonzalez F. Pesticide exposure triggers sex-specific inter- and transgenerational effects conditioned by past sexual selection. Proc Biol Sci 2024; 291:20241037. [PMID: 39014998 PMCID: PMC11252676 DOI: 10.1098/rspb.2024.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.
Collapse
Affiliation(s)
- Veronica Castano-Sanz
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | - Ivan Gomez-Mestre
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | | | - Francisco Garcia-Gonzalez
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
6
|
Lu HR, Mao CY, Zhang LJ, He JW, Wang XS, Zhang XY, Fan WL, Huang ZZ, Zong L, Cui CH, Wu FM, Wang XL, Zou Z, Li XY, Ge SQ. High-quality reference genome of cowpea beetle Callosobruchus maculatus. Sci Data 2024; 11:799. [PMID: 39025902 PMCID: PMC11258224 DOI: 10.1038/s41597-024-03638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Callosobruchus maculatus is one of the most competitive stored grain pests, which causes a great loss to agricultural economy. However, due to an inadequacy of high-quality reference genome, the molecular mechanisms for olfactory and hypoxic adaptations to stored environments are unknown and require to be revealed urgently, which will contribute to the detection and prevention of the invasive pests C. maculatus. Here, we presented a high-quality chromosome-level genome of C. maculatus based on Illumina, Nanopore and Hi-C sequencing data. The total size was 1.2 Gb, and 65.17% (797.47 Mb) of it was identified to be repeat sequences. Among assembled chromosomes, chromosome 10 was considered the X chromosome according to the evidence of reads coverage and homologous genes among species. The current version of high-quality genome provides preferable data resources for the adaptive evolution research of C. maculatus.
Collapse
Affiliation(s)
- Hao-Ran Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chu-Yang Mao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li-Jie Zhang
- Science and Technical Research Center of China Customs, Beijing, China
| | - Jin-Wu He
- Northwestern Polytechnical University, Xian, China
| | - Xie-Shuang Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Ying Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Li Fan
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
| | - Zheng-Zhong Huang
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Zong
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chu-Han Cui
- College of Life Sciences, Hebei University, Baoding, China
| | - Feng-Ming Wu
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xue-Yan Li
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Biodiversity Information, Yunnan, 650223, China.
| | - Si-Qin Ge
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Papachristos K, Sayadi A, Arnqvist G. Comparative Genomic Analysis of the Pattern of Evolution of Male and Female Reproductive Proteins in Seed Beetles. Genome Biol Evol 2024; 16:evae143. [PMID: 38941482 PMCID: PMC11251426 DOI: 10.1093/gbe/evae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Male seminal fluid proteins often show signs of positive selection and divergent evolution, believed to reflect male-female coevolution. Yet, our understanding of the predicted concerted evolution of seminal fluid proteins and female reproductive proteins is limited. We sequenced, assembled, and annotated the genome of two species of seed beetles allowing a comparative analysis of four closely related species of these herbivorous insects. We compare the general pattern of evolution in genes encoding seminal fluid proteins and female reproductive proteins with those in digestive protein genes and well-conserved reference genes. We found that female reproductive proteins showed an overall ratio of nonsynonymous to synonymous substitutions (ω) similar to that of conserved genes, while seminal fluid proteins and digestive proteins exhibited higher overall ω values. Further, seminal fluid proteins and digestive proteins showed a higher proportion of sites putatively under positive selection, and explicit tests showed no difference in relaxed selection between protein types. Evolutionary rate covariation analyses showed that evolutionary rates among seminal fluid proteins were on average more closely correlated with those in female reproductive proteins than with either digestive or conserved genes. Gene expression showed the expected negative covariation with ω values, except for male-biased genes where this negative relationship was reversed. In conclusion, seminal fluid proteins showed relatively rapid evolution and signs of positive selection. In contrast, female reproductive proteins evolved at a lower rate under selective constraints, on par with genes known to be well conserved. Although our findings provide support for concerted evolution of seminal fluid proteins and female reproductive proteins, they also suggest that these two classes of proteins evolve under partly distinct selective regimes.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Pennell TM, Mank JE, Alonzo SH, Hosken DJ. On the resolution of sexual conflict over shared traits. Proc Biol Sci 2024; 291:20240438. [PMID: 39082243 PMCID: PMC11289733 DOI: 10.1098/rspb.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Anisogamy, different-sized male and female gametes, sits at the heart of sexual selection and conflict between the sexes. Sperm producers (males) and egg producers (females) of the same species generally share most, if not all, of the same genome, but selection frequently favours different trait values in each sex for traits common to both. The extent to which this conflict might be resolved, and the potential mechanisms by which this can occur, have been widely debated. Here, we summarize recent findings and emphasize that once the sexes evolve, sexual selection is ongoing, and therefore new conflict is always possible. In addition, sexual conflict is largely a multivariate problem, involving trait combinations underpinned by networks of interconnected genes. Although these complexities can hinder conflict resolution, they also provide multiple possible routes to decouple male and female phenotypes and permit sex-specific evolution. Finally, we highlight difficulty in the study of sexual conflict over shared traits and promising directions for future research.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060, USA
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| |
Collapse
|
9
|
Chakrabarty A, Chakraborty S, Nandi D, Basu A. Multivariate genetic architecture reveals testosterone-driven sexual antagonism in contemporary humans. Proc Natl Acad Sci U S A 2024; 121:e2404364121. [PMID: 38833469 PMCID: PMC11181031 DOI: 10.1073/pnas.2404364121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sex difference (SD) is ubiquitous in humans despite shared genetic architecture (SGA) between the sexes. A univariate approach, i.e., studying SD in single traits by estimating genetic correlation, does not provide a complete biological overview, because traits are not independent and are genetically correlated. The multivariate genetic architecture between the sexes can be summarized by estimating the additive genetic (co)variance across shared traits, which, apart from the cross-trait and cross-sex covariances, also includes the cross-sex-cross-trait covariances, e.g., between height in males and weight in females. Using such a multivariate approach, we investigated SD in the genetic architecture of 12 anthropometric, fat depositional, and sex-hormonal phenotypes. We uncovered sexual antagonism (SA) in the cross-sex-cross-trait covariances in humans, most prominently between testosterone and the anthropometric traits - a trend similar to phenotypic correlations. 27% of such cross-sex-cross-trait covariances were of opposite sign, contributing to asymmetry in the SGA. Intriguingly, using multivariate evolutionary simulations, we observed that the SGA acts as a genetic constraint to the evolution of SD in humans only when selection is sexually antagonistic and not concordant. Remarkably, we found that the lifetime reproductive success in both the sexes shows a positive genetic correlation with anthropometric traits, but not with testosterone. Moreover, we demonstrated that genetic variance is depleted along multivariate trait combinations in both the sexes but in different directions, suggesting absolute genetic constraint to evolution. Our results indicate that testosterone drives SA in contemporary humans and emphasize the necessity and significance of using a multivariate framework in studying SD.
Collapse
Affiliation(s)
- Anasuya Chakrabarty
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani741251, West Bengal, India
| | - Saikat Chakraborty
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani741251, West Bengal, India
- Biostatistics Division, Global Capability Center, GlaxoSmithKline India Global Service Private Limited, Bangalore560037, India
| | - Diptarup Nandi
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani741251, West Bengal, India
- School of Arts and Sciences, Azim Premji University, Bengaluru562125, Karnataka, India
| | - Analabha Basu
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani741251, West Bengal, India
| |
Collapse
|
10
|
VanKuren NW, Chen J, Long M. Sexual conflict drive in the rapid evolution of new gametogenesis genes. Semin Cell Dev Biol 2024; 159-160:27-37. [PMID: 38309142 DOI: 10.1016/j.semcdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of Apollo and Artemis, two extremely young genes (<200,000 years) in Drosophila melanogaster, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and protein sequence evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, Apollo is essential for male fitness but detrimental to female fitness, while Artemis is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology and Evolution, The University of Chicago, United States.
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, United States
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, United States.
| |
Collapse
|
11
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
12
|
Li Y, Fang Z, Tan L, Wu Q, Liu Q, Wang Y, Weng Q, Chen Q. Gene redundancy and gene compensation of insulin-like peptides in the oocyte development of bean beetle. PLoS One 2024; 19:e0302992. [PMID: 38713664 PMCID: PMC11075890 DOI: 10.1371/journal.pone.0302992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/09/2024] Open
Abstract
Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.
Collapse
Affiliation(s)
- Yongqin Li
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Yeying Wang
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
- Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| | - Qianquan Chen
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| |
Collapse
|
13
|
Arnqvist G, Westerberg I, Galbraith J, Sayadi A, Scofield DG, Olsen RA, Immonen E, Bonath F, Ewels P, Suh A. A chromosome-level assembly of the seed beetle Callosobruchus maculatus genome with annotation of its repetitive elements. G3 (BETHESDA, MD.) 2024; 14:jkad266. [PMID: 38092066 PMCID: PMC10849321 DOI: 10.1093/g3journal/jkad266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 02/09/2024]
Abstract
Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Ivar Westerberg
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE10691, Sweden
| | - James Galbraith
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala SE75236, Sweden
| | - Douglas G Scofield
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
- Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE75236, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE10691, Sweden
| | - Elina Immonen
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE10691, Sweden
| | | | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
| |
Collapse
|
14
|
Willink B, Tunström K, Nilén S, Chikhi R, Lemane T, Takahashi M, Takahashi Y, Svensson EI, Wheat CW. The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies. Nat Ecol Evol 2024; 8:83-97. [PMID: 37932383 PMCID: PMC10781644 DOI: 10.1038/s41559-023-02243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm, Sweden.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sofie Nilén
- Department of Biology, Lund University, Lund, Sweden
| | - Rayan Chikhi
- Sequence Bioinformatics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Téo Lemane
- University of Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Michihiko Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
15
|
Kralj-Fišer S, Kuntner M, Debes PV. Sex-specific trait architecture in a spider with sexual size dimorphism. J Evol Biol 2023; 36:1428-1437. [PMID: 37702091 DOI: 10.1111/jeb.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 09/14/2023]
Abstract
Sexual dimorphism, or sex-specific trait expression, may evolve when selection favours different optima for the same trait between sexes, that is, under antagonistic selection. Intra-locus sexual conflict exists when the sexually dimorphic trait under antagonistic selection is based on genes shared between sexes. A common assumption is that the presence of sexual-size dimorphism (SSD) indicates that sexual conflict has been, at least partly, resolved via decoupling of the trait architecture between sexes. However, whether and how decoupling of the trait architecture between sexes has been realized often remains unknown. We tested for differences in architecture of adult body size between sexes in a species with extreme SSD, the African hermit spider (Nephilingis cruentata), where adult female body size greatly exceeds that of males. Specifically, we estimated the sex-specific importance of genetic and maternal effects on adult body size among individuals that we laboratory-reared for up to eight generations. Quantitative genetic model estimates indicated that size variation in females is to a larger extent explained by direct genetic effects than by maternal effects, but in males to a larger extent by maternal than by genetic effects. We conclude that this sex-specific body-size architecture enables body-size evolution to proceed much more independently than under a common architecture to both sexes.
Collapse
Affiliation(s)
- Simona Kralj-Fišer
- ZRC SAZU, Institute of Biology, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Matjaž Kuntner
- ZRC SAZU, Institute of Biology, Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Paul Vincent Debes
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| |
Collapse
|
16
|
Kaufmann P, Wiberg RAW, Papachristos K, Scofield DG, Tellgren-Roth C, Immonen E. Y-Linked Copy Number Polymorphism of Target of Rapamycin Is Associated with Sexual Size Dimorphism in Seed Beetles. Mol Biol Evol 2023; 40:msad167. [PMID: 37479678 PMCID: PMC10414808 DOI: 10.1093/molbev/msad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
The Y chromosome is theorized to facilitate evolution of sexual dimorphism by accumulating sexually antagonistic loci, but empirical support is scarce. Due to the lack of recombination, Y chromosomes are prone to degenerative processes, which poses a constraint on their adaptive potential. Yet, in the seed beetle, Callosobruchus maculatus segregating Y linked variation affects male body size and thereby sexual size dimorphism (SSD). Here, we assemble C. maculatus sex chromosome sequences and identify molecular differences associated with Y-linked SSD variation. The assembled Y chromosome is largely euchromatic and contains over 400 genes, many of which are ampliconic with a mixed autosomal and X chromosome ancestry. Functional annotation suggests that the Y chromosome plays important roles in males beyond primary reproductive functions. Crucially, we find that, besides an autosomal copy of the gene target of rapamycin (TOR), males carry an additional TOR copy on the Y chromosome. TOR is a conserved regulator of growth across taxa, and our results suggest that a Y-linked TOR provides a male specific opportunity to alter body size. A comparison of Y haplotypes associated with male size difference uncovers a copy number variation for TOR, where the haplotype associated with decreased male size, and thereby increased sexual dimorphism, has two additional TOR copies. This suggests that sexual conflict over growth has been mitigated by autosome to Y translocation of TOR followed by gene duplications. Our results reveal that despite of suppressed recombination, the Y chromosome can harbor adaptive potential as a male-limited supergene.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Uppsala, Sweden
| | - R Axel W Wiberg
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Uppsala, Sweden
- Ecology Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Douglas G Scofield
- Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Christian Tellgren-Roth
- National Genomics Infrastructure, Uppsala Genome Center, SciLifeLab, BioMedical Centre, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Abbott JK, Lund-Hansen KK, Olito C. Why is measuring and predicting fitness under genomic conflict so hard? Curr Opin Genet Dev 2023; 81:102070. [PMID: 37369170 DOI: 10.1016/j.gde.2023.102070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Genomic conflict between the sexes is caused by differences in the optimal male and female reproductive strategies, and is a major contributor to genetic, phenotypic, and life history variation. While early experimental work appeared to strongly support the sexual conflict paradigm, recent work has produced more ambiguous results. Recent advances in experimental evolution studies combined with theoretical arguments can shed light on why measuring fitness under a conflict is so challenging, including the incidental alteration of mating dynamics, demographic effects, and inherent complexity in what quantity selection maximizes. We stress that non-intuitive results do not necessarily mean the absence of conflict, and follow-up experiments to determine why a priori predictions failed can ultimately teach us more than if they had been confirmed.
Collapse
Affiliation(s)
- Jessica K Abbott
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden.
| | - Katrine K Lund-Hansen
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden. https://twitter.com/@KLundHansen
| | - Colin Olito
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| |
Collapse
|
18
|
Tosto NM, Beasley ER, Wong BBM, Mank JE, Flanagan SP. The roles of sexual selection and sexual conflict in shaping patterns of genome and transcriptome variation. Nat Ecol Evol 2023; 7:981-993. [PMID: 36959239 DOI: 10.1038/s41559-023-02019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Sexual dimorphism is one of the most prevalent, and often the most extreme, examples of phenotypic variation within species, and arises primarily from genomic variation that is shared between females and males. Many sexual dimorphisms arise through sex differences in gene expression, and sex-biased expression is one way that a single, shared genome can generate multiple, distinct phenotypes. Although many sexual dimorphisms are expected to result from sexual selection, and many studies have invoked the possible role of sexual selection to explain sex-specific traits, the role of sexual selection in the evolution of sexually dimorphic gene expression remains difficult to differentiate from other forms of sex-specific selection. In this Review, we propose a holistic framework for the study of sex-specific selection and transcriptome evolution. We advocate for a comparative approach, across tissues, developmental stages and species, which incorporates an understanding of the molecular mechanisms, including genomic variation and structure, governing gene expression. Such an approach is expected to yield substantial insights into the evolution of genetic variation and have important applications in a variety of fields, including ecology, evolution and behaviour.
Collapse
Affiliation(s)
- Nicole M Tosto
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emily R Beasley
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
19
|
Darolti I, Mank JE. Sex-biased gene expression at single-cell resolution: cause and consequence of sexual dimorphism. Evol Lett 2023; 7:148-156. [PMID: 37251587 PMCID: PMC10210449 DOI: 10.1093/evlett/qrad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Gene expression differences between males and females are thought to be key for the evolution of sexual dimorphism, and sex-biased genes are often used to study the molecular footprint of sex-specific selection. However, gene expression is often measured from complex aggregations of diverse cell types, making it difficult to distinguish between sex differences in expression that are due to regulatory rewiring within similar cell types and those that are simply a consequence of developmental differences in cell-type abundance. To determine the role of regulatory versus developmental differences underlying sex-biased gene expression, we use single-cell transcriptomic data from multiple somatic and reproductive tissues of male and female guppies, a species that exhibits extensive phenotypic sexual dimorphism. Our analysis of gene expression at single-cell resolution demonstrates that nonisometric scaling between the cell populations within each tissue and heterogeneity in cell-type abundance between the sexes can influence inferred patterns of sex-biased gene expression by increasing both the false-positive and false-negative rates. Moreover, we show that, at the bulk level, the subset of sex-biased genes that are the product of sex differences in cell-type abundance can significantly confound patterns of coding-sequence evolution. Taken together, our results offer a unique insight into the effects of allometry and cellular heterogeneity on perceived patterns of sex-biased gene expression and highlight the power of single-cell RNA-sequencing in distinguishing between sex-biased genes that are the result of regulatory change and those that stem from sex differences in cell-type abundance, and hence are a consequence rather than a cause of sexual dimorphism.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Price PD, Parkus SM, Wright AE. Recent progress in understanding the genomic architecture of sexual conflict. Curr Opin Genet Dev 2023; 80:102047. [PMID: 37163877 DOI: 10.1016/j.gde.2023.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 05/12/2023]
Abstract
Genomic conflict between the sexes over shared traits is widely assumed to be resolved through the evolution of sex-biased expression and the subsequent emergence of sexually dimorphic phenotypes. However, while there is support for a broad relationship between genome-wide patterns of expression level and sexual conflict, recent studies suggest that sex differences in the nature and strength of interactions between loci are instead key to conflict resolution. Furthermore, the advent of new technologies for measuring and perturbing expression means we now have much more power to detect genomic signatures of sexual conflict. Here, we review our current understanding of the genomic architecture of sexual conflict in the light of these new studies and highlight the potential for novel approaches to address outstanding knowledge gaps.
Collapse
Affiliation(s)
- Peter D Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, United Kingdom. https://twitter.com/@PeterDPrice
| | - Sylvie M Parkus
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, United Kingdom
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, United Kingdom.
| |
Collapse
|
21
|
Gu H, Wang L, Lv X, Yang W, Zhang L, Zhang Z, Zhu T, Jia Y, Chen Y, Qu L. Domestication affects sex-biased gene expression evolution in the duck. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221313. [PMID: 37035296 PMCID: PMC10073915 DOI: 10.1098/rsos.221313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Genes with sex-biased expression are thought to underlie sexually dimorphic phenotypes and are therefore subject to different selection pressures in males and females. Many authors have proposed that sexual conflict leads to the evolution of sex-biased expression, which allows males and females to reach separate phenotypic and fitness optima. The selection pressures associated with domestication may cause changes in population architectures and mating systems, which in turn can alter their direction and strength. We compared sex-biased expression and genetic signatures in wild and domestic ducks (Anas platyrhynchos), and observed changes of sexual selection and identified the genomic divergence affected by selection forces. The extent of sex-biased expression in both sexes is positively correlated with the level of both d N /d S and nucleotide diversity. This observed changing pattern may mainly be owing to relaxed genetic constraints. We also demonstrate a clear link between domestication and sex-biased evolutionary rate in a comparative framework. Decreased polymorphism and evolutionary rate in domesticated populations generally matched life-history phenotypes known to experience artificial selection. Taken together, our work suggests the important implications of domestication in sex-biased evolution and the roles of artificial selection and sexual selection for shaping the diversity and evolutionary rate of the genome.
Collapse
Affiliation(s)
- Hongchang Gu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Li Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Zebin Zhang
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Koppik M, Baur J, Berger D. Increased male investment in sperm competition results in reduced maintenance of gametes. PLoS Biol 2023; 21:e3002049. [PMID: 37014875 PMCID: PMC10072457 DOI: 10.1371/journal.pbio.3002049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Male animals often show higher mutation rates than their female conspecifics. A hypothesis for this male bias is that competition over fertilization of female gametes leads to increased male investment into reproduction at the expense of maintenance and repair, resulting in a trade-off between male success in sperm competition and offspring quality. Here, we provide evidence for this hypothesis by harnessing the power of experimental evolution to study effects of sexual selection on the male germline in the seed beetle Callosobruchus maculatus. We first show that 50 generations of evolution under strong sexual selection, coupled with experimental removal of natural selection, resulted in males that are more successful in sperm competition. We then show that these males produce progeny of lower quality if engaging in sociosexual interactions prior to being challenged to surveil and repair experimentally induced damage in their germline and that the presence of male competitors alone can be enough to elicit this response. We identify 18 candidate genes that showed differential expression in response to the induced germline damage, with several of these previously implicated in processes associated with DNA repair and cellular maintenance. These genes also showed significant expression changes across sociosexual treatments of fathers and predicted the reduction in quality of their offspring, with expression of one gene also being strongly correlated to male sperm competition success. Sex differences in expression of the same 18 genes indicate a substantially higher female investment in germline maintenance. While more work is needed to detail the exact molecular underpinnings of our results, our findings provide rare experimental evidence for a trade-off between male success in sperm competition and germline maintenance. This suggests that sex differences in the relative strengths of sexual and natural selection are causally linked to male mutation bias. The tenet advocated here, that the allocation decisions of an individual can affect plasticity of its germline and the resulting genetic quality of subsequent generations, has several interesting implications for mate choice processes.
Collapse
Affiliation(s)
- Mareike Koppik
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Baur
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Hatchett WJ, Jueterbock AO, Kopp M, Coyer JA, Coelho SM, Hoarau G, Lipinska AP. Evolutionary dynamics of sex-biased gene expression in a young XY system: insights from the brown alga genus Fucus. THE NEW PHYTOLOGIST 2023; 238:422-437. [PMID: 36597732 DOI: 10.1111/nph.18710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Sex-biased gene expression is considered to be an underlying cause of sexually dimorphic traits. Although the nature and degree of sex-biased expression have been well documented in several animal and plant systems, far less is known about the evolution of sex-biased genes in more distant eukaryotic groups. Here, we investigate sex-biased gene expression in two brown algal dioecious species, Fucus serratus and Fucus vesiculosus, where male heterogamety (XX/XY) has recently emerged. We find that in contrast to evolutionary distant plant and animal lineages, male-biased genes do not experience high turnover rates, but instead reveal remarkable conservation of bias and expression levels between the two species, suggesting their importance in sexual differentiation. Genes with consistent male bias were enriched in functions related to gamete production, along with sperm competition and include three flagellar proteins under positive selection. We present one of the first reports, outside of the animal kingdom, showing that male-biased genes display accelerated rates of coding sequence evolution compared with female-biased or unbiased genes. Our results imply that evolutionary forces affect male and female sex-biased genes differently on structural and regulatory levels, resulting in unique properties of differentially expressed transcripts during reproductive development in Fucus algae.
Collapse
Affiliation(s)
- William J Hatchett
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - James A Coyer
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Susana M Coelho
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Agnieszka P Lipinska
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| |
Collapse
|
24
|
Kaufmann P, Howie JM, Immonen E. Sexually antagonistic selection maintains genetic variance when sexual dimorphism evolves. Proc Biol Sci 2023; 290:20222484. [PMID: 36946115 PMCID: PMC10031426 DOI: 10.1098/rspb.2022.2484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Genetic variance (VG) in fitness related traits is often unexpectedly high, evoking the question how VG can be maintained in the face of selection. Sexually antagonistic (SA) selection favouring alternative alleles in the sexes is common and predicted to maintain VG, while directional selection should erode it. Both SA and sex-limited directional selection can lead to sex-specific adaptations but how each affect VG when sexual dimorphism evolves remain experimentally untested. Using replicated artificial selection on the seed beetle Callosobruchus maculatus body size we recently demonstrated an increase in size dimorphism under SA and male-limited (ML) selection by 50% and 32%, respectively. Here we test their consequences on genetic variation. We show that SA selection maintained significantly more ancestral, autosomal additive genetic variance than ML selection, while both eroded sex-linked additive variation equally. Ancestral female-specific dominance variance was completely lost under ML, while SA selection consistently sustained it. Further, both forms of selection preserved a high genetic correlation between the sexes (rm,f). These results demonstrate the potential for sexual antagonism to maintain more genetic variance while fuelling sex-specific adaptation in a short evolutionary time scale, and are in line with predicted importance of sex-specific dominance reducing sexual conflict over alternative alleles.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
| | - James Malcolm Howie
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Boku, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria
| | - Elina Immonen
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
| |
Collapse
|
25
|
Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A Bridge to the Pest. INSECTS 2023; 14:255. [PMID: 36975940 PMCID: PMC10054242 DOI: 10.3390/insects14030255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is the most devastating pest of palm trees worldwide. Mitigation of the economic and biodiversity impact it causes is an international priority that could be greatly aided by a better understanding of its biology and genetics. Despite its relevance, the biology of the RPW remains poorly understood, and research on management strategies often focuses on outdated empirical methods that produce sub-optimal results. With the development of omics approaches in genetic research, new avenues for pest control are becoming increasingly feasible. For example, genetic engineering approaches become available once a species's target genes are well characterized in terms of their sequence, but also population variability, epistatic interactions, and more. In the last few years alone, there have been major advances in omics studies of the RPW. Multiple draft genomes are currently available, along with short and long-read transcriptomes, and metagenomes, which have facilitated the identification of genes of interest to the RPW scientific community. This review describes omics approaches previously applied to RPW research, highlights findings that could be impactful for pest management, and emphasizes future opportunities and challenges in this area of research.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | | | | |
Collapse
|
26
|
Boman J, Arnqvist G. Larger genomes show improved buffering of adult fitness against environmental stress in seed beetles. Biol Lett 2023; 19:20220450. [PMID: 36693428 PMCID: PMC9873469 DOI: 10.1098/rsbl.2022.0450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Our general understanding of the evolution of genome size (GS) is incomplete, and it has long been clear that GS does not reflect organismal complexity. Here, we assess the hypothesis that larger genomes may allow organisms to better cope with environmental variation. It is, for example, possible that genome expansion due to proliferation of transposable elements or gene duplications may affect the ability to regulate and fine-tune transcriptional profiles. We used 18 populations of the seed beetle Callosobruchus maculatus, which differ in GS by up to 4.5%, and exposed adults and juveniles to environmental stress in a series of experiments where stage-specific fitness was assayed. We found that populations with larger genomes were indeed better buffered against environmental stress for adult, but not for juvenile, fitness. The genetic correlation across populations between GS and canalization of adult fitness is consistent with a role for natural selection in the evolution of GS.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Veronica CS, Ivan GM, Francisco GG. Evolutionary consequences of pesticide exposure include transgenerational plasticity and potential terminal investment transgenerational effects. Evolution 2022; 76:2649-2668. [PMID: 36117275 DOI: 10.1111/evo.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Transgenerational plasticity, the influence of the environment experienced by parents on the phenotype and fitness of subsequent generations, is being increasingly recognized. Human-altered environments, such as those resulting from the increasing use of pesticides, may be major drivers of such cross-generational influences, which in turn may have profound evolutionary and ecological repercussions. Most of these consequences are, however, unknown. Whether transgenerational plasticity elicited by pesticide exposure is common, and the consequences of its potential carryover effects on fitness and population dynamics, remains to be determined. Here, we investigate whether exposure of parents to a common pesticide elicits intra-, inter-, and transgenerational responses (in F0, F1, and F2 generations) in life history (fecundity, longevity, and lifetime reproductive success), in an insect model system, the seed beetle Callosobruchus maculatus. We also assessed sex specificity of the effects. We found sex-specific and hormetic intergenerational and transgenerational effects on longevity and lifetime reproductive success, manifested both in the form of maternal and paternal effects. In addition, the transgenerational effects via mothers detected in this study are consistent with a new concept: terminal investment transgenerational effects. Such effects could underlie cross-generational responses to environmental perturbation. Our results indicate that pesticide exposure leads to unanticipated effects on population dynamics and have far-reaching ecological and evolutionary implications.
Collapse
Affiliation(s)
- Castano-Sanz Veronica
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain
| | - Gomez-Mestre Ivan
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain
| | - Garcia-Gonzalez Francisco
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
28
|
Arnqvist G, Sayadi A. A possible genomic footprint of polygenic adaptation on population divergence in seed beetles? Ecol Evol 2022; 12:e9440. [PMID: 36311399 PMCID: PMC9608792 DOI: 10.1002/ece3.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome‐wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate‐dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean FST = 0.23–0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's DNS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (dXY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome‐wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Rheumatology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
29
|
Olasege BS, Porto-Neto LR, Tahir MS, Gouveia GC, Cánovas A, Hayes BJ, Fortes MRS. Correlation scan: identifying genomic regions that affect genetic correlations applied to fertility traits. BMC Genomics 2022; 23:684. [PMID: 36195838 PMCID: PMC9533527 DOI: 10.1186/s12864-022-08898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Although the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don't fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum (AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher's Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA's in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.
Collapse
Affiliation(s)
- Babatunde S Olasege
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia.,CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | | | - Muhammad S Tahir
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia.,CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | - Gabriela C Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia. .,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Fu N, Li J, Ren L, Li X, Wang M, Li F, Zong S, Luo Y. Chromosome-level genome assembly of Monochamus saltuarius reveals its adaptation and interaction mechanism with pine wood nematode. Int J Biol Macromol 2022; 222:325-336. [PMID: 36115455 DOI: 10.1016/j.ijbiomac.2022.09.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Monochamus saltuarius (Coleoptera: Cerambycidae) was reported as the vector beetle of the pine wood nematode (PWN, Bursaphelenchus xylophilus) in Japan and Europe. It was first reported to transmitted the PWN to native Pinus species in 2018 in Liaoning Province, China. However, the lack of genomic resources has limited the in-depth understanding of its interspecific relationship with PWN. Here, we obtained a chromosome-level reference genome of M. saltuarius combining Illumina, Nanopore and Hi-C sequencing technologies. We assembled the scaffolds into ten chromosomes (including an X chromosome) and obtained a 682.23 Mb chromosome-level genome with a N50 of 73.69 Mb. In total, 427.67 Mb (62.69 %) repeat sequences were identified and 14, 492 protein-coding genes were predicted, of which 93.06 % were annotated. We described the mth/mthl, P450, OBP and OR gene families associated with the vector beetle's development and resistance, as well as the host selection and adaptation, which serve as a valuable resource for understanding the host adaptation in insects during evolution. This high quality reference genome of M. saltuarius also provide new avenues for researching the mechanism of this synergistic damage between vector beetles and PWN.
Collapse
Affiliation(s)
- Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | | | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengqi Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
31
|
Leonard AM, Lancaster LT. Evolution of resource generalism via generalized stress response confers increased reproductive thermal tolerance in a pest beetle. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Generalism should be favoured evolutionarily when there is no genetic constraint or loss of fitness across alternative environments. However, evolution of generalism can require substantial evolutionary change, which can confer a general stress response to other aspects of the environment. We created generalist lineages from an ancestral, resource-specialized laboratory population of seed beetles (Callosobruchus maculatus) by rearing lines over 60 generations on a mixture of both ancestral and novel host species to test for costs associated with the evolution of generalism involving evolutionary changes in gene expression and correlated phenotypic responses during a shift to generalism. Evolved lines had higher fitness on the novel resource, with no loss of fitness on the ancestral resource, indicating that they overcame initial fitness trade-offs. This involved upregulation of major stress response (heat shock protein) genes and genes coding for metabolic enzymes, suggesting an underpinning metabolic and physiological cost. Resource generalist populations also evolved greater thermal tolerance breadth, highlighting that the evolution of resource generalism might pre-adapt species to respond favourably to other environmental stressors, following selection for generalized stress response gene upregulation. The rapid gain of novel hosts during a pest invasion might also confer greater thermal resilience to ongoing climate change.
Collapse
Affiliation(s)
- Aoife M Leonard
- School of Biological Sciences, University of Aberdeen , Aberdeen , United Kingdom
- Center of Evolutionary Hologenomics, Globe Institute, University of Copenhagen , Copenhagen , Denmark
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen , Aberdeen , United Kingdom
| |
Collapse
|
32
|
Parker DJ, Jaron KS, Dumas Z, Robinson‐Rechavi M, Schwander T. X chromosomes show relaxed selection and complete somatic dosage compensation across
Timema
stick insect species. J Evol Biol 2022; 35:1734-1750. [PMID: 35933721 PMCID: PMC10087215 DOI: 10.1111/jeb.14075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes have evolved repeatedly across the tree of life. As they are present in different copy numbers in males and females, they are expected to experience different selection pressures than the autosomes, with consequences including a faster rate of evolution, increased accumulation of sexually antagonistic alleles and the evolution of dosage compensation. Whether these consequences are general or linked to idiosyncrasies of specific taxa is not clear as relatively few taxa have been studied thus far. Here, we use whole-genome sequencing to identify and characterize the evolution of the X chromosome in five species of Timema stick insects with XX:X0 sex determination. The X chromosome had a similar size (approximately 12% of the genome) and gene content across all five species, suggesting that the X chromosome originated prior to the diversification of the genus. Genes on the X showed evidence of relaxed selection (elevated dN/dS) and a slower evolutionary rate (dN + dS) than genes on the autosomes, likely due to sex-biased mutation rates. Genes on the X also showed almost complete dosage compensation in somatic tissues (heads and legs), but dosage compensation was absent in the reproductive tracts. Contrary to prediction, sex-biased genes showed little enrichment on the X, suggesting that the advantage X-linkage provides to the accumulation of sexually antagonistic alleles is weak. Overall, we found the consequences of X-linkage on gene sequences and expression to be similar across Timema species, showing the characteristics of the X chromosome are surprisingly consistent over 30 million years of evolution.
Collapse
Affiliation(s)
- Darren J. Parker
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- School of Natural Sciences Bangor University Bangor UK
| | - Kamil S. Jaron
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- School of Biological Sciences Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Zoé Dumas
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Marc Robinson‐Rechavi
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
33
|
Parrett JM, Chmielewski S, Aydogdu E, Łukasiewicz A, Rombauts S, Szubert-Kruszyńska A, Babik W, Konczal M, Radwan J. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat Ecol Evol 2022; 6:1330-1342. [DOI: 10.1038/s41559-022-01816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
|
34
|
Tanaka K, Shimomura K, Hosoi A, Sato Y, Oikawa Y, Seino Y, Kuribara T, Yajima S, Tomizawa M. Antennal transcriptome analysis of chemosensory genes in the cowpea beetle, Callosobruchus maculatus (F.). PLoS One 2022; 17:e0262817. [PMID: 35045135 PMCID: PMC8769365 DOI: 10.1371/journal.pone.0262817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Olfaction, one of the most important sensory systems governing insect behavior, is a possible target for pest management. Therefore, in this study, we analyzed the antennal transcriptome of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae), which is a major pest of stored pulses and legumes. The de novo antennal RNA-seq assembly results identified 17 odorant, 2 gustatory, and 10 ionotropic receptors, 1 sensory neuron membrane protein, and 12 odorant-binding and 7 chemosensory proteins. Moreover, differential gene expression analysis of virgin male and female antennal samples followed by qRT-PCR revealed 1 upregulated and 4 downregulated odorant receptors in males. We also performed homology searches using the coding sequences built from previously proposed amino acid sequences derived from genomic data and identified additional chemosensory-related genes.
Collapse
Affiliation(s)
- Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kenji Shimomura
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akito Hosoi
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yui Sato
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yukari Oikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yuma Seino
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takuto Kuribara
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Motohiro Tomizawa
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
35
|
He L, Chen IW, Zhang Z, Zheng W, Sayadi A, Wang L, Sang W, Ji R, Lei J, Arnqvist G, Lei C, Zhu-Salzman K. In silico promoter analysis and functional validation identify CmZFH, the co-regulator of hypoxia-responsive genes CmScylla and CmLPCAT. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103681. [PMID: 34800642 DOI: 10.1016/j.ibmb.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.
Collapse
Affiliation(s)
- Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Lei Wang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Sang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Rui Ji
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
36
|
Kaufmann P, Wolak ME, Husby A, Immonen E. Rapid evolution of sexual size dimorphism facilitated by Y-linked genetic variance. Nat Ecol Evol 2021; 5:1394-1402. [PMID: 34413504 DOI: 10.1038/s41559-021-01530-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
Sexual dimorphism is ubiquitous in nature but its evolution is puzzling given that the mostly shared genome constrains independent evolution in the sexes. Sex differences should result from asymmetries between the sexes in selection or genetic variation but studies investigating both simultaneously are lacking. Here, we combine a quantitative genetic analysis of body size variation, partitioned into autosomal and sex chromosome contributions and ten generations of experimental evolution to dissect the evolution of sexual body size dimorphism in seed beetles (Callosobruchus maculatus) subjected to sexually antagonistic or sex-limited selection. Female additive genetic variance (VA) was primarily linked to autosomes, exhibiting a strong intersexual genetic correlation with males ([Formula: see text] = 0.926), while X- and Y-linked genes further contributed to the male VA and X-linked genes contributed to female dominance variance. Consistent with these estimates, sexual body size dimorphism did not evolve in response to female-limited selection but evolved by 30-50% under male-limited and sexually antagonistic selection. Remarkably, Y-linked variance alone could change dimorphism by 30%, despite the C. maculatus Y chromosome being small and heterochromatic. Our results demonstrate how the potential for sexual dimorphism to evolve depends on both its underlying genetic basis and the nature of sex-specific selection.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Matthew E Wolak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Lichilín N, El Taher A, Böhne A. Sex-biased gene expression and recent sex chromosome turnover. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200107. [PMID: 34304591 PMCID: PMC8310714 DOI: 10.1098/rstb.2020.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cichlids are well known for their propensity to radiate generating arrays of morphologically and ecologically diverse species in short evolutionary time. Following this rapid evolutionary pace, cichlids show high rates of sex chromosome turnover. We here studied the evolution of sex-biased gene (SBG) expression in 14 recently diverged taxa of the Lake Tanganyika Tropheini cichlids, which show different XY sex chromosomes. Across species, sex chromosome sequence divergence predates divergence in expression between the sexes. Only one sex chromosome, the oldest, showed signs of demasculinization in gene expression and potentially contribution to the resolution of sexual conflict. SBGs in general showed high rates of turnovers and evolved mostly under drift. Sexual selection did not shape the rapid evolutionary changes of SBGs. Male-biased genes evolved faster than female-biased genes, which seem to be under more phylogenetic constraint. We found a relationship between the degree of sex bias and sequence evolution driven by sequence differences among the sexes. Consistent with other species, strong sex bias towards sex-limited expression contributes to resolving sexual conflict in cichlids. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
38
|
Grieshop K, Maurizio PL, Arnqvist G, Berger D. Selection in males purges the mutation load on female fitness. Evol Lett 2021; 5:328-343. [PMID: 34367659 PMCID: PMC8327962 DOI: 10.1002/evl3.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.
Collapse
Affiliation(s)
- Karl Grieshop
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM5S 3B2Canada
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSE‐10691Sweden
| | - Paul L. Maurizio
- Section of Genetic Medicine, Department of MedicineUniversity of ChicagoChicagoIllinois60637
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| | - David Berger
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| |
Collapse
|
39
|
Rodriguez‐Exposito E, Garcia‐Gonzalez F. Metapopulation structure modulates sexual antagonism. Evol Lett 2021; 5:344-358. [PMID: 34367660 PMCID: PMC8327942 DOI: 10.1002/evl3.244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023] Open
Abstract
Despite the far-reaching evolutionary implications of sexual conflict, the effects of metapopulation structure, when populations are subdivided into several demes connected to some degree by migration, on sexual conflict dynamics are unknown. Here, we used experimental evolution in an insect model system, the seed beetle Callosobruchus maculatus, to assess the independent and interacting effects of selection histories associated with mating system (monogamy vs. polygamy) and population subdivision on sexual conflict evolution. We confirm traditional predictions from sexual conflict theory by revealing increased resistance to male harm in females from populations with a history of intense sexual selection (polygamous populations) compared to females from populations with a history of relaxed sexual selection (monogamous populations). However, selection arising from metapopulation structure reversed the classic pattern of sexually antagonistic coevolution and led to reduced resistance in females from polygamous populations. These results underscore that population spatial structure moderates sexual selection and sexual conflict, and more broadly, that the evolution of sexual conflict is contingent on ecological context. The findings also have implications for population dynamics, conservation biology, and biological control.
Collapse
Affiliation(s)
- E. Rodriguez‐Exposito
- Doñana Biological Station (EBD‐CSIC)Isla de la CartujaSevillaSpain
- Current address: Institute of Natural Products and Agrobiology (IPNA‐CSIC)Santa Cruz de TenerifeSpain
| | - F. Garcia‐Gonzalez
- Doñana Biological Station (EBD‐CSIC)Isla de la CartujaSevillaSpain
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
40
|
Tebben K, Bradwell K, Serre D. Variation in selective constraints along the Plasmodium life cycle. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104908. [PMID: 33975022 PMCID: PMC8205998 DOI: 10.1016/j.meegid.2021.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Plasmodium parasites, the cause of malaria, have a complex life cycle, infecting alternatively vertebrate hosts and female Anopheles mosquitoes and undergoing intra- and extra-cellular development in several organs of these hosts. Most of the ~5000 protein-coding genes present in Plasmodium genomes are only expressed at specific life stages, and different genes might therefore be subject to different selective pressures depending on the biological activity of the parasite and its microenvironment at this point in development. Here, we estimate the selective constraints on the protein-coding sequences of all annotated genes of rodent and primate Plasmodium parasites and, using data from scRNA-seq experiments spanning many developmental stages, analyze their variation with regard to when these genes are expressed in the parasite life cycle. Our study reveals extensive variation in selective constraints throughout the parasites' development and highlights stages that are evolving more rapidly than others. These findings provide novel insights into the biology of these parasites and could provide important information to develop better treatment strategies or vaccines against these medically-important organisms.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katie Bradwell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Bouchemousse S, Falquet L, Müller-Schärer H. Genome Assembly of the Ragweed Leaf Beetle: A Step Forward to Better Predict Rapid Evolution of a Weed Biocontrol Agent to Environmental Novelties. Genome Biol Evol 2021; 12:1167-1173. [PMID: 32428241 PMCID: PMC7486951 DOI: 10.1093/gbe/evaa102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Rapid evolution of weed biological control agents (BCAs) to new biotic and abiotic conditions is poorly understood and so far only little considered both in pre-release and post-release studies, despite potential major negative or positive implications for risks of nontargeted attacks or for colonizing yet unsuitable habitats, respectively. Provision of genetic resources, such as assembled and annotated genomes, is essential to assess potential adaptive processes by identifying underlying genetic mechanisms. Here, we provide the first sequenced genome of a phytophagous insect used as a BCA, that is, the leaf beetle Ophraella communa, a promising BCA of common ragweed, recently and accidentally introduced into Europe. A total 33.98 Gb of raw DNA sequences, representing ∼43-fold coverage, were obtained using the PacBio SMRT-Cell sequencing approach. Among the five different assemblers tested, the SMARTdenovo assembly displaying the best scores was then corrected with Illumina short reads. A final genome of 774 Mb containing 7,003 scaffolds was obtained. The reliability of the final assembly was then assessed by benchmarking universal single-copy orthologous genes (>96.0% of the 1,658 expected insect genes) and by remapping tests of Illumina short reads (average of 98.6 ± 0.7% without filtering). The number of protein-coding genes of 75,642, representing 82% of the published antennal transcriptome, and the phylogenetic analyses based on 825 orthologous genes placing O. communa in the monophyletic group of Chrysomelidae, confirm the relevance of our genome assembly. Overall, the genome provides a valuable resource for studying potential risks and benefits of this BCA facing environmental novelties.
Collapse
Affiliation(s)
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | | |
Collapse
|
42
|
Patlar B, Jayaswal V, Ranz JM, Civetta A. Nonadaptive molecular evolution of seminal fluid proteins in Drosophila. Evolution 2021; 75:2102-2113. [PMID: 34184267 PMCID: PMC8457112 DOI: 10.1111/evo.14297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Seminal fluid proteins (SFPs) are a group of reproductive proteins that are among the most evolutionarily divergent known. As SFPs can impact male and female fitness, these proteins have been proposed to evolve under postcopulatory sexual selection (PCSS). However, the fast change of the SFPs can also result from nonadaptive evolution, and the extent to which selective constraints prevent SFPs rapid evolution remains unknown. Using intra‐ and interspecific sequence information, along with genomics and functional data, we examine the molecular evolution of approximately 300 SFPs in Drosophila. We found that 50–57% of the SFP genes, depending on the population examined, are evolving under relaxed selection. Only 7–12% showed evidence of positive selection, with no evidence supporting other forms of PCSS, and 35–37% of the SFP genes were selectively constrained. Further, despite associations of positive selection with gene location on the X chromosome and protease activity, the analysis of additional genomic and functional features revealed their lack of influence on SFPs evolving under positive selection. Our results highlight a lack of sufficient evidence to claim that most SFPs are driven to evolve rapidly by PCSS while identifying genomic and functional attributes that influence different modes of SFPs evolution.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Vivek Jayaswal
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, 92697
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
43
|
Lukicheva S, Flot JF, Mardulyn P. Genome Assembly of the Cold-Tolerant Leaf Beetle Gonioctena quinquepunctata, an Important Resource for Studying Its Evolution and Reproductive Barriers between Species. Genome Biol Evol 2021; 13:6296840. [PMID: 34115123 PMCID: PMC8290105 DOI: 10.1093/gbe/evab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Coleoptera is the most species-rich insect order, yet is currently underrepresented in genomic databases. An assembly was generated for ca. 1.7 Gb genome of the leaf beetle Gonioctena quinquepunctata by first assembling long-sequence reads (Oxford Nanopore; ± 27-fold coverage) and subsequently polishing the resulting assembly with short sequence reads (Illumina; ± 85-fold coverage). The unusually large size (most Coleoptera species are associated with a reported size below 1 Gb) was at least partially attributed to the presence of a large fraction of repeated elements (73.8%). The final assembly was characterized by an N50 length of 432 kb and a BUSCO score of 95.5%. The heterozygosity rate was ± 0.6%. Automated genome annotation informed by RNA-Seq resulted in 40,568 predicted proteins, which is much larger than the typical range 17,000–23,000 predicted for other Coleoptera. However, no evidence of a genome duplication was detected. This new reference genome will contribute to our understanding of genetic variation in the Coleoptera. Among others, it will also allow exploring reproductive barriers between species, investigating introgression in the nuclear genome, and identifying genes involved in resistance to extreme climate conditions.
Collapse
Affiliation(s)
- Svitlana Lukicheva
- Evolutionary Biology and Ecology & Interuniversity Institute of Bioinformatics in Brussels - (IB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Flot
- Evolutionary Biology and Ecology & Interuniversity Institute of Bioinformatics in Brussels - (IB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology & Interuniversity Institute of Bioinformatics in Brussels - (IB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
44
|
|
45
|
Wiberg RAW, Veltsos P, Snook RR, Ritchie MG. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol Lett 2021; 5:214-229. [PMID: 34136270 PMCID: PMC8190450 DOI: 10.1002/evl3.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in "islands," many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Collapse
Affiliation(s)
- R. Axel W. Wiberg
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Current Address: Department of Environmental SciencesZoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - Rhonda R. Snook
- Department of ZoologyStockholm UniversityStockholm106 91Sweden
| | - Michael G. Ritchie
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
46
|
Berasategui A, Moller AG, Weiss B, Beck CW, Bauchiero C, Read TD, Gerardo NM, Salem H. Symbiont Genomic Features and Localization in the Bean Beetle Callosobruchus maculatus. Appl Environ Microbiol 2021; 87:e0021221. [PMID: 33863703 PMCID: PMC8174668 DOI: 10.1128/aem.00212-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus. In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria, this community is localized extracellularly along the epithelial lining of the bean beetle's digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus. The ontogenic conservation of the gut microbiota in the bean beetle, featuring a "core" community composed of S. gallinarum, may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus, the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect's digestive tract and is largely dominated by Staphylococcus gallinarum. In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest.
Collapse
Affiliation(s)
| | - Abraham G. Moller
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin Weiss
- Department of Evolutionary Ecology, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Timothy D. Read
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Hassan Salem
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Mutualisms Research Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
47
|
Toubiana W, Armisén D, Dechaud C, Arbore R, Khila A. Impact of male trait exaggeration on sex-biased gene expression and genome architecture in a water strider. BMC Biol 2021; 19:89. [PMID: 33931057 PMCID: PMC8088084 DOI: 10.1186/s12915-021-01021-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Exaggerated secondary sexual traits are widespread in nature and often evolve under strong directional sexual selection. Although heavily studied from both theoretical and empirical viewpoints, we have little understanding of how sexual selection influences sex-biased gene regulation during the development of exaggerated secondary sexual phenotypes, and how these changes are reflected in genomic architecture. This is primarily due to the limited availability of representative genomes and associated tissue and sex transcriptomes to study the development of these traits. Here we present the genome and developmental transcriptomes, focused on the legs, of the water strider Microvelia longipes, a species where males exhibit strikingly long third legs compared to females, which they use as weapons. RESULTS We generated a high-quality genome assembly with 90% of the sequence captured in 13 scaffolds. The most exaggerated legs in males were particularly enriched in both sex-biased and leg-biased genes, indicating a specific signature of gene expression in association with trait exaggeration. We also found that male-biased genes showed patterns of fast evolution compared to non-biased and female-biased genes, indicative of directional or relaxed purifying selection. By contrast to male-biased genes, female-biased genes that are expressed in the third legs, but not the other legs, are over-represented in the X chromosome compared to the autosomes. An enrichment analysis for sex-biased genes along the chromosomes revealed also that they arrange in large genomic regions or in small clusters of two to four consecutive genes. The number and expression of these enriched regions were often associated with the exaggerated legs of males, suggesting a pattern of common regulation through genomic proximity in association with trait exaggeration. CONCLUSION Our findings indicate how directional sexual selection may drive sex-biased gene expression and genome architecture along the path to trait exaggeration and sexual dimorphism.
Collapse
Affiliation(s)
- William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
- Present address: Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
| | - Roberto Arbore
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
- Present address: Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France.
| |
Collapse
|
48
|
Xue HJ, Niu YW, Segraves KA, Nie RE, Hao YJ, Zhang LL, Cheng XC, Zhang XW, Li WZ, Chen RS, Yang XK. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics 2021; 22:243. [PMID: 33827435 PMCID: PMC8028732 DOI: 10.1186/s12864-021-07558-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.
Collapse
Affiliation(s)
- Huai-Jun Xue
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yi-Wei Niu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Archbold Biological Station, 123 Main Drive, Venus, FL, 33960, USA
| | - Rui-E Nie
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya-Jing Hao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Chao Cheng
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Xue-Wen Zhang
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Wen-Zhu Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Run-Sheng Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Ke Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
49
|
Beck CW, Blumer LS. Advancing Undergraduate Laboratory Education Using Non-Model Insect Species. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:485-504. [PMID: 32966102 DOI: 10.1146/annurev-ento-062920-095809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past decade, laboratory courses have made a fundamental shift to inquiry-based modules and authentic research experiences. In many cases, these research experiences emphasize addressing novel research questions. Insects are ideal for inquiry-based undergraduate laboratory courses because research on insects is not limited by regulatory, economic, and logistical constraints to the same degree as research on vertebrates. While novel research questions could be pursued with model insect species (e.g., Drosophila, Tribolium), the opportunities presented by non-model insects are much greater, as less is known about non-model species. We review the literature on the use of non-model insect species in laboratory education to provide a resource for faculty interested in developing new authentic inquiry-based laboratory modules using insects. Broader use of insects in undergraduate laboratory education will support the pedagogical goals of increased inquiry and resesarch experiences while at the same time fostering increased interest and research in entomology.
Collapse
Affiliation(s)
| | - Lawrence S Blumer
- Department of Biology, Morehouse College, Atlanta, Georgia 30314, USA;
| |
Collapse
|
50
|
McKinney GJ, Nichols KM, Ford MJ. A mobile sex-determining region, male-specific haplotypes and rearing environment influence age at maturity in Chinook salmon. Mol Ecol 2020; 30:131-147. [PMID: 33111366 DOI: 10.1111/mec.15712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex-specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male-specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex-determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex-determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.
Collapse
Affiliation(s)
- Garrett J McKinney
- NRC Research Associateship Program, Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Michael J Ford
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|