1
|
Jiang H, Guan J, Li C, Wang L, Yang G. Is trace-level aluminum in zeolite matrix catalytically inert? A case study of alcohol dehydration in dealuminated beta zeolite. Chem Commun (Camb) 2025; 61:6819-6822. [PMID: 40211887 DOI: 10.1039/d4cc06712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We report an unanticipated catalytic performance for ethanol dehydration in dealuminated Beta zeolite with framework aluminum species at levels as low as 120 ppm. The residual aluminum species playeda dominant role, as proved by IPA-TPD, an n-butanol probe reaction, and DFT calculations.
Collapse
Affiliation(s)
- Haoxi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petro-chemical Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Jiahao Guan
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petro-chemical Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Changdong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petro-chemical Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Lingtao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petro-chemical Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Guochao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petro-chemical Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Fischer M. Impact of Octahedral Aluminum Sites on Guest Molecule Adsorption in Zeolites: A Computational Study of 5-Fluorouracil in Zeolite FAU. Chemistry 2025:e202500833. [PMID: 40266677 DOI: 10.1002/chem.202500833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/24/2025]
Abstract
Many aluminosilicate zeolites contain octahedral aluminum sites, which may occur as extra-framework or framework-associated sites. Due to the Lewis acidity of these sites, their impact on catalytic properties has been investigated frequently. Comparatively less emphasis has been placed on their role in adsorption, despite evidence for an irreversible binding of some guest molecules like the anticancer drug 5-fluorouracil (5-FU) to octahedral Al atoms. In the present study, dispersion-corrected density functional theory (DFT) calculations and DFT-based ab initio molecular dynamics simulations (AIMD) are employed to investigate the adsorption of 5-FU at a framework-associated octahedral Al site in zeolite FAU. The calculations show that 5-FU remains coordinated to the Al atom at room temperature and in the presence of water. In contrast, 5-FU molecules adsorbed at framework protons are quickly displaced by water molecules. It is thus demonstrated that octahedral Al atoms will negatively affect the release of 5-FU from zeolite hosts in drug delivery applications. A comparison of DFT-calculated infrared (IR) spectra to literature data provides evidence that Al-coordinated 5-FU molecules were indeed present in previously investigated samples.
Collapse
Affiliation(s)
- Michael Fischer
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
- Bremen Center for Computational Materials Science (BCCMS) and MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
3
|
Xu M, Liu H, Zhang J, Xu M, Zhao X, Wang J. Functionalized zeolite regulates bone metabolic microenvironment. Mater Today Bio 2025; 31:101558. [PMID: 40034985 PMCID: PMC11874869 DOI: 10.1016/j.mtbio.2025.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
The regulation of bone metabolic microenvironment imbalances in diseases such as osteoporosis, bone defects, infections, and tumors remains a significant challenge in orthopedics. Therefore, it has become urgent to develop biomaterials with effective bone metabolic microenvironmental regulatory functions. Zeolites, as advanced biomedical materials, possess distinctive physicochemical properties such as multi-level pore structures, adjustable frameworks, easily modifiable surfaces, and excellent adsorption capabilities. These advantageous characteristics give zeolites broad application prospects in regulating the bone metabolic microenvironment. Therefore, this paper first classifies zeolites used to regulate the bone metabolic microenvironment based on their topological structures and compositional frameworks. Subsequently, it provides a detailed description of modification strategies for zeolite materials aimed at regulating this microenvironment. Next, a comprehensive summary was provided on the preparation strategies for zeolite materials aimed at regulating the bone metabolic microenvironment. Additionally, the paper focuses on the specific applications of zeolite materials in conditions of bone metabolic imbalance, such as osteoporosis, bone defects, orthopedic infections, and bone tumors, highlighting their potential in enhancing osteogenic microenvironments, controlling infections, and treating bone tumors. Finally, it outlines the prospects and challenges associated with the application of zeolites in regulating the bone metabolic microenvironment. This review comprehensively summarizes zeolites used for bone metabolic regulation, aiming to provide guidance for future research and application development.
Collapse
Affiliation(s)
| | | | - Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Meng Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
4
|
Sun Y, Liang L, Yang M, Ji Y, Hou G, Chen K. Identification and Quantification of Al Pairs and Their Impact on Dealumination in Zeolites. J Am Chem Soc 2025; 147:10160-10171. [PMID: 39999417 DOI: 10.1021/jacs.4c14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Understanding the precise quantity and spatial distribution of paired aluminum (Al) sites in zeolite catalysts is crucial, as they significantly impact the catalytic performance via synergistic effects and long-term stability. In this study, a novel strategy by employing divalent cation titration with varying cation sizes, in combination with advanced quantitative 1H NMR and 1H-1H homonuclear correlation techniques, has been developed to accurately identify and classify three distinct types of Al pairs. These include two types of Al pairs aligned along six-membered rings (6-MRs) and 10-membered rings (10-MRs), the latter of which are essentially composed of Al atoms located in different 6-MR or 5-MR. The third type comprises two Al atoms located in different channels. The second and third types had been challenging to probe in the past, yet they may be critical for catalysis, particularly the second type demonstrating proximity close enough to accommodate Ba2+ (with a radius of 1.49 Å). Our strategy for quantifying each type of Al pair marks a significant advancement in the understanding of the zeolite framework. Furthermore, controlled hydrothermal treatments using stepwise steaming reveal that a higher concentration of Al pairs accelerates dealumination, primarily for dynamic reasons of water molecules but not intrinsic structural instability induced by Al pairs. To address this, we propose a "bi-Al" vs "mono-Al" hydrolysis model, offering fresh insights into the pivotal role of Al pairs on zeolite stability. This work opens new avenues for optimizing zeolite-based catalysts for enhanced performance and longevity.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Liang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Min Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Ji
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
5
|
Das S, Yadav GD. Tailored design of novel Co 0-Co δ+ dual phase nanoparticles for selective CO 2 hydrogenation to ethanol. J Environ Sci (China) 2025; 149:598-615. [PMID: 39181671 DOI: 10.1016/j.jes.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 08/27/2024]
Abstract
Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga 400019, Mumbai, India
| | - Ganapati D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga 400019, Mumbai, India.
| |
Collapse
|
6
|
Li J, Li G, Tsang SCE. Heterogeneous Frustrated Lewis Pair Catalysts: Rational Structure Design and Mechanistic Elucidation Based on Intrinsic Properties of Supports. Acc Chem Res 2025; 58:555-569. [PMID: 39873634 PMCID: PMC11840930 DOI: 10.1021/acs.accounts.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules. Since 2010, heterogeneous FLP catalysts have gained increasing attention for their ability to enhance catalytic performance through tailored surface designs and improved recyclability, making them promising for industrial applications. Over the past 5 years, our group has focused on investigating and strategically modifying various types of solid catalysts with FLPs that are unique from classic solid FLPs. We have explored systematic characterization techniques to unravel the underlying mechanisms between the active sites and reactants. Additionally, we have demonstrated the critical role of catalysts' intrinsic electronic and geometric properties in promoting FLP formation and stimulating synergistic effects. The characterization of FLP catalysts has been greatly enhanced by the use of advanced techniques such as synchrotron X-ray diffraction, neutron powder diffraction, X-ray photoelectron spectroscopy, extended X-ray absorption fine structure, elemental mapping in scanning transmission electron microscopy, electron paramagnetic resonance spectroscopy, diffuse-reflectance infrared Fourier transform spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. These techniques have provided deeper insights into the structural and electronic properties of FLP systems for the future design of catalysts.Understanding electron distribution in the overlapping orbitals of LA and LB pairs is essential for inducing FLPs in operando in heterogeneous catalysts through target electron reallocation by external stimuli. For instance, in silicoaluminophosphate-type zeolites with weak orbital overlap, the adsorption of polar gas molecules leads to heterolytic cleavage of the Alδ+-Oδ- bond, creating unquenched LA-LB pairs. In a Ru-doped metal-organic framework, the Ru-N bond can be polarized through metal-ligand charge transfer under light, forming Ru+-N- pairs. This activation of FLP sites from the framework represents a groundbreaking innovation that expands the catalytic potential of existing materials. For catalysts already employing FLP chemistry to dynamically generate products from substrates, a complete mechanistic interpretation requires a thorough examination of the surface electronic properties and the surrounding environment. The hydrogen spillover ability on the Ru-doped FLP surfaces improves conversion efficiency by suppressing hydrogen poisoning at metal sites. In situ H2-H2O conditions enable the production of organic chemicals with excellent activity and selectivity by creating new bifunctional sites via FLP chemistry. By highlighting the novel FLP systems featuring FLP induction and synergistic effects and the selection of advanced characterization techniques to elucidate reaction mechanisms, we hope that this Account will offer innovative strategies for designing and characterizing FLP chemistry in heterogeneous catalysts to the research community.
Collapse
Affiliation(s)
- Jiasi Li
- The
Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
- Crystallography
Group, Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11
0DE, U.K.
| | - Guangchao Li
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Shik Chi Edman Tsang
- The
Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
| |
Collapse
|
7
|
Erdmann P, Schmitt M, Janus L, Greb L. Critical Evaluation of Childs Method for the NMR Spectroscopic Scaling of Effective Lewis Acidity: Limitations and Resolution of Earlier Discrepancies. Chemistry 2025; 31:e202404181. [PMID: 39607015 DOI: 10.1002/chem.202404181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Quantifying Lewis acidity is essential for understanding and optimizing the performance of Lewis acids in diverse applications. Next to the widely accepted Gutmann-Beckett (GB) method, using triethyl phosphine oxide (TEPO) as a probe, the Childs method-employing trans-crotonaldehyde (TCA)-gained attention as an NMR-based technique for measuring effective Lewis acidity (eLA). Despite its steady use, the robustness of Childs method and its correlation with other measures remain underexplored. Previous comparisons between the GB and Childs scales revealed significant discrepancies, suggesting that hard and soft acid/base (HSAB) characteristics may be operative. In this study, we compare thermodynamic data for TCA binding to 117 Lewis acids (representing global Lewis acidity, gLA) with their corresponding NMR-induced chemical shifts in TCA. Our findings showcase notable deviations that reinforce key distinctions between eLA and gLA perspectives. Moreover, we identify significant limitations in the Childs method. First, the weak donor strength of TCA limits its applicability to only the strongest Lewis acids. Second, the exposed protons of TCA are prone to secondary interactions, obscuring the measurement of true Lewis acidity. Finally, our analysis reconciles discrepancies, refuting earlier assumptions that these arise from HSAB effects.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Manuel Schmitt
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lara Janus
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Liang L, Chen K, Hou G. Highly efficient heteronuclear polarization transfer using dipolar-echo edited R-symmetry sequences in solid-state NMR. Chem Sci 2025; 16:2251-2257. [PMID: 39759930 PMCID: PMC11698051 DOI: 10.1039/d4sc07965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
In solid-state NMR, dipolar-based heteronuclear polarization transfer has been extensively used for sensitivity enhancement and multidimensional correlations, but its efficiency often suffers from undesired spin interactions and hardware limitations. Herein, we propose a novel dipolar-echo edited R-symmetry (DEER) sequence, which is further incorporated into the INEPT-type scheme, dubbed DEER-INEPT, for achieving highly efficient heteronuclear polarization transfer. Numerical simulations and NMR experiments demonstrate that DEER-INEPT offers significantly improved robustness, enabling efficient polarization transfer under a wide range of MAS conditions, from slow to ultrafast rates, outperforming existing methods. Its high efficiency leads to noticeably enhanced sensitivity in both 1H → X and X → 1H transfers, applicable to both spin-1/2 and spin-half-integer quadrupolar nuclei. DEER-INEPT is expected to be widely used in various systems, offering advantages in both sensitivity enhancement and structural analysis.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
9
|
Yi X, Xiao Y, Xia C, Liu F, Liu Y, Hui Y, Yu X, Qin Y, Chen W, Liu Z, Song L, Zheng A. Adsorbate-driven dynamic active sites in stannosilicate zeolites. FUNDAMENTAL RESEARCH 2025; 5:174-182. [PMID: 40166086 PMCID: PMC11955054 DOI: 10.1016/j.fmre.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Elucidating the nature of the active sites in heterogeneous catalysts is fundamental for understanding their reactivity and catalytic performances. Although stannosilicate zeolites have tremendous application potential for catalyzing biomass-related compounds in aqueous media, the detailed local structures and features of the real active sites and their possible structural variations under reaction conditions are poorly understood to date. In this study, a dynamic transformation of framework Sn-O-Si sites to Sn-OH/Si-OH pairs and subsequently a pseudo-Brønsted acid in stannosilicate zeolites upon molecular adsorption, which is analogous to various adsorbates/reactants under working conditions, was identified by solid-state nuclear magnetic resonance (NMR) spectroscopy for the first time, which challenges the widespread assumption that the active center structures remain rigid/stable during the catalytic process. These results provide new comprehensive insights for the fundamental understanding of the dynamic and flexible active centers and involved reaction mechanisms of novel zeolite catalysts with heterometal atoms, such as Sn, Ti, and Zr.
Collapse
Affiliation(s)
- Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjiu Xia
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Liu
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Xin Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Wang C, Brenig A, Xu J, Deng F, Paunović V, van Bokhoven JA. Evidence of Preferential Aluminum Site Loss during Reaction-Induced Dealumination. J Am Chem Soc 2024; 146:34279-34284. [PMID: 39655737 DOI: 10.1021/jacs.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding the mechanism of steam-induced dealumination of zeolite catalysts is of high relevance for tuning their performance and stability in multiple industrial processes. A combination of 27Al and 1H-1H double-quantum single-quantum magic angle spinning nuclear magnetic resonance and diffuse-reflectance ultraviolet-visible spectroscopies identified a preferential dealumination of tetrahedral aluminum sites in H-ZSM-5 zeolites. Framework aluminum atoms facing channels display reactivity toward steam higher than that of those in their intersections. Dealumination randomly occurs on isolated and proximate sites. However, the concentration of the latter sites decays more prominently. These findings contribute to a better understanding of the stability of zeolite catalysts in the presence of steam.
Collapse
Affiliation(s)
- Chao Wang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Andreas Brenig
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Paul Scherrer Institute, Center for Energy and Environmental Sciences, PSI, 5232, Villigen, Switzerland
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Vladimir Paunović
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Paul Scherrer Institute, Center for Energy and Environmental Sciences, PSI, 5232, Villigen, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Paul Scherrer Institute, Center for Energy and Environmental Sciences, PSI, 5232, Villigen, Switzerland
| |
Collapse
|
11
|
Bos JW, Vloedgraven JGA, Wiedemann SCC, van Dongen L, Moonen RCJ, Wels B, Berben PH, Reesink BH, de Peinder P, Vogt ETC, Weckhuysen BM. γ-Stearolactone ring-opening by zeolites for the production of branched saturated fatty acids. Catal Sci Technol 2024; 14:7037-7047. [PMID: 39610692 PMCID: PMC11589803 DOI: 10.1039/d4cy00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 11/30/2024]
Abstract
C18 branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced via the hydrogenation of C18 branched unsaturated fatty acids (BUFA). Industrial-grade C18 BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-catalysed ring-opening of GSL into oleic acid. Zeolites such as Y and beta can facilitate the ring-opening, but due to the dimensions of GSL the activity is expected to be limited by diffusion into the micropores. Hence, zeolites Y and beta were modified via hydrothermal treatment and acid leaching and used in the GSL ring-opening reaction. While modification of zeolite beta led to a reduction in acidity of more than 50%, the material displayed much-enhanced activity compared to the parent material. In a batch reactor steamed beta zeolites were able to convert all GSL within 2 h, compared to 5 h for the parent zeolite. Infrared spectroscopy studies of adsorbed pyridine reveal that likely a beneficial change in Brønsted/Lewis acid site ratio is responsible for the increased activity. Lewis acid sites in zeolites are known to catalyse double bond isomerisation, which could greatly enhance GSL conversion by reducing the reverse formation of GSL from oleic acid. We believe that these insights can be used to further improve GSL ring-opening activity and inspire research on the ring-opening of other biomass derived lactones.
Collapse
Affiliation(s)
- Jelle W Bos
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Job G A Vloedgraven
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | | | | | | | - Bas Wels
- Symeres Vliesvenweg 1 6002 NM Weert The Netherlands
| | - Peter H Berben
- BASF Nederland B.V. Strijkviertel 61 3454 PK Utrecht The Netherlands
| | - Bennie H Reesink
- BASF Nederland B.V. Strijkviertel 61 3454 PK Utrecht The Netherlands
- iQatalyst Strijkviertel 61 3454 PK Utrecht The Netherlands
| | - Peter de Peinder
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- VibSpec Haaftenlaan 28 4006 XL Tiel The Netherlands
| | - Eelco T C Vogt
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
12
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024; 53:11657-11691. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
13
|
Shelyapina MG. NMR Relaxation to Probe Zeolites: Mobility of Adsorbed Molecules, Surface Acidity, Pore Size Distribution and Connectivity. Molecules 2024; 29:5432. [PMID: 39598821 PMCID: PMC11597874 DOI: 10.3390/molecules29225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts. Current trends in the development of zeolite-based catalysts include the adaptation of their cationic composition, acidity and porosity for a specific catalytic process. Recent studies have shown that mesoporosity is beneficial to the rational design of catalysts with controlled product selectivity and an improved catalyst lifetime due to its efficient mass-transport properties. Nuclear magnetic resonance (NMR) has proven to be a reliable method for studying zeolites. Solid-state NMR spectroscopy allows for the quantification of both Lewis and Brønsted acidity in zeolite catalysts and, nowadays, 27Al and 29Si magic angle spinning NMR spectroscopy has become firmly established in the set of approved methods for characterizing zeolites. The use of probe molecules opens up the possibility for the indirect measurement of the characteristics of acid sites. NMR relaxation is less common, although it is especially informative and enlightening for studying the mobility of guest molecules in the porous matrix. Moreover, the NMR relaxation of guest molecules and NMR cryoporometry can quantify pore size distribution on a broader scale (compared to traditional methods), which is especially important for systems with complex pore organization. Over the last few years, there has been a growing interest in the use of 2D NMR relaxation techniques to probe porous catalysts, such as 2D T1-T2 correlation to study the acidity of the surface of catalysts and 2D T2-T2 exchange to study pore connectivity. This contribution provides a comprehensive review of various NMR relaxation techniques for studying porous media and recent results of their applications in probing micro- and mesoporous zeolites, mainly focused on the mobility of adsorbed molecules, the acidity of the zeolite surface and the pore size distribution and connectivity of zeolites with hierarchical porosity.
Collapse
Affiliation(s)
- Marina G Shelyapina
- Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
14
|
Brenig A, Fischer JWA, Klose D, Jeschke G, van Bokhoven JA, Sushkevich VL. Redox and Kinetic Properties of Composition-Dependent Active Sites in Copper-Exchanged Chabazite for Direct Methane-to-Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411662. [PMID: 39054903 DOI: 10.1002/anie.202411662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The CH4 oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CH3OH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu2+ and [CuOH]+ present at low Si/Al ratio and Cu loading. Formation of two distinct [Cu2(μ-O)]2+ moieties at higher Si/Al ratio or Cu loading forces these trends into the opposite direction. Operando electron paramagnetic resonance and ultraviolet-visible spectroscopy show that the apparent activation energy of monomeric Cu active species decreases with increasing Si/Al ratio, whereas the one of dimeric centers is unaffected.
Collapse
Affiliation(s)
- Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Jörg W A Fischer
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
15
|
Lee J, Kim J, Park KY, Joo JB, Bae S. Enhanced and prolonged adsorption of ammonia gas by zeolites derived from coal fly ash. CHEMOSPHERE 2024; 368:143799. [PMID: 39580086 DOI: 10.1016/j.chemosphere.2024.143799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
In this study, zeolites were synthesized from coal fly ash (CFA) using NaOH (Na-X type) and KOH (chabazite-K type) and used for the adsorption of ammonia gas in a fixed-bed reactor. Magnetic separation was used to decrease the Fe impurity content from 6.84 to 2.37 wt.%, and to increase the Si and Al content in non-magnetic fly ash (NMFA). BET surface areas of the zeolites increased significantly to 425.28 m2/g with an increase in micropore volume (ca. 0.12 cm3/g). FTIR and NH3-TPD analyses revealed that the increased surface area provided more acidic sites for enhanced ammonia gas adsorption. In particular, the zeolite (i.e., ZNF-X) synthesized from NMFA and NaOH showed the highest ammonia gas adsorption capacity (64.9 mg/g), owing to its high BET surface area and micropore volume. Although the initial adsorption capacity of commercial 13X zeolite (74.5 mg/g) was higher than that of ZNF-X, a much higher recycling efficiency for ZNF-X (92.0%) was achieved than for 13X (31.5%) during the five recycling tests because of the lower ammonia desorption temperature of ZNF-X. The results provide new insights into the synthesis of zeolites by upcycling of CFA and demonstrate the potential use of the generated materials for enhanced and prolonged removal of ammonia gas.
Collapse
Affiliation(s)
- Jungho Lee
- Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jiyull Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ji Bong Joo
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Sungjun Bae
- Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Zheng M, Wang Q, Chu Y, Tan X, Huang W, Xi Y, Wang Y, Qi G, Xu J, Hong SB, Deng F. Revealing the Bro̷nsted Acidic Nature of Penta-Coordinated Aluminum Species in Dealuminated Zeolite Y with Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:29417-29428. [PMID: 39298290 DOI: 10.1021/jacs.4c08408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The inevitable dealumination process of zeolite Y is closely related to ultrastabilization, enhanced Bro̷nsted acidity, and deactivation throughout its life cycle, producing complex aluminum and acidic hydroxyl species. Most investigations on dehydrated zeolites have focused on the Bro̷nsted acidity of tetra-coordinated Al (Al(IV)) and Lewis acidity associated with tricoordinated Al (Al(III)) sites, which has left the penta-coordinated Al (Al(V)) in dealuminated zeolites scarcely discussed. This is largely due to the oversimplified view of detectable Al(V) as an exclusively extra-framework species with Lewis acidity. Here we report the formation of Bro̷nsted acidic penta-coordinated Al species (Al(V)-BAS) in the dealumination process. Two-dimensional (2D) through-bond and multiquantum 1H-{27Al} correlation solid-state NMR experiments demonstrate the presence of a bridging Si-OH-Al(V) structure in dealuminated Y zeolites. Different from the conventional belief that water attack leads to the breaking of zeolite framework Al-O bonds in the initial stage of zeolite dealumination, the observed Al(V) as a dealumination intermediate is directly correlated with a BAS pair because of the direct dissociation of water on the framework tetrahedral aluminum (Al(IV)), thus bypassing the cleavage of Al-O bonds. 1H double-quantum solid-state NMR experiments and theoretical calculations provide further evidence for this mechanism, whereas pyridine adsorption experiments confirm stronger acidity of Al(V)-BASs than the traditional bridging hydroxyl groups associated with Al(IV). We were also able to detect the Al(V)-BAS site from dealuminated SSZ-13 zeolite with CHA topology, suggesting that its creation is not specific to the framework structure of zeolites.
Collapse
Affiliation(s)
- Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuechao Tan
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - Weidong Huang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Xi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Liu Y, Dai W, Zheng J, Du Y, Wang Q, Hedin N, Qin B, Li R. Selective and Controllable Cracking of Polyethylene Waste by Beta Zeolites with Different Mesoporosity and Crystallinity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404426. [PMID: 38976554 PMCID: PMC11425912 DOI: 10.1002/advs.202404426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.
Collapse
Affiliation(s)
- Yanchao Liu
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Weijiong Dai
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Jiajun Zheng
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Yanze Du
- SINOPEC Dalian Research Institute of Petroleum & Petrochemicals Co., LtdDalian116045China
| | - Quanhua Wang
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Niklas Hedin
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐10691Sweden
| | - Bo Qin
- SINOPEC Dalian Research Institute of Petroleum & Petrochemicals Co., LtdDalian116045China
| | - Ruifeng Li
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
18
|
Jayakumari MT, Krishnan CK. Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone. RSC Adv 2024; 14:21453-21463. [PMID: 38979450 PMCID: PMC11228575 DOI: 10.1039/d4ra03113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Furfural is a biomass-derived platform molecule that can be converted into a variety of useful products. Catalysts having appropriate balance between Lewis and Brønsted acid sites are suitable for valorisation of furfural. Lewis acidic metal ion incorporated zeolites were studied for this purpose. However, incorporating Lewis acidic metal ions into an alumino-silicate framework of a zeolite is a cumbersome process. Hence, an attempt has been made in this work to modulate the acid sites of Y zeolite via thermal treatment to effect controlled dealumination and use it for valorisation of furfural using isopropyl alcohol, which is a cascade transformation. The thermal treatment of zeolites changed the distribution of acid sites and increased the weak plus moderate to strong acid site ratio. Among the thermally dealuminated Y, beta and mordenite zeolites, with SiO2/Al2O3 ratio 5.2, 25 and 20, only Y zeolite could yield γ-valerolactone, the final product of the aimed cascade transformation. Complete conversion of furfural and 52% γ-valerolactone yield could be achieved under the optimized conditions using NH4Y zeolite thermally dealuminated at 700 °C (TY700). The better catalytic activity of TY700 could be correlated to a combination different factors such as framework structure, suitable weak plus moderate to strong acid site ratio, presence of both penta-coordinated and octahedral Al sites and balance between Brønsted and Lewis acid sites.
Collapse
Affiliation(s)
- Malu Thayil Jayakumari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 India
| | | |
Collapse
|
19
|
Schlögl J, Goldammer O, Bader J, Emmerling F, Riedel S. Introducing AFS ([Al(SO 3F) 3] x) - a thermally stable, readily available, and catalytically active solid Lewis superacid. Chem Sci 2024; 15:8038-8044. [PMID: 38817578 PMCID: PMC11134397 DOI: 10.1039/d4sc01753f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Common Lewis superacids often suffer from low thermal stability or complicated synthetic protocols, requiring multi-step procedures and expensive starting materials. This prevents their large-scale application. Herein, the easy and comparably cheap synthesis of high-purity aluminium tris(fluorosulfate) ([Al(SO3F)3]x, AFS) is presented. All starting materials are commercially available and no work-up is required. The superacidity of this thermally stable, polymeric Lewis acid is demonstrated using both theoretical and experimental methods. Furthermore, its synthetic and catalytic applicability, e.g. in bond heterolysis reactions and C-F bond activations, is shown.
Collapse
Affiliation(s)
- Johanna Schlögl
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Germany
| | - Ole Goldammer
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Germany
| | - Julia Bader
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Germany
| | - Franziska Emmerling
- Department Materials Chemistry, Federal Institute for Material Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Germany
| |
Collapse
|
20
|
Albertini PP, Newton MA, Wang M, Segura Lecina O, Green PB, Stoian DC, Oveisi E, Loiudice A, Buonsanti R. Hybrid oxide coatings generate stable Cu catalysts for CO 2 electroreduction. NATURE MATERIALS 2024; 23:680-687. [PMID: 38366155 PMCID: PMC11068572 DOI: 10.1038/s41563-024-01819-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO2 electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu2+ state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.
Collapse
Affiliation(s)
- Petru P Albertini
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Min Wang
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Ona Segura Lecina
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Philippe B Green
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, Grenoble, France
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
| |
Collapse
|
21
|
Xiao P, Wang Y, Lu Y, Nakamura K, Ozawa N, Kubo M, Gies H, Yokoi T. Direct Oxidation of Methane to Methanol over Transition-Metal-Free Ferrierite Zeolite Catalysts. J Am Chem Soc 2024; 146:10014-10022. [PMID: 38557129 PMCID: PMC11009945 DOI: 10.1021/jacs.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Direct oxidation of methane to methanol was reported to be highly dependent on the transition- or noble-metal-loading catalysts in the past decades. Here, we show that the transition-metal-free aluminosilicate ferrierite (FER) zeolite effectively catalyzed methane and N2O to methanol for the first time. The distorted tetracoordinated Al in the framework and pentacoordinated Al on the extra framework formed during calcination, activation, and reaction processes were confirmed as the potential active centers. The possible reaction pathway similar to the Fe-containing zeolites was advocated based on the reaction results using different oxidants, N2O adsorption FTIR spectra, and 27Al MAS NMR spectra. The stable and efficient methanol production capacity of FER zeolite was ascribed to the two-dimensional straight channels and its distinctive Al distribution of FER zeolite (CP914C) from Zeolyst. The transition-metal-free FER zeolite performed better than the record in the literature and our recent results using transition-metal-containing catalysts in terms of selectivity and formation rate of methanol and stability. This work has great significance and prospects for utilizing CH4 and N2O as resources and will open new avenues for methane oxidation.
Collapse
Affiliation(s)
- Peipei Xiao
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yong Wang
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yao Lu
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kengo Nakamura
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Nobuki Ozawa
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Momoji Kubo
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Hermann Gies
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Institute
of Geology, Mineralogy und Geophysics, Ruhr-University
Bochum, Bochum 44780, Germany
| | - Toshiyuki Yokoi
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- iPEACE223
Inc., Konwa Building,
1-12-22 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
22
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
23
|
Ji Y, Chen K, Han X, Bao X, Hou G. Precise Structural and Dynamical Details in Zeolites Revealed by Coupling-Edited 1H- 17O Double Resonance NMR Spectroscopy. J Am Chem Soc 2024. [PMID: 38528765 DOI: 10.1021/jacs.3c14787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Despite the extensive industrial and research interests in zeolites, their intrinsic catalytic nature is not fully understood due to the complexity of the hydroxyl-aluminum moieties. 17O NMR would provide irreplaceable opportunities for much-needed fine structural determination given the ubiquitous presence of oxygen atoms in nearly all species; however, the low sensitivity and quadrupolar nature of oxygen-17 make its NMR spectroscopic elucidation challenging. Here, we show that state-of-the-art double resonance solid-state NMR techniques have been combined with spectral editing methods based on scalar (through-bond) and dipolar (through-space) couplings, which allowed us to address the subtle protonic structures in zeolites. Notably, the often-neglected and undesired second-order quadrupolar-dipolar cross-term interaction ("2nd-QD interaction") can actually be exploited and can help gain invaluable information. Eventually, a comprehensive set of 1H-17O/1H-27Al double resonance NMR with J-/D-coupling spectral editing techniques have been designed in this work and enabled us to reveal atomic-scale precise structural and dynamical details in zeolites including: 1) The jump rate of the bridging acid site (BAS) proton is relatively low, i.e., far less than 100 s-1 at room temperature. 2) The Al-OH groups with 1H chemical shift at 2.6-2.8 ppm, at least for nonseverely dealuminated H-ZSM-5 catalysts, exhibit a rigid bridging environment similar to that of BAS. 3) The Si-OH groups at 2.0 ppm are not hydrogen bonded and undergo fast cone-rotational motion. The results in this study predict the 2nd-QD interaction to be universal for any rigid -17O-H environment, such as those in metal oxide surfaces or biomaterials.
Collapse
Affiliation(s)
- Yi Ji
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xiuwen Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
24
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
25
|
Ma JT, Meng TF, Chen ZY, Zhu YJ, Lian C, Wang P, Liu DH, Zhao YP. Catalytic performance and mechanism study of the isomerization of 2,5-dichlorotoluene to 2,4-dichlorotoluene. RSC Adv 2024; 14:8709-8717. [PMID: 38495976 PMCID: PMC10938376 DOI: 10.1039/d4ra00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
This work investigates the influence of catalyst HZSM-5 on the isomerization of 2,5-dichlorotoluene (2,5-DCT) to produce 2,4-dichlorotoluene (2,4-DCT). We observe that hydrothermal treatment leads to a decrease in total acidity and Brønsted/Lewis ratio of HZSM-5 while generating new secondary pores. These characteristics result in excellent selectivity for post-hydrothermal modified HZSM-5 in the isomerization reaction from 2,5-DCT to 2,4-DCT. Under atmospheric pressure at 350 °C, unmodified HZSM-5 achieves a selectivity of 66.4% for producing 2,4-DCT, however after hydrothermal modification the selectivity increases to 78.7%. Density Functional Theory (DFT) calculations explore the thermodynamic aspects of adsorption between the HZSM-5 surface and 2,4-DCT. The kinetic perspective investigates the mechanism involving proton attack on the methyl group of 2,5-DCT followed by rearrangement leading to formation of 2,4-DCT during isomerization. The consistency between simulation and experimental results provides evidence for the feasibility of isomerizing 2,5-DCT to 2,4-DCT. This work fills the gap in the low value-added product 2,5-DCT isomer conversion, indicating its significant practical application potential and provides a valuable reference and guidelines for industrial research in this field.
Collapse
Affiliation(s)
- Jiang-Tao Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Teng-Fei Meng
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Zi-Yun Chen
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Yu-Jun Zhu
- Department of Pharmaceutical and Biomedical Engineering, Clinical College of Anhui Medical University Hefei 230031 China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Peng Wang
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Ding-Hua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Yu-Pei Zhao
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| |
Collapse
|
26
|
Huang F, Hong Z, Li L, Miao L, Gao X, Zhao G, Zhu Z. Shape-Selective Alkylation of Toluene with Ethanol over a Twin Intergrowth Structured ZSM-5: Modulation of Acidity and Diffusivity via Interface Engineering. Inorg Chem 2024; 63:3506-3515. [PMID: 38311840 DOI: 10.1021/acs.inorgchem.3c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
ZSM-5 zeolites with modified acidity and diffusivity are employed as catalysts for the shape-selective alkylation of toluene with ethanol to para-ethyltoluene (p-ET). To avoid pore blocking and loss of active sites caused by traditional methods of enhancing para-selectivity using modifiers, here, we constructed twin intergrowth structured ZSM-5 (Z5-T), achieving modulation of the inherent acidity and diffusivity through interface engineering. The characterization results demonstrate that due to the intergrowth interface, the Z5-T catalyst forms more inherent Lewis acid sites and also renders more sinusoidal channels opened to the surface. Z5-T with an appropriate acidity and enhanced shape-selectivity inhibits side reactions such as isomerization and coke formation, demonstrating improved p-ET selectivity (>90%) and catalytic stability (>200 h) in the alkylation of toluene with ethanol.
Collapse
Affiliation(s)
- Fangtao Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhe Hong
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Lei Li
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Lei Miao
- Guangzhou Institute for Food Inspection, Guangzhou 510410, Guangdong, P. R. China
| | - Xianlong Gao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guoqing Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhirong Zhu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
27
|
Kejik M, Brus J, Jeremias L, Simonikova L, Moravec Z, Kobera L, Styskalik A, Barnes CE, Pinkas J. Lewis Acidic Aluminosilicates: Synthesis, 27Al MQ/MAS NMR, and DFT-Calculated 27Al NMR Parameters. Inorg Chem 2024; 63:2679-2694. [PMID: 38271593 PMCID: PMC10848260 DOI: 10.1021/acs.inorgchem.3c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024]
Abstract
Porous aluminosilicates are functional materials of paramount importance as Lewis acid catalysts in the synthetic industry, yet the participating aluminum species remain poorly studied. Herein, a series of model aluminosilicate networks containing [L-AlO3] (L = THF, Et3N, pyridine, triethylphosphine oxide (TEPO)) and [AlO4]- centers were prepared through nonhydrolytic sol-gel condensation reactions of the spherosilicate building block (Me3Sn)8Si8O20 with L-AlX3 (X = Cl, Me, Et) and [Me4N] [AlCl4] compounds in THF or toluene. The substoichiometric dosage of the Al precursors ensured complete condensation and uniform incorporation, with the bulky spherosilicate forcing a separation between neighboring aluminum centers. The materials were characterized by 1H, 13C, 27Al, 29Si, and 31P MAS NMR and FTIR spectroscopies, ICP-OES, gravimetry, and N2 adsorption porosimetry. The resulting aluminum centers were resolved by 27Al TQ/MAS NMR techniques and assigned based on their spectroscopic parameters obtained by peak fitting (δiso, CQ, η) and their correspondence to the values calculated on model structures by DFT methods. A clear correlation between the decrease in the symmetry of the Al centers and the increase of the observed CQ was established with values spanning from 4.4 MHz for distorted [AlO4]- to 15.1 MHz for [THF-AlO3]. Products containing exclusively [TEPO-AlO3] or [AlO4]- centers could be obtained (single-site materials). For L = THF, Et3N, and pyridine, the [AlO4]- centers were formed together with the expected [L-AlO3] species, and a viable mechanism for the unexpected emergence of [AlO4]- was proposed.
Collapse
Affiliation(s)
- Martin Kejik
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, Brno CZ-61137, Czech Republic
| | - Jiri Brus
- Department
of NMR Spectroscopy, Institute of Macromolecular
Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, Prague CZ-16206, Czech Republic
| | - Lukas Jeremias
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Brno CZ-61300, Czech
Republic
| | - Lucie Simonikova
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, Brno CZ-61137, Czech Republic
| | - Zdenek Moravec
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, Brno CZ-61137, Czech Republic
| | - Libor Kobera
- Department
of NMR Spectroscopy, Institute of Macromolecular
Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, Prague CZ-16206, Czech Republic
| | - Ales Styskalik
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, Brno CZ-61137, Czech Republic
| | - Craig E. Barnes
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United
States
| | - Jiri Pinkas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska 2, Brno CZ-61137, Czech Republic
| |
Collapse
|
28
|
Yuan Z, Bai Y, Gong K, Huang W. Accurate Measurements of NH 3 Differential Adsorption Heat Unveil Structural Sensitivity of Brønsted Acid and Brønsted/Lewis Acid Synergy in Zeolites. J Phys Chem Lett 2024; 15:863-868. [PMID: 38237052 DOI: 10.1021/acs.jpclett.3c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Differential adsorption heats of NH3 on a series of zeolites, including MOR, MFI, FER, and BEA, are accurately measured to probe their acidity using flow-pulse adsorption microcalorimetry. Initial adsorption heats of NH3 at Brønsted acid sites (BAS) vary between 105 to 136 kJ/mol, depending on framework aluminum amounts and topography structures of zeolites. A Brønsted/Lewis acid synergy between BAS and proximate tricoordinated framework-associated aluminum species is identified to generate super acid sites with initial adsorption heats of NH3 around 150 kJ/mol, but occurs only in the MFI zeolites and sensitively depends on the Si/Al ratio. These accurate data of NH3 differential adsorption heats unveil structural sensitivity of BAS and Brønsted/Lewis acid synergy in zeolites and provide experimental benchmark data for fundamental understanding of acidity and acid-catalysis of zeolites.
Collapse
Affiliation(s)
- Zhenxuan Yuan
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yunxing Bai
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ke Gong
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
29
|
Ke L, Wu Q, Zhou N, Li H, Zhang Q, Cui X, Fan L, Liu Y, Cobb K, Ruan R, Wang Y. Polyethylene upcycling to aromatics by pulse pressurized catalytic pyrolysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132672. [PMID: 37793260 DOI: 10.1016/j.jhazmat.2023.132672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
To address the challenging issues of waste plastic pollution and petroleum shortage, we report herein a pulse pressurized catalytic pyrolysis process where polyethylene is continuously converted into aromatics using HZSM-5 catalyst incorporated with hydrated SiO2. Pressurization improves the activity of single-pulse pyrolysis of polyethylene by 14.42%. In contrast to the linear decrease of BTEXS relative yield with a K value of - 0.23 under non-pressurized conditions, pressurization results in a notable stability in the latter stage, characterized by a K value of only - 0.063. Comprehensive catalyst characterization demonstrates that pressurization promotes the release of water from hydrated SiO2, enabling HZSM-5 to effectively undergo dealumination and obtain suitable acidity and pore structure, and ultimately enhancing the resistance to carbon deposition. In summary, pressurization improves both pyrolysis activity and catalysis stability, offering a promising strategy for the high-value utilization of waste plastics.
Collapse
Affiliation(s)
- Linyao Ke
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Nan Zhou
- Institute of Thermal and Power Engineering, Zhejiang University of Technology, Liuhe Road 288#, Hangzhou 310023, China
| | - Hui Li
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Liangliang Fan
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
30
|
Boonyoung P, Thongratkaew S, Rungtaweevoranit B, Pengsawang A, Praserthdam P, Sanpitakseree C, Faungnawakij K. Formic acid as a sacrificial agent for byproduct suppression in glucose dehydration to 5-hydroxymethylfurfural using NaY zeolite catalyst. BIORESOURCE TECHNOLOGY 2024; 392:130010. [PMID: 37952589 DOI: 10.1016/j.biortech.2023.130010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Biomass-derived 5-hydroxymethylfurfural (HMF) holds potential for applications in green materials, but its conventional synthesis is hindered by undesired side reactions. This study presents a catalytic system that effectively suppresses the formation of byproducts, thus enhancing HMF yield. The system demonstrated synergistic effects between Lewis acid NaY zeolite and formic acid sacrificial agent for the production of HMF from glucose. The results indicate that formic acid reacts with reactive intermediates from glucose decomposition, preventing their interactions with other sugar-derived species in the dehydration path to HMF. Such effect originates from the neutral formic acid species rather than the dissociated acidic proton normally observed in Brønsted acid-catalyzed reactions. The NaY/formic acid catalysts in isopropanol/water achieved a 57% HMF yield, a significant improvement over 31% and 27% yields with NaY or formic acid alone, respectively. Moreover, performance of the spent catalysts was easily restored to the original state via a simple NaCl wash.
Collapse
Affiliation(s)
- Pawan Boonyoung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Aniwat Pengsawang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotitath Sanpitakseree
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand.
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
31
|
You X, Zhang X, Ye Y, Zhou H, Jiang S, Zhou X, Dutta Chowdhury A. Evaluating the efficacy of zeolites synthesized from natural clay for the methanol-to-hydrocarbon process. Dalton Trans 2023; 52:14390-14399. [PMID: 37781869 DOI: 10.1039/d3dt02131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Introducing sustainability into advanced catalytic material design is essential to address growing environmental concerns. Among them, synthesizing inorganic zeolite materials from non-traditional sources (like natural clay) offers several advantages, contributing to sustainability and environmental stewardship. With this objective, we used kaolin to synthesize zeolites with different topologies: SSZ-13 (8-MR with CHA topology), ZSM-5 (10-MR with MFI topology), and Beta (12-MR with BEA topology) (MR: member ring), where a simple and flexible synthetic protocol was adopted without any significant changes. All these zeolites were subjected to catalytic performance evaluation concerning the industrially relevant methanol-to-hydrocarbon (MTH) process. Herein, the kaolin-derived zeolites, especially ZSM-5, led to superior performance and demonstrated enhanced catalyst deactivation-resistant behavior compared to their zeolite counterparts prepared from traditional synthetic routes. Various characterization tools (including under operando conditions) were employed to understand their reactions and deactivation mechanisms. Overall, making zeolites from non-traditional sources presents a pathway for sustainable and environmentally friendly material production, offering benefits such as reduced resource dependence, lower energy consumption, and tailored physicochemical properties beneficial to catalysis. In a broader context, such a research approach contributes to the transition toward a more sustainable and circular economy.
Collapse
Affiliation(s)
- Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Shican Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xue Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China.
| | | |
Collapse
|
32
|
Chitac R, Zholobenko VL, Fletcher RS, Softley E, Bradley J, Mayoral A, Turrina A, Wright PA. Synthetic Control of the Defect Structure and Hierarchical Extra-Large-/Small-Pore Microporosity in Aluminosilicate Zeolite SWY. J Am Chem Soc 2023; 145:22097-22114. [PMID: 37755328 PMCID: PMC10571081 DOI: 10.1021/jacs.3c07873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 09/28/2023]
Abstract
The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6-7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1'-(octane-1,8-diyl)bis(1,4-diazabicyclo[2.2.2]octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.
Collapse
Affiliation(s)
- Ruxandra
G. Chitac
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | | | | | - Emma Softley
- Johnson
Matthey, Catalyst Technologies, Billingham TS23 1LB, U.K.
| | | | - Alvaro Mayoral
- Instituto
de Nanociencia y Materiales de Aragon (INMA), Spanish National Research Council (CSIC)-University of Zaragoza, 12 Calle de Pedro Cerbuna, Zaragoza 50009, Spain
| | | | - Paul A. Wright
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| |
Collapse
|
33
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
34
|
Vance B, Najmi S, Kots PA, Wang C, Jeon S, Stach EA, Zakharov DN, Marinkovic N, Ehrlich SN, Ma L, Vlachos DG. Structure-Property Relationships for Nickel Aluminate Catalysts in Polyethylene Hydrogenolysis with Low Methane Selectivity. JACS AU 2023; 3:2156-2165. [PMID: 37654574 PMCID: PMC10466342 DOI: 10.1021/jacsau.3c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Earth-abundant metals have recently been demonstrated as cheap catalyst alternatives to scarce noble metals for polyethylene hydrogenolysis. However, high methane selectivities hinder industrial feasibility. Herein, we demonstrate that low-temperature ex-situ reduction (350 °C) of coprecipitated nickel aluminate catalysts yields a methane selectivity of <5% at moderate polymer deconstruction (25-45%). A reduction temperature up to 550 °C increases the methane selectivity nearly sevenfold. Catalyst characterization (XRD, XAS, 27Al MAS NMR, H2 TPR, XPS, and CO-IR) elucidates the complex process of Ni nanoparticle formation, and air-free XPS directly after reaction reveals tetrahedrally coordinated Ni2+ cations promote methane production. Metallic and the specific cationic Ni appear responsible for hydrogenolysis of internal and terminal C-C scissions, respectively. A structure-methane selectivity relationship is discovered to guide the design of Ni-based catalysts with low methane generation. It paves the way for discovering other structure-property relations in plastics hydrogenolysis. These catalysts are also effective for polypropylene hydrogenolysis.
Collapse
Affiliation(s)
- Brandon
C. Vance
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Sean Najmi
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Pavel A. Kots
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Cong Wang
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Sungho Jeon
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A. Stach
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dmitri N. Zakharov
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Nebojsa Marinkovic
- Department
of Chemical Engineering, Columbia University, 500W 120th Street, New York, New York 10027, United States
| | - Steven N. Ehrlich
- National
Synchrotron Light Source, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Lu Ma
- National
Synchrotron Light Source, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Dionisios G. Vlachos
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Trachta M, Bludský O, Vaculík J, Bulánek R, Rubeš M. Investigation of Brønsted acidity in zeolites through adsorbates with diverse proton affinities. Sci Rep 2023; 13:12380. [PMID: 37524787 PMCID: PMC10390515 DOI: 10.1038/s41598-023-39667-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Understanding the adsorption behavior of base probes in aluminosilicates and its relationship to the intrinsic acidity of Brønsted acid sites (BAS) is essential for the catalytic applications of these materials. In this study, we investigated the adsorption properties of base probe molecules with varying proton affinities (acetonitrile, acetone, formamide, and ammonia) within six different aluminosilicate frameworks (FAU, CHA, IFR, MOR, FER, and TON). An important objective was to propose a robust criterion for evaluating the intrinsic BAS acidity (i.e., state of BAS deprotonation). Based on the bond order conservation principle, the changes in the covalent bond between the aluminum and oxygen carrying the proton provide a good description of the BAS deprotonation state. The ammonia and formamide adsorption cause BAS deprotonation and cannot be used to assess intrinsic BAS acidity. The transition from ion-pair formation, specifically conjugated acid/base interaction, in formamide to strong hydrogen bonding in acetone occurs within a narrow range of base proton affinities (812-822 kJ mol-1). The adsorption of acetonitrile results in the formation of hydrogen-bonded complexes, which exhibit a deprotonation state that follows a similar trend to the deprotonation induced by acetone. This allows for a semi-quantitative comparison of the acidity strengths of BAS within and between the different aluminosilicate frameworks.
Collapse
Affiliation(s)
- Michal Trachta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 162 10, Prague, Czech Republic
| | - Ota Bludský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 162 10, Prague, Czech Republic
| | - Jan Vaculík
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Roman Bulánek
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Miroslav Rubeš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 162 10, Prague, Czech Republic.
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
36
|
Wang W, Zhang H, Zhou F, Xiang Z, Zhu W, Sheng T, Wang H. Al-Doped Core-Shell-Structured Ni@Mesoporous Silica for Highly Selective Hydrodeoxygenation of Lignin-Derived Aldehydes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37429817 DOI: 10.1021/acsami.3c06165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Selective deoxygenation of chemicals using non-noble metal-based catalysts poses a significant challenge toward upgrading biomass-derived oxygenates into advanced fuels and fine chemicals. Herein, we report a bifunctional core-shell catalyst (Ni@Al3-mSiO2) consisting of Ni nanoparticles closely encapsulated by the Al-doped mesoporous silica shell that achieves 100% vanillin conversion and >99% yield of 2-methoxy-4-methylphenol under 1 MPa H2 at 130 °C in water. Due to the unique mesoporous core-shell structure, no significant decrease in catalytic activity was observed after 10 recycles. Furthermore, incorporating Al atoms into the silica shell significantly increased the number of acidic sites. Density functional theory calculations reveal the reaction pathway of the vanillin hydrodeoxygenation process and uncover the intrinsic influence of the Al sites. This work not only provides an efficient and cost-effective bifunctional hydrodeoxygenation catalyst but also offers a new synthetic protocol to rationally design promising non-noble metal catalysts for biomass valorization or other widespread applications.
Collapse
Affiliation(s)
- Weichen Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Hongke Zhang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Fangyuan Zhou
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiyu Xiang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Wanbin Zhu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Hongliang Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
37
|
Martínez C, Vidal-Moya A, Yilmaz B, Kelkar CP, Corma A. Minimizing rare earth content of FCC catalysts: Understanding the fundamentals on combined P-La stabilization. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
38
|
Zhang H, Li G, Zhang J, Zhang D, Chen Z, Liu X, Guo P, Zhu Y, Chen C, Liu L, Guo X, Han Y. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 2023; 380:633-638. [PMID: 37167385 DOI: 10.1126/science.adg3183] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structural and compositional inhomogeneity is common in zeolites and considerably affects their properties. Thickness-limited lateral resolution, lack of depth resolution, and electron dose-constrained focusing limit local structural studies of zeolites in conventional transmission electron microscopy (TEM). We demonstrate that a multislice ptychography method based on four-dimensional scanning TEM (4D-STEM) data can overcome these limitations. Images obtained from a ~40-nanometer-thick MFI zeolite exhibited a lateral resolution of ~0.85 angstrom that enabled the identification of individual framework oxygen (O) atoms and the precise determination of the orientations of adsorbed molecules. Furthermore, a depth resolution of ~6.6 nanometers allowed probing of the three-dimensional distribution of O vacancies, as well as the phase boundaries in intergrown MFI and MEL zeolites. The 4D-STEM ptychography can be generally applied to other materials with similar high electron-beam sensitivity.
Collapse
Affiliation(s)
- Hui Zhang
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jiaxing Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhen Chen
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
Zhang B, Shen Y, Liu B, Ji J, Dai W, Huang P, Zhang D, Li G, Xie R, Huang H. Boosting Ozone Catalytic Oxidation of Toluene at Room Temperature by Using Hydroxyl-Mediated MnO x/Al 2O 3 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7041-7050. [PMID: 37078822 DOI: 10.1021/acs.est.2c08867] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ozone catalytic oxidation (OZCO) has gained great interest in environmental remediation while it still faces a big challenge during the deep degradation of refractory volatile organic compounds (VOCs) at room temperature. Hydroxylation of the catalytic surface provides a new strategy for regulating the catalytic activity to boost VOC degradation. Herein, OZCO of toluene at room temperature over hydroxyl-mediated MnOx/Al2O3 catalysts was originally demonstrated. Specifically, a novel hydroxyl-mediated MnOx/Al2O3 catalyst was developed via the in situ AlOOH reconstruction method and used for toluene OZCO. The toluene degradation performance of MnOx/Al2O3 was significantly superior to those of most of the state-of-the-art catalysts, and 100% toluene was removed with an excellent mineralization rate (82.3%) and catalytic stability during OZCO. ESR and in situ DRIFTs results demonstrated that surface hydroxyl groups (HGs) greatly improved the reactive oxygen species generation, thus dramatically accelerating the benzene ring breakage and deep mineralization. Furthermore, HGs provided anchoring sites for uniformly dispersing MnOx and greatly enhanced toluene adsorption and ozone activation. This work paves a way for deep decomposition of aromatic VOCs at room temperature.
Collapse
Affiliation(s)
- Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yongjie Shen
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jian Ji
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Pingli Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Guangqin Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
40
|
Fals J, Toloza CA, Puello-Polo E, Márquez E, Méndez FJ. A comprehensive study of product distributions and coke deposition during catalytic cracking of vacuum gas oil over hierarchical zeolites. Heliyon 2023; 9:e15408. [PMID: 37123963 PMCID: PMC10130209 DOI: 10.1016/j.heliyon.2023.e15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
In this study, zeolites (Z) were used as catalysts in the cracking of a Colombian vacuum gas oil (VGO), with a focus on product distribution and coke deposition. The catalytic tests were carried out in a MAT-type reactor under typical conditions. The zeolites were subjected to alkaline treatment with NaOH at concentrations ranging from 0.05 to 0.4 mol/L, resulting in the creation of several samples (Z-0.05, Z-0.10, Z-0.20, Z-0.30 and Z-0.40) that were then hydrothermally stabilized (Z-0.05-M, Z-0.10-M, Z-0.20-M, Z-0.30-M and Z-0.40-M) to increase mesoporosity and reduced crystallinity. The increase in mesoporosity was accompanied by an improvement in acidity. Despite Z-0.30-M having higher acidity, Z-0.00-M and Z-0.10-M exhibited the highest activity due to their high crystallinity and microporosity, yielding the highest gas yields. Gasoline was the main product, with maximum yields exceeding 30%. Z-0.20-M produced more aromatic and olefin compounds than the others, resulting in higher quality gasoline. Coke formation followed the trend: Z-0.00-M < Z-0.10-M < Z-0.20-M < Z-0.30-M. The higher intracrystalline mesoporosity in the zeolites favored the formation of a more condensed coke.
Collapse
Affiliation(s)
- Jayson Fals
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES), UBA-CONICET, Facultad de Ingeniería, Pabellón de Industrias, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, 1428, Argentina
- Grupo de Investigación en Oxi/Hidrotratamiento Catalítico y Nuevos Materiales, Programa de Química-Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia
| | - Carlos A.T. Toloza
- Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla, Colombia
| | - Esneyder Puello-Polo
- Grupo de Investigación en Oxi/Hidrotratamiento Catalítico y Nuevos Materiales, Programa de Química-Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia
| | - Edgar Márquez
- Departamento de Química y Biología, Grupo de Investigación en Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla, Colombia
- Corresponding author.
| | - Franklin J. Méndez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CICATA Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología 1036 Z-1 P 2/2, Atlacholoaya, 62790, Xochitepec, Mexico
- Corresponding author.
| |
Collapse
|
41
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
42
|
Wang Z, Xiao D, Chen K, Lou C, Liang L, Xu S, Hou G. Identity, Evolution, and Acidity of Partially Framework-Coordinated Al Species in Zeolites Probed by TMP 31P-NMR and FTIR. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
43
|
Le TT, Qin W, Agarwal A, Nikolopoulos N, Fu D, Patton MD, Weiland C, Bare SR, Palmer JC, Weckhuysen BM, Rimer JD. Elemental zoning enhances mass transport in zeolite catalysts for methanol to hydrocarbons. Nat Catal 2023. [DOI: 10.1038/s41929-023-00927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
44
|
Guo Y, Jia H, Qi J, Fan B, Qin B, Ma J, Du Y, Li R. Acid and steric synergies in industrial Y zeolites for 9, 10-dihydroanthracene hydrocracking. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
45
|
Production of Trioxane from Formaldehyde via Hierarchical Beta Zeolite Synthesized Using a Cationic Polymer. Catal Letters 2023. [DOI: 10.1007/s10562-022-04265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Pham TN, Nguyen V, Nguyen-Phu H, Wang B, Crossley S. Influence of Brønsted Acid Site Proximity on Alkane Cracking in MFI Zeolites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tram N. Pham
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Vy Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Huy Nguyen-Phu
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Steven Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
47
|
Ward DJ, Saccomando DJ, Walker G, Mansell SM. Sustainable routes to alkenes: applications of homogeneous catalysis to the dehydration of alcohols to alkenes. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Homogeneous catalysis applied to alcohol dehydration.
Collapse
|
48
|
Huber P, Plessow PN. A computational investigation of the decomposition of acetic acid in H-SSZ-13 and its role in the initiation of the MTO process. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01779b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The zeolite-catalyzed reaction of acetic acid is important in the direct utilization of biomass and also plays a role in the reactivity of oxygenates in the methanol-to-olefins (MTO) process.
Collapse
Affiliation(s)
- Philipp Huber
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Philipp N. Plessow
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
49
|
Isomorphous Substitution of Gallium into MFI-Framework Zeolite Increases 2,5-Dimethylfuran to Aromatics Selectivity and Suppresses Catalyst Deactivation. Top Catal 2022. [DOI: 10.1007/s11244-022-01776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractThe valorization of biomass-derived molecules into commodity chemicals is important for the transition to renewable feedstocks. The model platform molecule 2,5-dimethylfuran (2,5-dmf) can be converted into value-added aromatics such as benzene, toluene, and xylenes (BTX) over zeolite catalysts. To explore the role of the zeolite acid site(s) in BTX selectivity, gallium has been isomorphously substituted into the framework, resulting in a Ga-silicate. Compared to the ZSM-5 counterpart, this modification shows enhanced benzene selectivity as well as resistance to deactivation by coke in continuous catalytic performance tests.
Collapse
|
50
|
Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F. Understanding the Structure–Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Zhongwen Dong
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Wenjun Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Keqing Xu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Yue Liu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Jing Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| |
Collapse
|