1
|
Dallas TA, Ten Caten C. Linking geographic distribution and niche through estimation of niche density. J Anim Ecol 2025. [PMID: 40341507 DOI: 10.1111/1365-2656.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025]
Abstract
The availability of suitable niche space constrains where species can occur geographically. This tie between niche space and geographic space is crucial when estimating species geographic distributions in a changing climate. However, specific combinations of climatic conditions may be overrepresented in geographic space, highlighting the potential disconnect between climatic niche area and geographic range size. We develop a niche density estimator that accounts for the geographic availability of climatic niche space, relate this to traditional estimates of niche area and explore how these niche estimates are related to species geographic range size. To do this, we use data on over 230,000 species recorded in the Global Biodiversity Information Facility, providing a thorough test of the sensitivity of niche estimation technique on geographic range size-climatic niche scaling relationships, and clarifying the link between geographic space and environmental space by considering the density of available environments in environmental space. Niche density was more strongly related to species geographic range size than niche area, highlighting the role of the geographic availability of climatic niche space in biogeographic relationships. As species geographic ranges and environmental conditions change, understanding the ecological and evolutionary determinants of this positive scaling between geographic range size and niche size is an important research frontier.
Collapse
Affiliation(s)
- Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Cleber Ten Caten
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
2
|
Brodie JF, Freeman BG, Mannion PD, Hargreaves AL. Shifting, expanding, or contracting? Range movement consequences for biodiversity. Trends Ecol Evol 2025; 40:439-448. [PMID: 40023666 DOI: 10.1016/j.tree.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Climate change is causing species ranges to shift, expand, and contract, with divergent and underappreciated consequences for local and global biodiversity. Widespread range shifts should increase local diversity in most areas but reduce it in the tropical lowlands. Widespread expansions should maintain diversity at low latitudes while increasing diversity elsewhere, leading to stable global biodiversity. Expansions and shifts are both common responses to climate change now and in the deep past. To understand how changing ranges will reshape Earth's biodiversity, we argue for three research directions: (i) leverage paleontological data to reveal long-term biodiversity responses, (ii) better monitor low-elevation and latitude limits to distinguish shifts from expansions, and (iii) incorporate dispersal barriers that can turn would-be shifts into contractions and extinctions.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA; Institute for Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Benjamin G Freeman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anna L Hargreaves
- Department of Biology, McGill University, 1205 Dr Penfield Ave, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
3
|
Williamson J, Lu M, Camus MF, Gregory RD, Maclean IMD, Rocha JC, Saastamoinen M, Wilson RJ, Bridle J, Pigot AL. Clustered warming tolerances and the nonlinear risks of biodiversity loss on a warming planet. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230321. [PMID: 39780588 PMCID: PMC11720646 DOI: 10.1098/rstb.2023.0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity. Whether these non-uniformities are the uneven distribution of populations across a species' thermal niche, or the uneven distribution of thermal niche limits among species within an ecological community, we show that in both cases, the resulting clustering in population warming tolerances drives nonlinear increases in the risk to biodiversity. We discuss how fundamental constraints on species' physiologies and geographical distributions give rise to clustered warming tolerances, and how population responses to changing climates could variously temper, delay or intensify nonlinear dynamics. We argue that nonlinear increases in risks to biodiversity should be the null expectation under warming, and highlight the empirical research needed to understand the causes, commonness and consequences of clustered warming tolerances to better predict where, when and why nonlinear biodiversity losses will occur.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
- Joseph Williamson
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Muyang Lu
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
- College of Life Science, Sichuan University, Chengdu610065, China
| | - M. Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Richard D. Gregory
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
- RSPB Centre for Conservation Science, Sandy, BedfordshireSG19 2DL, UK
| | - Ilya M. D. Maclean
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, ExeterTR10 9FE, UK
| | - Juan C. Rocha
- The Anthropocene Laboratory, Royal Swedish Academy of Sciences, Stockholm114 18, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm106 91, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Robert J. Wilson
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Alex L. Pigot
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
4
|
Gilbert NA, Kolbe SR, Eyster HN, Grinde AR. Can internal range structure predict range shifts? J Anim Ecol 2024; 93:1556-1566. [PMID: 39221576 DOI: 10.1111/1365-2656.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Poleward and uphill range shifts are a common-but variable-response to climate change. We lack understanding regarding this interspecific variation; for example, functional traits show weak or mixed ability to predict range shifts. Characteristics of species' ranges may enhance prediction of range shifts. However, the explanatory power of many range characteristics-especially within-range abundance patterns-remains untested. Here, we introduce a hypothesis framework for predicting range-limit population trends and range shifts from the internal structure of the geographic range, specifically range edge hardness, defined as abundance within range edges relative to the whole range. The inertia hypothesis predicts that high edge abundance facilitates expansions along the leading range edge but creates inertia (either more individuals must disperse or perish) at the trailing range edge such that the trailing edge recedes slowly. In contrast, the limitation hypothesis suggests that hard range edges are the signature of strong limits (e.g. biotic interactions) that force faster contraction of the trailing edge but block expansions at the leading edge of the range. Using a long-term avian monitoring dataset from northern Minnesota, USA, we estimated population trends for 35 trailing-edge species and 18 leading-edge species and modelled their population trends as a function of range edge hardness derived from eBird data. We found limited evidence of associations between range edge hardness and range-limit population trends. Trailing-edge species with harder range edges were slightly more likely to be declining, demonstrating weak support for the limitation hypothesis. In contrast, leading-edge species with harder range edges were slightly more likely to be increasing, demonstrating weak support for the inertia hypothesis. These opposing results for the leading and trailing range edges might suggest that different mechanisms underpin range expansions and contractions, respectively. As data and state-of-the-art modelling efforts continue to proliferate, we will be ever better equipped to map abundance patterns within species' ranges, offering opportunities to anticipate range shifts through the lens of the geographic range.
Collapse
Affiliation(s)
- Neil A Gilbert
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Stephen R Kolbe
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Harold N Eyster
- Department of Plant Biology and Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
- The Nature Conservancy, Boulder, Colorado, USA
| | - Alexis R Grinde
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
5
|
Camacho A, Rodrigues MT, Jayyusi R, Harun M, Geraci M, Carretero MA, Vinagre C, Tejedo M. Does heat tolerance actually predict animals' geographic thermal limits? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170165. [PMID: 38242475 DOI: 10.1016/j.scitotenv.2024.170165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The "climate extremes hypothesis" is a major assumption of geographic studies of heat tolerance and climatic vulnerability. However, this assumption remains vastly untested across taxa, and multiple factors may contribute to uncoupling heat tolerance estimates and geographic limits. Our dataset includes 1000 entries of heat tolerance data and maximum temperatures for each species' known geographic limits (hereafter, Tmax). We gathered this information across major animal taxa, including marine fish, terrestrial arthropods, amphibians, non-avian reptiles, birds, and mammals. We first tested if heat tolerance constrains the Tmax of sites where species could be observed. Secondly, we tested if the strength of such restrictions depends on how high Tmax is relative to heat tolerance. Thirdly, we correlated the different estimates of Tmax among them and across species. Restrictions are strong for amphibians, arthropods, and birds but often weak or inconsistent for reptiles and mammals. Marine fish describe a non-linear relationship that contrasts with terrestrial groups. Traditional heat tolerance measures in thermal vulnerability studies, like panting temperatures and the upper set point of preferred temperatures, do not predict Tmax or are inversely correlated to it, respectively. Heat tolerance restricts the geographic warm edges more strongly for species that reach sites with higher Tmax for their heat tolerance. These emerging patterns underline the importance of reliable species' heat tolerance indexes to identify their thermal vulnerability at their warm range edges. Besides, the tight correlations of Tmax estimates across on-land microhabitats support a view of multiple types of thermal challenges simultaneously shaping ranges' warm edges for on-land species. The heterogeneous correlation of Tmax estimates in the ocean supports the view that fish thermoregulation is generally limited, too. We propose new hypotheses to understand thermal restrictions on animal distribution.
Collapse
Affiliation(s)
- Agustín Camacho
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio 26, 41092 Sevilla, Spain; São Paulo, SP, CEP: 05508-090, Brazil.
| | - Miguel Trefaut Rodrigues
- Laboratorio de Herpetologia, Departamento de Zoologia, Instituto de Biociências, USP, Rua do Matão, trav. 14, n° 321, Cidade Universitária, São Paulo, SP CEP: 05508-090, Brazil
| | - Refat Jayyusi
- School of Life Sciences, Arizona State University, USA
| | - Mohamed Harun
- Administração Nacional das Àreas de Conservaçao, Ministério da Terra, Ambiente e desenvolvimento rural, Rua da Resistência, nr° 1746/47 8° andar, Maputo, Mozambique; Faculdade de Veterinaria UEM, Maputo, Mozambique
| | - Marco Geraci
- Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, USA; CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal; MEMOTEF Department, School of Economics, Sapienza University of Rome
| | - Miguel A Carretero
- CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Catarina Vinagre
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Miguel Tejedo
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
6
|
Ørsted M, Willot Q, Olsen AK, Kongsgaard V, Overgaard J. Thermal limits of survival and reproduction depend on stress duration: A case study of Drosophila suzukii. Ecol Lett 2024; 27:e14421. [PMID: 38549250 DOI: 10.1111/ele.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Studies of ectotherm responses to heat extremes often rely on assessing absolute critical limits for heat coma or death (CTmax), however, such single parameter metrics ignore the importance of stress exposure duration. Furthermore, population persistence may be affected at temperatures considerably below CTmax through decreased reproductive output. Here we investigate the relationship between tolerance duration and severity of heat stress across three ecologically relevant life-history traits (productivity, coma and mortality) using the global agricultural pest Drosophila suzukii. For the first time, we show that for sublethal reproductive traits, tolerance duration decreases exponentially with increasing temperature (R2 > 0.97), thereby extending the Thermal Death Time framework recently developed for mortality and coma. Using field micro-environmental temperatures, we show how thermal stress can lead to considerable reproductive loss at temperatures with limited heat mortality highlighting the importance of including limits to reproductive performance in ecological studies of heat stress vulnerability.
Collapse
Affiliation(s)
- Michael Ørsted
- Section of Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Quentin Willot
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Kirk Olsen
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Viktor Kongsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|