1
|
Nakagawa S, Armitage DW, Froese T, Yang Y, Lagisz M. Poor hypotheses and research waste in biology: learning from a theory crisis in psychology. BMC Biol 2025; 23:33. [PMID: 39901226 PMCID: PMC11792729 DOI: 10.1186/s12915-025-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
While psychologists have extensively discussed the notion of a "theory crisis" arising from vague and incorrect hypotheses, there has been no debate about such a crisis in biology. However, biologists have long discussed communication failures between theoreticians and empiricists. We argue such failure is one aspect of a theory crisis because misapplied and misunderstood theories lead to poor hypotheses and research waste. We review its solutions and compare them with methodology-focused solutions proposed for replication crises. We conclude by discussing how promoting inclusion, diversity, equity, and accessibility (IDEA) in theoretical biology could contribute to ameliorating breakdowns in the theory-empirical cycle.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, 904-0412, Japan.
- Evolution & Ecology Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - David W Armitage
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Yefeng Yang
- Evolution & Ecology Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, 904-0412, Japan
- Evolution & Ecology Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Gomes DGE. How will we prepare for an uncertain future? The value of open data and code for unborn generations facing climate change. Proc Biol Sci 2025; 292:20241515. [PMID: 39933586 PMCID: PMC11813590 DOI: 10.1098/rspb.2024.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
As the impacts of climate change continue to intensify, humans face new challenges to long-term survival. Humans will likely be battling these problems long after 2100, when many climate projections currently end. A more forward-thinking view on our science and its direction may help better prepare for the future of our species. Researchers may consider datasets the basic units of knowledge, whose preservation is arguably more important than the articles that are written about them. Storing data and code in long-term repositories offers insurance against our uncertain future. To ensure open data are useful, data must be FAIR (Findable, Accessible, Interoperable and Reusable) and be complete with all appropriate metadata. By embracing open science practices, contemporary scientists give the future of humanity the information to make better decisions, save time and other valuable resources, and increase global equity as access to information is made free. This, in turn, could enable and inspire a diversity of solutions, to the benefit of many. Imagine the collective science conducted, the models built, and the questions answered if all of the data researchers have collectively gathered were organized and immediately accessible and usable by everyone. Investing in open science today may ensure a brighter future for unborn generations.
Collapse
Affiliation(s)
- Dylan G. E. Gomes
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Seattle, WA98195, USA
- Former affiliation: National Academy of Sciences NRC Postdoctoral Research Associateship, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA98112, USA
| |
Collapse
|
3
|
de Jourdan B, Philibert D, Asnicar D, Davis CW. Microplastic biomonitoring studies in aquatic species: A review & quality assessment framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177541. [PMID: 39566625 DOI: 10.1016/j.scitotenv.2024.177541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
A large body of literature exists demonstrating the exposure, uptake, and presence of micro- and nanoplastic particles (MNPs) within marine biota. Despite this, there remain challenges in synthesizing these studies in a consistent and reliable manner which can support technology, regulatory, and policy decision-making. The most significant challenge is a lack of guidance to assess and integrate study reliability (objective quality) and relevance (ability to answer a specific question). The purpose of this study is twofold - first, to critically review and apply existing frameworks to an expanded body of literature. Second, to propose meaningful criteria to further assess study utility as it applies to the use of biomonitoring data to reliably quantitate (1) relationships between external and internal (biota) concentrations of MNPs, (2) differences among organisms, species, and/or regions, and (3) utility of species as effective biomonitors for MNPs in the marine environment. A critical screening of 409 biomonitoring studies published between 2017 and 2022 was carried out using previously established reliability criteria. Studies included 1243 unique species and 1954 distinct research units. Two gateway criteria were proposed to assess the relevance and utility for biomonitoring and risk assessment: polymer identification and the inclusion of an environmental sample (water or sediment). In comparison to previously published systematic reviews, the general quality of study design is improving with time. Nonetheless, deficiencies impacting the relevance and reliability are still common. In total, only 8 % of all studies passed the screening and gateway criteria, and scored ≥50 % in reliability, suggesting that studies which provide sufficient rigor and data to support confident quantitative analysis and decision-making remain limited. A series of recommendations for journals, reviewers, and researchers are proposed to increase the utility and impact of future studies, particularly as they are applied within the context of ecological risk assessment and decision-making.
Collapse
Affiliation(s)
| | | | - Davide Asnicar
- Huntsman Marine Science Centre, St. Andrews, NB E5B 2L7, Canada
| | | |
Collapse
|
4
|
Low GK, Subedi S, Omosumwen OF, Jiee SF, Devkota S, Shanmuganathan S, Doyle Z. Development and validation of observational and qualitative study protocol reporting checklists for novice researchers (ObsQual checklist). EVALUATION AND PROGRAM PLANNING 2024; 106:102468. [PMID: 39029287 DOI: 10.1016/j.evalprogplan.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
INTRODUCTION Currently, no reporting guidelines exist for observational and qualitative study protocols. In an effort to enhance the quality of research protocols, we introduce two study protocol reporting checklists that we have developed. MAIN RECOMMENDATIONS These checklists include educational components and examples intended to assist novice researchers. Through the analysis of 333 study protocols submitted for ethical review, our checklists have been developed and validated, demonstrating their applicability across various observational and qualitative study designs. CHANGES IN MANAGEMENT We provide insights into the systematic implementation of these checklists alongside complementary elements that support their effectiveness. We recommend longitudinal monitoring and evaluation of checklist utilization.
Collapse
Affiliation(s)
- Gary Kk Low
- Research Directorate, Nepean Hospital, Nepean Blue Mountain Local Health District, Derby St, Kingswood, NSW, 2750, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia.
| | - Sudarshan Subedi
- Department of Community Services, Torrens University of Australia, Adelaide, SA, Australia
| | | | - Sam Froze Jiee
- Department of Community Medicine and Public Health, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Malaysia
| | | | - Selvanaayagam Shanmuganathan
- Menzies Centre for Health Policy and Economics, Faculty of Medicine and Health, The University of Sydney, Australia; Ministry of Health, Malaysia
| | - Zelda Doyle
- Rural Clinical School, School of Medicine, Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame, NSW, Australia
| |
Collapse
|
5
|
Phillips HRP, Cameron EK, Eisenhauer N, Burton VJ, Ferlian O, Jin Y, Kanabar S, Malladi S, Murphy RE, Peter A, Petrocelli I, Ristok C, Tyndall K, van der Putten W, Beaumelle L. Global changes and their environmental stressors have a significant impact on soil biodiversity-A meta-analysis. iScience 2024; 27:110540. [PMID: 39262803 PMCID: PMC11387903 DOI: 10.1016/j.isci.2024.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 07/16/2024] [Indexed: 09/13/2024] Open
Abstract
Identifying the main threats to soil biodiversity is crucial as soils harbor ∼60% of global biodiversity. Many previous meta-analyses investigating the impact of different global changes (GCs) on biodiversity have omitted soil fauna or are limited by the GCs studied. We conducted a broad-scale meta-analysis focused on soil fauna communities, analyzing 3,161 effect sizes from 624 publications studying climate change, land-use intensification, pollution, nutrient enrichment, invasive species and habitat fragmentation. Land-use intensification resulted in large reductions in soil fauna communities, especially for the larger-bodied groups. Unexpectedly, pollution caused the largest negative impact on soil biodiversity - particularly worrying due to continually increasing levels of pollution and poor mechanistic understanding of impacts relative to other GCs. Not all GCs and stressors were detrimental; organic-based nutrient enrichment often resulted in positive responses. Including soil biodiversity in large-scale analyses is vital to fully understand the impact of GCs across the different realms.
Collapse
Affiliation(s)
- Helen R P Phillips
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
- Department of Environmental Sciences, Saint Mary's University, Halifax, NS, Canada
- Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Erin K Cameron
- Department of Environmental Sciences, Saint Mary's University, Halifax, NS, Canada
| | - Nico Eisenhauer
- Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Olga Ferlian
- Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Yiming Jin
- Dresden University of Technology, Dresden, Germany
| | - Sahana Kanabar
- Department of Environmental Sciences, Saint Mary's University, Halifax, NS, Canada
| | - Sandhya Malladi
- JUNIA, Health & Environment, Team Environment, Lille, France
| | - Rowan E Murphy
- Department of Environmental Sciences, Saint Mary's University, Halifax, NS, Canada
| | - Anne Peter
- Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Isis Petrocelli
- Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Christian Ristok
- Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Katharine Tyndall
- Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Wim van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| | - Léa Beaumelle
- CNRS, Université Paul Sabatier III, Toulouse, France
| |
Collapse
|
6
|
Purgar M, Glasziou P, Klanjscek T, Nakagawa S, Culina A. Supporting study registration to reduce research waste. Nat Ecol Evol 2024; 8:1391-1399. [PMID: 38839851 DOI: 10.1038/s41559-024-02433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
An estimated 82-89% of ecological research and 85% of medical research has limited or no value to the end user because of various inefficiencies. We argue that registration and registered reports can enhance the quality and impact of ecological research. Drawing on evidence from other fields, chiefly medicine, we support our claim that registration can reduce research waste. However, increasing registration rates, quality and impact will be very slow without coordinated effort of funders, publishers and research institutions. We therefore call on them to facilitate the adoption of registration by providing adequate support. We outline several aspects to be considered when designing a registration system that would best serve the field of ecology. To further inform the development of such a system, we call for more research to identify the causes of low registration rates in ecology. We suggest short- and long-term actions to bolster registration and reduce research waste.
Collapse
Affiliation(s)
| | - Paul Glasziou
- Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Queensland, Australia
| | | | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Antica Culina
- Ruđer Bošković Institute, Zagreb, Croatia.
- Netherlands Institute of Ecology, Royal Netherlands Academy of Arts and Sciences, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Nakagawa S, Lagisz M, Yang Y, Drobniak SM. Finding the right power balance: Better study design and collaboration can reduce dependence on statistical power. PLoS Biol 2024; 22:e3002423. [PMID: 38190355 PMCID: PMC10773938 DOI: 10.1371/journal.pbio.3002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Power analysis currently dominates sample size determination for experiments, particularly in grant and ethics applications. Yet, this focus could paradoxically result in suboptimal study design because publication biases towards studies with the largest effects can lead to the overestimation of effect sizes. In this Essay, we propose a paradigm shift towards better study designs that focus less on statistical power. We also advocate for (pre)registration and obligatory reporting of all results (regardless of statistical significance), better facilitation of team science and multi-institutional collaboration that incorporates heterogenization, and the use of prospective and living meta-analyses to generate generalizable results. Such changes could make science more effective and, potentially, more equitable, helping to cultivate better collaborations.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Szymon M. Drobniak
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Urbano F, Viterbi R, Pedrotti L, Vettorazzo E, Movalli C, Corlatti L. Enhancing biodiversity conservation and monitoring in protected areas through efficient data management. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:12. [PMID: 38051448 PMCID: PMC10697885 DOI: 10.1007/s10661-023-11851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/06/2023] [Indexed: 12/07/2023]
Abstract
A scientifically informed approach to decision-making is key to ensuring the sustainable management of ecosystems, especially in the light of increasing human pressure on habitats and species. Protected areas, with their long-term institutional mandate for biodiversity conservation, play an important role as data providers, for example, through the long-term monitoring of natural resources. However, poor data management often limits the use and reuse of this wealth of information. In this paper, we share lessons learned in managing long-term data from the Italian Alpine national parks. Our analysis and examples focus on specific issues faced by managers of protected areas, which partially differ from those faced by academic researchers, predominantly owing to different mission, governance, and temporal perspectives. Rigorous data quality control, the use of appropriate data management tools, and acquisition of the necessary skills remain the main obstacles. Common protocols for data collection offer great opportunities for the future, and complete recovery and documentation of time series is an urgent priority. Notably, before data can be shared, protected areas should improve their data management systems, a task that can be achieved only with adequate resources and a long-term vision. We suggest strategies that protected areas, funding agencies, and the scientific community can embrace to address these problems. The added value of our work lies in promoting engagement with managers of protected areas and in reporting and analysing their concrete requirements and problems, thereby contributing to the ongoing discussion on data management and sharing through a bottom-up approach.
Collapse
Affiliation(s)
| | - Ramona Viterbi
- Gran Paradiso National Park, Via Pio VII 9, 10135, Torino, Italy
| | - Luca Pedrotti
- Stelvio National Park, Via De Simoni 42, 23032, Bormio, Italy
| | - Enrico Vettorazzo
- Dolomiti Bellunesi National Park, Piazzale Zancanaro 1, 32032, Feltre, Italy
| | - Cristina Movalli
- Val Grande National Park, Piazza Pretorio 6, 28805, Vogogna, Italy
| | - Luca Corlatti
- Stelvio National Park, Via De Simoni 42, 23032, Bormio, Italy
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| |
Collapse
|
9
|
Bowers EC, Stephenson J, Furlong M, Ramos KS. Scope and financial impact of unpublished data and unused samples among U.S. academic and government researchers. iScience 2023; 26:107166. [PMID: 37485349 PMCID: PMC10359936 DOI: 10.1016/j.isci.2023.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Unpublished data and unused samples are common byproducts of research activity, but little is known about the scope and economic impact of their disuse. To fill this knowledge gap, we collected self-reported anonymous survey responses from 301 academic and government scientists from randomly selected institutions. Respondents estimated that they published ∼60% of their data and 95% had unpublished data. Of those collecting specimens, 60% stored unused samples. Systemic and logistical issues were identified as major contributory factors. The median cumulative self-reported estimated value of unused resources per researcher was $28,857, with life science ($36k) and government ($109k) researchers reporting the costliest assets. Using NSF headcounts, we estimated that the current cumulative value of unused resources at universities is approximately $6.2 billion, about 7% of the current annual R&D budget. These findings provide actionable information that can be used by decision makers to reduce obstacles that undermine scientific progress and productivity.
Collapse
Affiliation(s)
| | | | - Melissa Furlong
- University of Arizona Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy Tucson, Tucson, AZ 85724, USA
| | - Kenneth S. Ramos
- Texas A&M Institute of Biosciences and Technology, Center for Genomic and Precision Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
11
|
Opportunities and challenges for Registered Reports in ecology and evolution. Nat Commun 2022; 13:7266. [PMID: 36443298 PMCID: PMC9705375 DOI: 10.1038/s41467-022-32900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Purgar M, Klanjscek T, Culina A. Quantifying research waste in ecology. Nat Ecol Evol 2022; 6:1390-1397. [PMID: 35864230 DOI: 10.1038/s41559-022-01820-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Research inefficiencies can generate huge waste: evidence from biomedical research has shown that most research is avoidably wasted and steps have been taken to tackle this costly problem. Although other scientific fields could also benefit from identifying and quantifying waste and acting to reduce it, no other estimates of research waste are available. Given that ecological issues interweave most of the United Nations Sustainable Development Goals, we argue that tackling research waste in ecology should be prioritized. Our study leads the way. We estimate components of waste in ecological research based on a literature review and a meta-analysis. Shockingly, our results suggest only 11-18% of conducted ecological research reaches its full informative value. All actors within the research system-including academic institutions, policymakers, funders and publishers-have a duty towards science, the environment, study organisms and the public, to urgently act and reduce this considerable yet preventable loss. We discuss potential ways forward and call for two major actions: (1) further research into waste in ecology (and beyond); (2) focused development and implementation of solutions to reduce unused potential of ecological research.
Collapse
Affiliation(s)
- Marija Purgar
- Rudjer Boskovic Institute, Zagreb, Croatia.,Department of Biology, University of Osijek, Osijek, Croatia
| | | | - Antica Culina
- Rudjer Boskovic Institute, Zagreb, Croatia. .,Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, the Netherlands.
| |
Collapse
|