1
|
Ekström AG, Gärdenfors P, Snyder WD, Friedrichs D, McCarthy RC, Tsapos M, Tennie C, Strait DS, Edlund J, Moran S. Correlates of Vocal Tract Evolution in Late Pliocene and Pleistocene Hominins. HUMAN NATURE (HAWTHORNE, N.Y.) 2025; 36:22-69. [PMID: 40244547 PMCID: PMC12058909 DOI: 10.1007/s12110-025-09487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/18/2025]
Abstract
Despite decades of research on the emergence of human speech capacities, an integrative account consistent with hominin evolution remains lacking. We review paleoanthropological and archaeological findings in search of a timeline for the emergence of modern human articulatory morphological features. Our synthesis shows that several behavioral innovations coincide with morphological changes to the would-be speech articulators. We find that significant reductions of the mandible and masticatory muscles and vocal tract anatomy coincide in the hominin fossil record with the incorporation of processed and (ultimately) cooked food, the appearance and development of rudimentary stone tools, increases in brain size, and likely changes to social life and organization. Many changes are likely mutually reinforcing; for example, gracilization of the hominin mandible may have been maintainable in the lineage because food processing had already been outsourced to the hands and stone tools, reducing selection pressures for robust mandibles in the process. We highlight correlates of the evolution of craniofacial and vocal tract features in the hominin lineage and outline a timeline by which our ancestors became 'pre-adapted' for the evolution of fully modern human speech.
Collapse
Affiliation(s)
- Axel G Ekström
- Speech, Music & Hearing, KTH Royal Institute of Technology, Stockholm, Sweden.
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Peter Gärdenfors
- Department of Philosophy, Lund University, Lund, Sweden
- Paleo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - William D Snyder
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Daniel Friedrichs
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Linguistics Research Infrastructure (LiRI), University of Zurich, Zürich, Switzerland
| | - Robert C McCarthy
- Department of Biological Sciences, Benedictine University, Lisle, IL, US
| | - Melina Tsapos
- Department of Philosophy, Lund University, Lund, Sweden
| | - Claudio Tennie
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - David S Strait
- Paleo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, US
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| | - Jens Edlund
- Speech, Music & Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Steven Moran
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Linguistics Research Infrastructure (LiRI), University of Zurich, Zürich, Switzerland
- Department of Anthropology, University of Miami, Coral Gables, FL, US
| |
Collapse
|
2
|
Fulgione D, Russo D, Rivieccio E, Maselli V, Avallone B, Mondanaro A, Giurato G, Buglione M. Flame-forged divergence? Ancient human fires and the evolution of diurnal and nocturnal lineages in moorish geckos. iScience 2025; 28:111715. [PMID: 39898051 PMCID: PMC11783447 DOI: 10.1016/j.isci.2024.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Using a multidisciplinary approach, we investigated whether human-controlled fire has historically influenced temporal niche partitioning between dark-diurnal and pale-nocturnal lineages of the Moorish gecko (Tarentola mauritanica). The pale-nocturnal variant exhibited lower skin melanin levels, smaller and fewer melanosomes, and lower plasma α-Melanocyte Stimulating Hormone levels than its dark-diurnal counterpart. Mitochondrial genome analyses indicated that the common ancestor of these gecko lineages diverged approximately 6,600 years ago, coinciding with the transition of modern humans from nomadic hunter-gatherers to settled agricultural societies. Species distribution models suggested coexistence between humans and geckos during the emergence of these lineages. Additionally, we demonstrated that fire attracts phototactic arthropods, concentrating prey resources. These findings imply that human-controlled fire may have created a novel foraging niche for pale-nocturnal geckos, likely driving the divergence of the two variants.
Collapse
Affiliation(s)
- Domenico Fulgione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Danilo Russo
- Animal Ecology and Evolution Laboratory (AnEcoEvo), Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Eleonora Rivieccio
- Department of Humanities Studies, University of Naples Federico II, 80138 Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry Medicine, University of Salerno, 84081 Salerno, Italy
| | - Maria Buglione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
3
|
Ahituv H, Henry AG, Melamed Y, Goren-Inbar N, Bakels C, Shumilovskikh L, Cabanes D, Stone JR, Rowe WF, Alperson-Afil N. Starch-rich plant foods 780,000 y ago: Evidence from Acheulian percussive stone tools. Proc Natl Acad Sci U S A 2025; 122:e2418661121. [PMID: 39761385 PMCID: PMC11760500 DOI: 10.1073/pnas.2418661121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
In contrast to animal foods, wild plants often require long, multistep processing techniques that involve significant cognitive skills and advanced toolkits to perform. These costs are thought to have hindered how hominins used these foods and delayed their adoption into our diets. Through the analysis of starch grains preserved on basalt anvils and percussors, we demonstrate that a wide variety of plants were processed by Middle Pleistocene hominins at the site of Gesher Benot Ya'aqov in Israel, at least 780,000 y ago. These results further indicate the advanced cognitive abilities of our early ancestors, including their ability to collect plants from varying distances and from a wide range of habitats and to mechanically process them using percussive tools.
Collapse
Affiliation(s)
- Hadar Ahituv
- The Martin (Szusz) Department of Land of Israel Studies and Archaeology, Institute of Archaeology, Bar-Ilan University, Ramat Gan5290002, Israel
- Laboratory for Ancient Food Processing Technologies, The Zinman Institute of Archaeology, School of Archaeology, University of Haifa, Haifa3498838, Israel
| | - Amanda G. Henry
- Department of Archaeological Sciences, Faculty of Archaeology, Leiden University, Leiden2333CC, The Netherlands
- Tropical Botany Group, Naturalis Biodiversity Center, Leiden2333 CR, The Netherlands
| | - Yoel Melamed
- The Mina and Everard Goodman Faculty of Life Sciences & The Archaeobotanical Laboratory, Institute of Archaeology, Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Naama Goren-Inbar
- Institute of Archaeology, The Hebrew University of Jerusalem, Mt. Scopus, Jerusalem91905, Israel
| | - Corrie Bakels
- Department of Archaeological Sciences, Faculty of Archaeology, Leiden University, Leiden2333CC, The Netherlands
| | - Lyudmila Shumilovskikh
- Department of Palynology and Climate Dynamics, Georg-August-University of Göttingen, Göttingen37073, Germany
| | - Dan Cabanes
- Center for Human Evolutionary Studies, Department of Anthropology, Rutgers—The State University of New Jersey, New Brunswick, NJ08901-8558
| | - Jeffery R. Stone
- Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN47803
| | - Walter F. Rowe
- Department of Forensic Sciences, The George Washington University, Washington, DC20007
| | - Nira Alperson-Afil
- The Martin (Szusz) Department of Land of Israel Studies and Archaeology, Institute of Archaeology, Bar-Ilan University, Ramat Gan5290002, Israel
| |
Collapse
|
4
|
Nava A, Lugli F, Lemmers S, Cerrito P, Mahoney P, Bondioli L, Müller W. Reading children's teeth to reconstruct life history and the evolution of human cooperation and cognition: The role of dental enamel microstructure and chemistry. Neurosci Biobehav Rev 2024; 163:105745. [PMID: 38825260 DOI: 10.1016/j.neubiorev.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant's growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices, and the adaptive capacity of a community. Skeletal remains provide one way of accessing this information for humans recovered prior to the historical periods. Teeth in particular, are retrospective archives of information that can be accessed through morphological, micromorphological, and biogeochemical methods. This review discusses how the microanatomy and formation of teeth, and particularly enamel, serve as archives of somatic growth, stress, and the environment. Examining their role in the broader context of human evolution, we discuss dental biogeochemistry and emphasize how the incremental growth of tooth microstructure facilitates the reconstruction of temporal data related to health, diet, mobility, and stress in past societies. The review concludes by considering tooth microstructure as a biomarker and the potential clinical applications.
Collapse
Affiliation(s)
- Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, via Caserta 6, Rome 00161, Italy.
| | - Federico Lugli
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Chemical and Geological Science, University of Modena and Reggio Emilia, via Giuseppe Campi, 103, Modena 41125, Italy
| | - Simone Lemmers
- Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, s.s. 14 km 163,500, Basovizza, Trieste, Italy; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA
| | - Paola Cerrito
- Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Ln, Giles Ln, Canterbury CT2 7NZ, UK
| | - Luca Bondioli
- Department of Cultural Heritage, University of Padua, Piazza Capitaniato, 7, Padua 35139, Italy
| | - Wolfgang Müller
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
6
|
Peer M, Sarig R. The effect of burning on dental tissue: A macroscopic and microscopic investigation. Forensic Sci Int 2024; 358:111987. [PMID: 38547582 DOI: 10.1016/j.forsciint.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/30/2024]
Abstract
Teeth are considered unique as fingerprints for identification purposes. Their structure and resilience mean they can remain for thousands and millions of years withstanding extreme conditions, including burning. During burning, bones undergo carbonization at approximately 400°C and calcination at approximately 700°C. This study aimed to investigate the effects of carbonization and calcination on dental tissue. It involved nondestructive analyses of 58 extracted human teeth before and after burning, using x-ray diffraction, micro-CT, and high-resolution confocal microscopy. The results revealed that during carbonization, dentin volume decreased in two thirds of the sample, accompanied by crack formation and significant reduction in hydroxyapatite crystal size (p<0.001). During calcination, dentin volume decreased in all teeth, along with a significant deepening of the cracks (p<0.001), while enamel crystal size increased slightly. Initial changes in teeth occurred at lower temperatures than had once been assumed, as indicated by the cracks during carbonization, and there was up to a 36% decrease in dentin volume during calcination, which should be considered when measuring burnt teeth. The results of this research provide new insight into understanding dental tissue response to burning. Thus, dental remains may contribute to the knowledge needed to reconstruct anthropological and forensic scenarios involving burning.
Collapse
Affiliation(s)
- Michal Peer
- The Department of Oral Biology, the Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rachel Sarig
- The Department of Oral Biology, the Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Meijer H. Janus faced: The co-evolution of war and peace in the human species. Evol Anthropol 2024:e22027. [PMID: 38623594 DOI: 10.1002/evan.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The human species presents a paradox. No other species possesses the propensity to carry out coalitionary lethal attacks on adult conspecifics coupled with the inclination to establish peaceful relations with genetically unrelated groups. What explains this seemingly contradictory feature? Existing perspectives, the "deep roots" and "shallow roots" of war theses, fail to capture the plasticity of human intergroup behaviors, spanning from peaceful cooperation to warfare. By contrast, this article argues that peace and war have both deep roots, and they co-evolved through an incremental process over several million years. On the one hand, humans inherited the propensity for coalitionary lethal violence from their chimpanzee-like ancestor. Specifically, having first inherited the skills to engage in cooperative hunting, they gradually repurposed such capacity to execute coalitionary killings of adult conspecifics and subsequently enhanced it through technological innovations like the use of weapons. On the other hand, they underwent a process of cumulative cultural evolution and, subsequently, of self-domestication which led to heightened cooperative communication and increased prosocial behavior within and between groups. The combination of these two biocultural evolutionary processes-coupled with feedback loop effects between self-domestication and Pleistocene environmental variability-considerably broadened the human intergroup behavioral repertoire, thereby producing the distinctive combination of conflictual and peaceful intergroup relations that characterizes our species. To substantiate this argument, the article synthesizes and integrates the findings from a variety of disciplines, leveraging evidence from evolutionary anthropology, primatology, archeology, paleo-genetics, and paleo-climatology.
Collapse
Affiliation(s)
- Hugo Meijer
- Sciences Po, Center for International Studies (CERI), Paris, France
| |
Collapse
|
8
|
Leder D, Lehmann J, Milks A, Koddenberg T, Sietz M, Vogel M, Böhner U, Terberger T. The wooden artifacts from Schöningen's Spear Horizon and their place in human evolution. Proc Natl Acad Sci U S A 2024; 121:e2320484121. [PMID: 38557183 PMCID: PMC11009636 DOI: 10.1073/pnas.2320484121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Ethnographic records show that wooden tools played a pivotal role in the daily lives of hunter-gatherers including food procurement tools used in hunting (e.g., spears, throwing sticks) and gathering (e.g. digging sticks, bark peelers), as well as, domestic tools (e.g., handles, vessels). However, wood rarely survives in the archeological record, especially in Pleistocene contexts and knowledge of prehistoric hunter-gatherer lifeways is strongly biased by the survivorship of more resilient materials such as lithics and bones. Consequently, very few Paleolithic sites have produced wooden artifacts and among them, the site of Schöningen stands out due to its number and variety of wooden tools. The recovery of complete wooden spears and throwing sticks at this 300,000-y-old site (MIS 9) led to a paradigm shift in the hunter vs. scavenger debate. For the first time and almost 30 y after their discovery, this study introduces the complete wooden assemblage from Schöningen 13 II-4 known as the Spear Horizon. In total, 187 wooden artifacts could be identified from the Spear Horizon demonstrating a broad spectrum of wood-working techniques, including the splitting technique. A minimum of 20 hunting weapons is now recognized and two newly identified artifact types comprise 35 tools made on split woods, which were likely used in domestic activities. Schöningen 13 II-4 represents the largest Pleistocene wooden artifact assemblage worldwide and demonstrates the key role woodworking had in human evolution. Finally, our results considerably change the interpretation of the Pleistocene lakeshore site of Schöningen.
Collapse
Affiliation(s)
- Dirk Leder
- Department of Archaeology, Lower Saxony State Office for Cultural Heritage, Hannover30175, Germany
| | - Jens Lehmann
- Department of Archaeology, Lower Saxony State Office for Cultural Heritage, Hannover30175, Germany
| | - Annemieke Milks
- Department of Archaeology, University of Reading, Earley, ReadingRG6 6AX, United Kingdom
| | - Tim Koddenberg
- Department of Wood Biology and Wood Products, Georg-August University Göttingen, Gottingen37077, Germany
| | - Michael Sietz
- Archaeological Conservation Unit, Lower Saxony State Office for Cultural Heritage, Hannover30175, Germany
| | - Matthias Vogel
- Archaeological Conservation Unit, Lower Saxony State Office for Cultural Heritage, Hannover30175, Germany
| | - Utz Böhner
- Department of Archaeology, Lower Saxony State Office for Cultural Heritage, Hannover30175, Germany
| | - Thomas Terberger
- Department of Archaeology, Lower Saxony State Office for Cultural Heritage, Hannover30175, Germany
- Department of Prehistoric Archaeology, Georg-August University Göttingen, Gottingen37073, Germany
| |
Collapse
|
9
|
Varella MAC. Nocturnal selective pressures on the evolution of human musicality as a missing piece of the adaptationist puzzle. Front Psychol 2023; 14:1215481. [PMID: 37860295 PMCID: PMC10582961 DOI: 10.3389/fpsyg.2023.1215481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Human musicality exhibits the necessary hallmarks for biological adaptations. Evolutionary explanations focus on recurrent adaptive problems that human musicality possibly solved in ancestral environments, such as mate selection and competition, social bonding/cohesion and social grooming, perceptual and motor skill development, conflict reduction, safe time-passing, transgenerational communication, mood regulation and synchronization, and credible signaling of coalition and territorial/predator defense. Although not mutually exclusive, these different hypotheses are still not conceptually integrated nor clearly derived from independent principles. I propose The Nocturnal Evolution of Human Musicality and Performativity Theory in which the night-time is the missing piece of the adaptationist puzzle of human musicality and performing arts. The expansion of nocturnal activities throughout human evolution, which is tied to tree-to-ground sleep transition and habitual use of fire, might help (i) explain the evolution of musicality from independent principles, (ii) explain various seemingly unrelated music features and functions, and (iii) integrate many ancestral adaptive values proposed. The expansion into the nocturnal niche posed recurrent ancestral adaptive challenges/opportunities: lack of luminosity, regrouping to cook before sleep, imminent dangerousness, low temperatures, peak tiredness, and concealment of identity. These crucial night-time features might have selected evening-oriented individuals who were prone to acoustic communication, more alert and imaginative, gregarious, risk-taking and novelty-seeking, prone to anxiety modulation, hedonistic, promiscuous, and disinhibited. Those night-time selected dispositions may have converged and enhanced protomusicality into human musicality by facilitating it to assume many survival- and reproduction-enhancing roles (social cohesion and coordination, signaling of coalitions, territorial defense, antipredatorial defense, knowledge transference, safe passage of time, children lullabies, and sexual selection) that are correspondent to the co-occurring night-time adaptive challenges/opportunities. The nocturnal dynamic may help explain musical features (sound, loudness, repetitiveness, call and response, song, elaboration/virtuosity, and duetting/chorusing). Across vertebrates, acoustic communication mostly occurs in nocturnal species. The eveningness chronotype is common among musicians and composers. Adolescents, who are the most evening-oriented humans, enjoy more music. Contemporary tribal nocturnal activities around the campfire involve eating, singing/dancing, storytelling, and rituals. I discuss the nocturnal integration of musicality's many roles and conclude that musicality is probably a multifunctional mental adaptation that evolved along with the night-time adaptive landscape.
Collapse
|
10
|
Petersen BC. An economic model and evidence of the evolution of human intelligence in the Middle Pleistocene: Climate change and assortative mating. PLoS One 2023; 18:e0287964. [PMID: 37531351 PMCID: PMC10395973 DOI: 10.1371/journal.pone.0287964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
A main objective of this paper is to provide the first model of how climate change, working through sexual selection, could have led to dramatic increases in hominin brain size, and presumably intelligence, in the Middle Pleistocene. The model is built using core elements from the field of family economics, including assortative mating and specialization and complementarities between mates. The main assumptions are that family public goods (e.g., conversation, shelter, fire) were particularly cognitively intensive to produce and became increasingly important for child survival during glacial phases. Intermediate climates (e.g., not the depths of severe glacial phases) create the largest gains from specialization, encouraging negative assortative mating. In contrast, severe glacial phases encourage positive assortative mating because of the rising importance of family public goods. One testable hypothesis is that absence of severe glacial phases should have led to stasis in brain size. Two other testable hypotheses are that severe glacial phases should have led to speciation events, as well as increases in brain size. The evidence shows that there was a million-year stasis in cranial size prior to the start of the severe glacial phases. This stasis is broken by a speciation event (Homo heidelbergensis), with the oldest fossil evidence dated near the close of the first severe glacial phase. In the next 300 kyr, there are two additional severe glacial phases, accompanied by considerable increases in cranial capacity. The last speciation event is Homo sapiens, with the earliest fossils dated near the end of the last of these two glacial phases.
Collapse
Affiliation(s)
- Bruce C Petersen
- Department of Economics, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
11
|
Carlberg C. Nutrigenomics in the context of evolution. Redox Biol 2023; 62:102656. [PMID: 36933390 PMCID: PMC10036735 DOI: 10.1016/j.redox.2023.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Nutrigenomics describes the interaction between nutrients and our genome. Since the origin of our species most of these nutrient-gene communication pathways have not changed. However, our genome experienced over the past 50,000 years a number of evolutionary pressures, which are based on the migration to new environments concerning geography and climate, the transition from hunter-gatherers to farmers including the zoonotic transfer of many pathogenic microbes and the rather recent change of societies to a preferentially sedentary lifestyle and the dominance of Western diet. Human populations responded to these challenges not only by specific anthropometric adaptations, such as skin color and body stature, but also through diversity in dietary intake and different resistance to complex diseases like the metabolic syndrome, cancer and immune disorders. The genetic basis of this adaptation process has been investigated by whole genome genotyping and sequencing including that of DNA extracted from ancient bones. In addition to genomic changes, also the programming of epigenomes in pre- and postnatal phases of life has an important contribution to the response to environmental changes. Thus, insight into the variation of our (epi)genome in the context of our individual's risk for developing complex diseases, helps to understand the evolutionary basis how and why we become ill. This review will discuss the relation of diet, modern environment and our (epi)genome including aspects of redox biology. This has numerous implications for the interpretation of the risks for disease and their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Juliana Tuwima 10, PL-10748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|