1
|
Hopkins JR, Bennett AE, McKenna TP. Fire Frequency Driven Increases in Burn Heterogeneity Promote Microbial Beta Diversity: A Test of the Pyrodiversity-Biodiversity Hypothesis. Mol Ecol 2025; 34:e17756. [PMID: 40186548 PMCID: PMC12051778 DOI: 10.1111/mec.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity-biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency-driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency-driven increases in pyrodiversity augment biodiversity and may influence productivity in fire-prone ecosystems.
Collapse
Affiliation(s)
- Jacob R. Hopkins
- Evolution, Ecology, & Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Alison E. Bennett
- Evolution, Ecology, & Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Thomas P. McKenna
- Kansas Biological Survey and Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
2
|
Shen H, Zhou Y, Lin J, Huang Y, Dai Z, Zeng S, Li Y, Dahlgren RA, Xu J. Thermal Compensatory Response of Soil Heterotrophic Respiration Following Wildfire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5034-5044. [PMID: 40045528 DOI: 10.1021/acs.est.4c11833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Frequent wildfires pose a serious threat to carbon (C) dynamics of forest ecosystems under a warming climate. Yet, how wildfires alter the temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) as a critical parameter determining the C efflux from burned landscapes remains unknown. We conducted a field survey and two confirmatory experiments in two fire-prone regions of China at <1, 3, 6, and 12 months after wildfires (n = 160 soil samples). We found that wildfire generally reduced the Q10 for soil organic and mineral horizons within the first year after wildfire mainly due to substrate depletion, which was confirmed by a uniform inoculation experiment. Mineral protection of organic matter in the mineral horizon rich in iron/aluminum (hydr)oxides and a near-neutral pH in organic horizons of postfire soils further suppressed the Q10. Decreased Q10 persisted in organic horizons even after removing substrate limitation, reflecting the dominance of a thermally adapted, r-strategist microbial community in postfire soils. Moreover, fire-induced low C quality increased Q10, which supported the C quality-temperature hypothesis, but a C-limited condition restricted this stimulatory effect. This study illustrates that a thermal compensatory response of Rh will help maintain C stocks in forest ecosystems after wildfires in a warming world.
Collapse
Affiliation(s)
- Haojie Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuqi Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Saiqi Zeng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
3
|
Yang P, Wang Y, Tian X, Cui Y, Jiang T, Liu G, Liu Y, Guo Y, Hu L, Shi J, Zhang Q, Yin Y, Cai Y, Jiang G. Heating-Induced Redox Property Dynamics of Peat Soil Dissolved Organic Matter in a Simulated Peat Fire: Electron Exchange Capacity and Molecular Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:489-500. [PMID: 39748518 DOI: 10.1021/acs.est.4c09174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management. This study demonstrates temperature-dependent dynamic changes in the electron exchange capacity (EEC) of PDOM by simulating peat soil burning, significantly affecting microbial iron reduction. At low fire temperatures (200-250 °C), the EEC remains constant by releasing more phenolic moieties to enhance the electron-donating capacity (EDC). Higher temperatures (500 °C) diminish 90% of the EEC by consuming phenolic-quinone moieties. Pyrolytic PDOM (pyPDOM) contributes to 40% of the EEC of peat soil, with this contribution declining at higher temperatures. Phenolic-quinone moieties remain the primary redox-active moieties in pyPDOM. Fourier transform ion cyclotron resonance mass spectrometry analysis shows that postfire EDC depends more on phenolic types than abundance, with monophenol-like molecules (C < 12) being more significant than polyphenol-like (C ≥ 12). Quinone moieties in pyPDOM are associated with high-oxygen condensed aromatics, and their depletion reduces the electron-accepting capacity, weakening its electron shuttle effect in microbial iron reduction. Our findings enhance the understanding of the changes in PDOM redox properties during fires.
Collapse
Affiliation(s)
- Peijie Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cui
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Rawstern AH, Hernandez DJ, Afkhami ME. Central Taxa Are Keystone Microbes During Early Succession. Ecol Lett 2025; 28:e70031. [PMID: 39737770 DOI: 10.1111/ele.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025]
Abstract
Microorganisms underpin numerous ecosystem processes and support biodiversity globally. Yet, we understand surprisingly little about what structures environmental microbiomes, including how to efficiently identify key players. Microbiome network theory predicts that highly connected hubs act as keystones, but this has never been empirically tested in nature. Combining culturing, sequencing, networks and field experiments, we isolated 'central' (highly connected, hub taxa), 'intermediate' (moderately connected), and 'peripheral' (weakly/unconnected) microbes and experimentally evaluated their effects on soil microbiome assembly during early succession in nature. Central early colonisers significantly (1) enhanced biodiversity (35%-40% richer communities), (2) reshaped trajectories of microbiome assembly and (3) increased recruitment of additional influential microbes by > 60%. In contrast, peripheral microbes did not increase diversity and were transient taxa, minimally affected by the presence of other microbes. This work elucidates fundamental principles of network theory in microbial ecology and demonstrates for the first time in nature that central microbes act as keystone taxa.
Collapse
Affiliation(s)
- Amanda H Rawstern
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Damian J Hernandez
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
5
|
Tong Q, Xu MD, Dong WJ, Long XZ, Han XY, Cui LY. Influence of wildfire ash concentration on development, survival, and skin and gut microbiota of Rana dybowskii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177718. [PMID: 39581444 DOI: 10.1016/j.scitotenv.2024.177718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Climate changes can increase wildfires and thereby endanger the habitats and survival of amphibians, but relevant research is limited. The gut and skin microbiota plays a critical role in amphibian protection. Wildfire ash may negatively impact amphibians, causing inflammation and microbiota disruption, but the impact on microbial communities is still uncertain. In this study, the impact of wildfire ash on the cutaneous and gut microbiota of Rana dybowskii was investigated over a 28-day period using five groups with aqueous extracts of ash. Polycyclic aromatic hydrocarbons in the ash were analyzed. Body mass, development, survival rates, and microbiota diversity were tested. Significant differences in body mass, development rates, and survival rates among the treatment groups were observed. The survival and development rates at lower concentrations of ash (T0 and T0_75) were more similar to those under control conditions. Analyses of alpha and beta diversity revealed significant changes in microbiota composition across ash concentrations, with specific phyla and genera affected. Linear discriminant analysis effect analysis identified distinct microbiota associated with each treatment group, demonstrating the specific influence of ash concentrations on the microbiota composition of tadpoles. BugBase analysis revealed significant differences in the same phenotypes in gut microbiota, but not in nine skin microbiota phenotypes across groups. This research underscores the sensitivity of amphibian microbiota to environmental changes and provides insights into the ecological consequences of wildfires on aquatic ecosystems.
Collapse
Affiliation(s)
- Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| |
Collapse
|
6
|
Khrennikov A, Iryama S, Basieva I, Sato K. Quantum-like environment adaptive model for creation of phenotype. Biosystems 2024; 242:105261. [PMID: 38964651 DOI: 10.1016/j.biosystems.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The textbook conceptualization of phenotype creation, "genotype (G) + environment (E) + genotype & environment interactions (GE) ↦ phenotype (Ph)", is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The model is quantum-like, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the E-adaptation processes described by the quantum master equation, Gorini-Kossakowski-Sudarshan-Lindblad equation (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of E-adaptation phenotype's state entropy (disorder) first increases and then falls down - a stable and well-ordered phenotype is created. Traits, an organism's phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.
Collapse
Affiliation(s)
- Andrei Khrennikov
- Linnaeus University, International Center for Mathematical Modeling in Physics and Cognitive Sciences Växjö, SE-351 95, Sweden.
| | - Satoshi Iryama
- Tokyo University of Science, Faculty of Science and Technology, Department of Information Sciences, Noda City, Chiba 278-8510, Japan
| | - Irina Basieva
- Linnaeus University, International Center for Mathematical Modeling in Physics and Cognitive Sciences Växjö, SE-351 95, Sweden
| | - Keiko Sato
- Tokyo University of Science, Faculty of Science and Technology, Department of Information Sciences, Noda City, Chiba 278-8510, Japan
| |
Collapse
|
7
|
VanderRoest JP, Fowler JA, Rhoades CC, Roth HK, Broeckling CD, Fegel TS, McKenna AM, Bechtold EK, Boot CM, Wilkins MJ, Borch T. Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4167-4180. [PMID: 38385432 DOI: 10.1021/acs.est.3c09797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled "pyrocosm" approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography-mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.
Collapse
Affiliation(s)
- Jacob P VanderRoest
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Julie A Fowler
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Corey D Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, 80521, United States
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Emily K Bechtold
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Claudia M Boot
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
8
|
Nelson AR, Rhoades CC, Fegel TS, Roth HK, Caiafa MV, Glassman SI, Borch T, Wilkins MJ. Wildfire impact on soil microbiome life history traits and roles in ecosystem carbon cycling. ISME COMMUNICATIONS 2024; 4:ycae108. [PMID: 39963501 PMCID: PMC11831523 DOI: 10.1093/ismeco/ycae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 02/20/2025]
Abstract
Wildfires, which are increasing in frequency and severity with climate change, reduce soil microbial biomass and alter microbial community composition and function. The soil microbiome plays a vital role in carbon (C) and nitrogen (N) cycling, but its complexity makes it challenging to predict post-wildfire soil microbial dynamics and resulting impacts on ecosystem biogeochemistry. The application of biogeochemically relevant conceptual trait-based frameworks to the soil microbiome can distill this complexity, enabling enhanced predictability of soil microbiome recovery following wildfire and subsequent impacts to biogeochemical cycles. Conceptual frameworks that have direct links to soil C and N cycling have been developed for the soil microbiome; the Y-A-S framework overviews soil microbiome life history strategies that have tradeoffs with one another and others have proposed frameworks specific to wildfire. Here, we aimed to delineate post-wildfire changes of bacterial traits in western US coniferous forests to inform how severe wildfire influences soil microbiome recovery and resultant biogeochemical cycling. We utilized a comprehensive metagenome-assembled genome catalog from post-wildfire soils representing 1 to 11 years following low- and high-severity burning to identify traits that enable the persistence of microbial taxa in burned soils and influence ecosystem C and N cycling. We found that high-severity wildfire initially selects for fast growers and, up to a decade post-fire, taxa that invest in genes for acquiring diverse resources from the external environment, which in combination could increase soil C losses. This work begins to disentangle how climate change-induced shifts in wildfire behavior might alter microbially mediated soil biogeochemical cycling.
Collapse
Affiliation(s)
- Amelia R Nelson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Charles C Rhoades
- Rocky Mountain Research Station, United States Forest Service, Fort Collins, CO 80526, United States
| | - Timothy S Fegel
- Rocky Mountain Research Station, United States Forest Service, Fort Collins, CO 80526, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Marcos V Caiafa
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sydney I Glassman
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|