1
|
Osorio-Pando LS, Hernández-Guzmán M, Sidón-Ceseña K, Ortega-Saad Y, Camacho-Ibar VF, Chong-Robles J, Lago-Lestón A. The Meso- and Bathypelagic Archaeal and Bacterial Communities of the Southern Gulf of Mexico Are Dominated by Nitrifiers and Hydrocarbon Degraders. Microorganisms 2025; 13:1106. [PMID: 40431279 DOI: 10.3390/microorganisms13051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
The Gulf of Mexico (GoM) is a complex oceanic basin with a maximum depth of 4000 m. It is a complex hydrodynamic system formed by different water masses with distinctive physical and biological characteristics that shape its rich biodiversity. In this study, as a contribution to better understanding the microbial communities inhabiting the meso- and bathypelagic zones of the Mexican Exclusive Economic Zone (EEZ) of the GoM, an extensive set of seawater samples was collected at three depths (350-3700 m) during three oceanographic cruises. The V4-16S rRNA gene analysis identified Pseudomonadota (27.1 ± 9.8%) and Nitrosopumilales (26.4 ± 2.3%) as the dominant bacterial and archaeal members, respectively. The depth, salinity, and apparent oxygen utilization were key environmental drivers, which explained 35% of the community variability. The mesopelagic zone presented a more homogeneous structure characterized by a nitrifier community, while the bathypelagic was more heterogeneous, with hydrocarbon-degrading bacteria and methanogens serving as the key players. This study is the first to report the archaeal community in the deeper waters of the Mexican EEZ of the GoM, playing crucial roles in the nitrogen and carbon cycles, highlighting the region's ecological complexity and the need for further research to understand the broader biogeochemical implications of these processes.
Collapse
Affiliation(s)
- Lizt Selene Osorio-Pando
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Mario Hernández-Guzmán
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Karla Sidón-Ceseña
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Yamne Ortega-Saad
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Victor F Camacho-Ibar
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico
| | - Jennyfers Chong-Robles
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| |
Collapse
|
2
|
Wöhlbrand L, Dörries M, Siani R, Medrano-Soto A, Schnaars V, Schumacher J, Hilbers C, Thies D, Kube M, Reinhardt R, Schloter M, Saier MH, Winklhofer M, Rabus R. Key role of Desulfobacteraceae in C/S cycles of marine sediments is based on congeneric catabolic-regulatory networks. SCIENCE ADVANCES 2025; 11:eads5631. [PMID: 40053579 PMCID: PMC11887813 DOI: 10.1126/sciadv.ads5631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Marine sediments are highly bioactive habitats, where sulfate-reducing bacteria contribute substantially to seabed carbon cycling by oxidizing ~77 Tmol Corg year-1. This remarkable activity is largely attributable to the deltaproteobacterial family Desulfobacteraceae of complete oxidizers (to CO2), which our biogeography focused meta-analysis verified as cosmopolitan. However, the catabolic/regulatory networks underlying this ecophysiological feat at the thermodynamic limit are essentially unknown. Integrating cultivation-based (80 conditions) proteogenomics of six representative Desulfobacteraceae spp., we identify molecular commonalities explaining the family's environmental relevance and success. Desulfobacteraceae genomes are specifically enriched in substrate uptake, degradation capacities, and regulatory functions including fine-tuned sulfate uptake. Conserved gene arrangements and shared regulatory patterns translate into strikingly similar (sub-)proteome profiles. From 319 proteins, we constructed a meta-network for catabolizing 35 substrates. Therefrom, we defined a Desulfobacteraceae characteristic gene subset, which we found prevalent in metagenomes of organic-rich, marine sediments. These genes are promising targets to advance our mechanistic understanding of Desulfobacteraceae-driven biogeochemical processes in marine sediments and beyond.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the Carl von Ossietzky Universität Oldenburg (HIFMB), Oldenburg, Germany
| | - Roberto Siani
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Arturo Medrano-Soto
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Vanessa Schnaars
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Julian Schumacher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christina Hilbers
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniela Thies
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestocks, Faculty of Agricultural Sciences, University Hohenheim, Stuttgart, Germany
| | | | - Michael Schloter
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Michael Winklhofer
- Institute of Biology and Environmental Sciences (IBU), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Lanclos VC, Feng X, Cheng C, Yang M, Hider CJ, Coelho JT, Kojima CY, Barnes SJ, Cleveland CS, Xie M, Zhao Y, Luo H, Thrash JC. New isolates refine the ecophysiology of the Roseobacter CHAB-I-5 lineage. ISME COMMUNICATIONS 2025; 5:ycaf068. [PMID: 40371178 PMCID: PMC12075776 DOI: 10.1093/ismeco/ycaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/10/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all Roseobacters in surface oceans and has predicted roles in biogeochemical cycling via heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation, and other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored and the best-known representative, strain SB2, was lost from culture after obtaining the genome sequence. We have isolated two new CHAB-I-5 representatives, strains US3C007 and FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average nucleotide identities with the SB2 genome. Comparison of these three with 49 other unique CHAB-I-5 metagenome-assembled and single-cell genomes indicated that the cluster represents a genus with two species, and we identified subtle differences in genomic content between the two species subclusters. Metagenomic recruitment from over fourteen hundred samples expanded their known global distribution and highlighted both isolated strains as representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a wider range of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with most exhibiting a coccobacillus/vibrioid shape. We propose the name Candidatus Thalassovivens spotae, gen nov., sp. nov. for the type strain US3C007T (= ATCC TSD-433T = NCMA B160T).
Collapse
Affiliation(s)
- Victoria Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cole J Hider
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Jordan T Coelho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Conner Y Kojima
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Shelby J Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Catie S Cleveland
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Mei Xie
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - James Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
4
|
Feng X, Xing P, Tao Y, Wang X, Wu QL, Liu Y, Luo H. Functional traits and adaptation of lake microbiomes on the Tibetan Plateau. MICROBIOME 2024; 12:264. [PMID: 39707567 DOI: 10.1186/s40168-024-01979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Tibetan Plateau is credited as the "Third Pole" after the Arctic and the Antarctic, and lakes there represent a pristine habitat ideal for studying microbial processes under climate change. RESULTS Here, we collected 169 samples from 54 lakes including those from the central Tibetan region that was underrepresented previously, grouped them to freshwater, brackish, and saline lakes, and generated a genome atlas of the Tibetan Plateau Lake Microbiome. This genomic atlas comprises 8271 metagenome-assembled genomes featured by having significant phylogenetic and functional novelty. The microbiomes of freshwater lakes are enriched with genes involved in recalcitrant carbon degradation, carbon fixation, and energy transformation, whereas those of saline lakes possess more genes that encode osmolyte transport and synthesis and enable anaerobic metabolism. These distinct metabolic features match well with the geochemical properties including dissolved organic carbon, dissolved oxygen, and salinity that distinguish between these lakes. Population genomic analysis suggests that microbial populations in saline lakes are under stronger functional constraints than those in freshwater lakes. Although microbiomes in the Tibet lakes, particularly the saline lakes, may be subject to changing selective regimes due to ongoing warming, they may also benefit from the drainage reorganization and metapopulation reconnection. CONCLUSIONS Altogether, the Tibetan Plateau Lake Microbiome atlas serves as a valuable microbial genetic resource for biodiversity conservation and climate research. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ye Tao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaojun Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
5
|
Ren M, Hu A, Zhang L, Yao X, Zhao Z, Kimirei IA, Wang J. Acidic proteomes are linked to microbial alkaline preference in African lakes. WATER RESEARCH 2024; 266:122393. [PMID: 39243463 DOI: 10.1016/j.watres.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microbial amino acid composition (AA) reflects adaptive strategies of cellular and molecular regulations such as a high proportion of acidic AAs, including glutamic and aspartic acids in alkaliphiles. It remains understudied how microbial AA content is linked to their pH adaptation especially in natural environments. Here we examined prokaryotic communities and their AA composition of genes with metagenomics for 39 water and sediments of East African lakes along a gradient of pH spanning from 7.2 to 10.1. We found that Shannon diversity declined with the increasing pH and that species abundance were either positively or negatively associated with pH, indicating their distinct habitat preference in lakes. Microbial communities showed higher acidic proteomes in alkaline than neutral lakes. Species acidic proteomes were also positively correlated with their pH preference, which was consistent across major bacterial lineages. These results suggest selective pressure associated with high pH likely shape microbial amino acid composition both at the species and community levels. Comparative genome analyses further revealed that alkaliphilic microbes contained more functional genes with higher acidic AAs when compared to those in neutral conditions. These traits included genes encoding diverse classes of cation transmembrane transporters, antiporters, and compatible solute transporters, which are involved in cytoplasmic pH homeostasis and osmotic stress defense under high pH conditions. Our results provide the field evidence for the strong relationship between prokaryotic AA composition and their habitat preference and highlight amino acid optimization as strategies for environmental adaptation.
Collapse
Affiliation(s)
- Minglei Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ang Hu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute-Headquarter, Dar Es Salaam P.O. Box 9750, Tanzania
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
6
|
Chen J, Jia Y, Sun Y, Liu K, Zhou C, Liu C, Li D, Liu G, Zhang C, Yang T, Huang L, Zhuang Y, Wang D, Xu D, Zhong Q, Guo Y, Li A, Seim I, Jiang L, Wang L, Lee SMY, Liu Y, Wang D, Zhang G, Liu S, Wei X, Yue Z, Zheng S, Shen X, Wang S, Qi C, Chen J, Ye C, Zhao F, Wang J, Fan J, Li B, Sun J, Jia X, Xia Z, Zhang H, Liu J, Zheng Y, Liu X, Wang J, Yang H, Kristiansen K, Xu X, Mock T, Li S, Zhang W, Fan G. Global marine microbial diversity and its potential in bioprospecting. Nature 2024; 633:371-379. [PMID: 39232160 PMCID: PMC11390488 DOI: 10.1038/s41586-024-07891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
The past two decades has witnessed a remarkable increase in the number of microbial genomes retrieved from marine systems1,2. However, it has remained challenging to translate this marine genomic diversity into biotechnological and biomedical applications3,4. Here we recovered 43,191 bacterial and archaeal genomes from publicly available marine metagenomes, encompassing a wide range of diversity with 138 distinct phyla, redefining the upper limit of marine bacterial genome size and revealing complex trade-offs between the occurrence of CRISPR-Cas systems and antibiotic resistance genes. In silico bioprospecting of these marine genomes led to the discovery of a novel CRISPR-Cas9 system, ten antimicrobial peptides, and three enzymes that degrade polyethylene terephthalate. In vitro experiments confirmed their effectiveness and efficacy. This work provides evidence that global-scale sequencing initiatives advance our understanding of how microbial diversity has evolved in the oceans and is maintained, and demonstrates how such initiatives can be sustainably exploited to advance biotechnology and biomedicine.
Collapse
Affiliation(s)
- Jianwei Chen
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ying Sun
- BGI Research, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Chuan Liu
- BGI Research, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Yunyun Zhuang
- Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Yang Guo
- BGI Research, Qingdao, China
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Simon Ming Yuen Lee
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yujing Liu
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Shanmin Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chen Qi
- BGI Research, Shenzhen, China
| | - Jing Chen
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | - Chen Ye
- BGI Research, Shenzhen, China
| | | | | | - Jie Fan
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhangyong Xia
- Department of Neurology, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - He Zhang
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Xin Liu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Karsten Kristiansen
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xun Xu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Wenwei Zhang
- BGI Research, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| | - Guangyi Fan
- BGI Research, Qingdao, China.
- BGI Research, Shenzhen, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| |
Collapse
|
7
|
Wu Z, Liu T, Chen Q, Chen T, Hu J, Sun L, Wang B, Li W, Ni J. Unveiling the unknown viral world in groundwater. Nat Commun 2024; 15:6788. [PMID: 39117653 PMCID: PMC11310336 DOI: 10.1038/s41467-024-51230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.
Collapse
Affiliation(s)
- Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qian Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Jinyun Hu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liyu Sun
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
8
|
Shah M, Bornemann TLV, Nuy JK, Hahn MW, Probst AJ, Beisser D, Boenigk J. Genome-resolved metagenomics reveals the effect of nutrient availability on bacterial genomic properties across 44 European freshwater lakes. Environ Microbiol 2024; 26:e16634. [PMID: 38881319 DOI: 10.1111/1462-2920.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Understanding intricate microbial interactions in the environment is crucial. This is especially true for the relationships between nutrients and bacteria, as phosphorus, nitrogen and organic carbon availability are known to influence bacterial population dynamics. It has been suggested that low nutrient conditions prompt the evolutionary process of genome streamlining. This process helps conserve scarce nutrients and allows for proliferation. Genome streamlining is associated with genomic properties such as %GC content, genes encoding sigma factors, percent coding regions, gene redundancy, and functional shifts in processes like cell motility and ATP binding cassette transporters, among others. The current study aims to unveil the impact of nutrition on the genome size, %GC content, and functional properties of pelagic freshwater bacteria. We do this at finer taxonomic resolutions for many metagenomically characterized communities. Our study confirms the interplay of trophic level and genomic properties. It also highlights that different nutrient types, particularly phosphorus and nitrogen, impact these properties differently. We observed a covariation of functional traits with genome size. Larger genomes exhibit enriched pathways for motility, environmental interaction, and regulatory genes. ABC transporter genes reflect the availability of nutrients in the environment, with small genomes presumably relying more on metabolites from other organisms. We also discuss the distinct strategies different phyla adopt to adapt to oligotrophic environments. The findings contribute to our understanding of genomic adaptations within complex microbial communities.
Collapse
Affiliation(s)
- Manan Shah
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Department of Engineering and Natural Sciences, Westphalian University of Applied Science, Recklinghausen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Julia K Nuy
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, Mondsee, Austria
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Science, Recklinghausen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Deng C, Chen T, Qiu Z, Zhou H, Li B, Zhang Y, Xu X, Lian C, Qiao X, Yu K. A mixed blessing of influent leachate microbes in downstream biotreatment systems of a full-scale landfill leachate treatment plant. WATER RESEARCH 2024; 253:121310. [PMID: 38368734 DOI: 10.1016/j.watres.2024.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.
Collapse
Affiliation(s)
- Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810000, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Xuming Xu
- Institute of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Zheng Y, Wang B, Gao P, Yang Y, Xu B, Su X, Ning D, Tao Q, Li Q, Zhao F, Wang D, Zhang Y, Li M, Winkler MKH, Ingalls AE, Zhou J, Zhang C, Stahl DA, Jiang J, Martens-Habbena W, Qin W. Novel order-level lineage of ammonia-oxidizing archaea widespread in marine and terrestrial environments. THE ISME JOURNAL 2024; 18:wrad002. [PMID: 38365232 PMCID: PMC10811736 DOI: 10.1093/ismejo/wrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.
Collapse
Affiliation(s)
- Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Baozhan Wang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Gao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Bu Xu
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - Xiaoquan Su
- College of Computer Science and Technology, Qingdao University , Qingdao 266101, China
| | - Daliang Ning
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qing Tao
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qian Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - Jizhong Zhou
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Department of Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Willm Martens-Habbena
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, United States
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| |
Collapse
|
11
|
Weinheimer AR, Aylward FO, Leray M, Scott JJ. Contrasting drivers of abundant phage and prokaryotic communities revealed in diverse coastal ecosystems. ISME COMMUNICATIONS 2023; 3:127. [PMID: 38049529 PMCID: PMC10695958 DOI: 10.1038/s43705-023-00333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Phages (viruses of bacteria and archaea) are a ubiquitous top-down control on microbial communities by selectively infecting and killing cells. As obligate parasites, phages are inherently linked to processes that impact their hosts' distribution and physiology, but phages can also be impacted by external, environmental factors, such as UV radiation degrading their virions. To better understand these complex links of phages to their hosts and the environment, we leverage the unique ecological context of the Isthmus of Panama, which narrowly disconnects the productive Tropical Eastern Pacific (EP) and nutrient-poor Tropical Western Atlantic (WA) provinces. We could thus compare patterns of phage and prokaryotic communities at both global scales (between oceans) and local-scales (between habitats within an ocean). Although both phage and prokaryotic communities differed sharply between the oceans, phage community composition did not significantly differ between mangroves and reefs of the WA, while prokaryotic communities were distinct. These results suggest phages are more shaped by dispersal processes than local conditions regardless of spatial scale, while prokaryotes tend to be shaped by local conditions at smaller spatial scales. Collectively, we provide a framework for addressing the co-variability between phages and prokaryotes in marine systems and identifying factors that drive consistent versus disparate trends in community shifts, essential to informing models of biogeochemical cycles that include these interactions.
Collapse
Affiliation(s)
- Alaina R Weinheimer
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0913, USA
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Jarrod J Scott
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
| |
Collapse
|
12
|
Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, Sunagawa S, Amann R, Simon M. Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster. MICROBIOME 2023; 11:265. [PMID: 38007474 PMCID: PMC10675870 DOI: 10.1186/s40168-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Collapse
Affiliation(s)
- Yanting Liu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany.
| |
Collapse
|
13
|
Wang C, Yu QY, Ji NN, Zheng Y, Taylor JW, Guo LD, Gao C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nat Commun 2023; 14:7437. [PMID: 37978289 PMCID: PMC10656551 DOI: 10.1038/s41467-023-43297-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial gene repertoires reflect adaptive strategies, contribute to ecosystem functioning and are limited by genome size. However, gene functional diversity does not necessarily correlate with taxonomic diversity because average genome size may vary by community. Here, we analyse gene functional diversity (by shotgun metagenomics) and taxonomic diversity (by 16S rRNA gene amplicon sequencing) to investigate soil bacterial communities along a natural pH gradient in 12 tropical, subtropical, and temperate forests. We find that bacterial average genome size and gene functional diversity decrease, whereas taxonomic diversity increases, as soil pH rises from acid to neutral; as a result, bacterial taxonomic and functional diversity are negatively correlated. The gene repertoire of acid-adapted oligotrophs is enriched in functions of signal transduction, cell motility, secretion system, and degradation of complex compounds, while that of neutral pH-adapted copiotrophs is enriched in functions of energy metabolism and membrane transport. Our results indicate that a mismatch between taxonomic and functional diversity can arise when environmental factors (such as pH) select for adaptive strategies that affect genome size distributions.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Geographical Sciences, Fujian Normal University, 350007, Fuzhou, China
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
Gralka M, Pollak S, Cordero OX. Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nat Microbiol 2023; 8:1799-1808. [PMID: 37653010 DOI: 10.1038/s41564-023-01458-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Heterotrophic bacteria-bacteria that utilize organic carbon sources-are taxonomically and functionally diverse across environments. It is challenging to map metabolic interactions and niches within microbial communities due to the large number of metabolites that could serve as potential carbon and energy sources for heterotrophs. Whether their metabolic niches can be understood using general principles, such as a small number of simplified metabolic categories, is unclear. Here we perform high-throughput metabolic profiling of 186 marine heterotrophic bacterial strains cultured in media containing one of 135 carbon substrates to determine growth rates, lag times and yields. We show that, despite high variability at all levels of taxonomy, the catabolic niches of heterotrophic bacteria can be understood in terms of their preference for either glycolytic (sugars) or gluconeogenic (amino and organic acids) carbon sources. This preference is encoded by the total number of genes found in pathways that feed into the two modes of carbon utilization and can be predicted using a simple linear model based on gene counts. This allows for coarse-grained descriptions of microbial communities in terms of prevalent modes of carbon catabolism. The sugar-acid preference is also associated with genomic GC content and thus with the carbon-nitrogen requirements of their encoded proteome. Our work reveals how the evolution of bacterial genomes is structured by fundamental constraints rooted in metabolism.
Collapse
Affiliation(s)
- Matti Gralka
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Systems Biology Group, Amsterdam Institute for Life and Environment (A-LIFE) and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Shaul Pollak
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Chen T, Liu T, Wu Z, Wang B, Chen Q, Zhang M, Liang E, Ni J. Virus-pathogen interactions improve water quality along the Middle Route of the South-to-North Water Diversion Canal. THE ISME JOURNAL 2023; 17:1719-1732. [PMID: 37524909 PMCID: PMC10504254 DOI: 10.1038/s41396-023-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Bacterial pathogens and viruses are the leading causes of global waterborne diseases. Here, we discovered an interesting natural paradigm of water "self-purification" through virus-pathogen interactions over a 1432 km continuum along the Middle Route of the South-to-North Water Diversion Canal (MR-SNWDC) in China, the largest water transfer project in the world. Due to the extremely low total phosphorus (TP) content (ND-0.02 mg/L) in the MR-SNWDC, the whole canal has experienced long-lasting phosphorus (P) limitation since its operation in 2015. Based on 4443 metagenome-assembled genomes (MAGs) and 40,261 nonredundant viral operational taxonomic units (vOTUs) derived from our recent monitoring campaign, we found that residential viruses experiencing extreme P constraints had to adopt special adaptive strategies by harboring smaller genomes to minimize nucleotide replication, DNA repair, and posttranslational modification costs. With the decreasing P supply downstream, bacterial pathogens showed repressed environmental fitness and growth potential, and a weakened capacity to maintain P acquisition, membrane formation, and ribonucleotide biosynthesis. Consequently, the unique viral predation effects under P limitation, characterized by enhanced viral lytic infections and an increased abundance of ribonucleotide reductase (RNR) genes linked to viral nuclear DNA replication cycles, led to unexpectedly lower health risks from waterborne bacterial pathogens in the downstream water-receiving areas. These findings highlighted the great potential of water self-purification associated with virus-pathogen dynamics for water-quality improvement and sustainable water resource management.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qian Chen
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Materials Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| | - Mi Zhang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Enhang Liang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
16
|
Yi Y, Liu S, Hao Y, Sun Q, Lei X, Wang Y, Wang J, Zhang M, Tang S, Tang Q, Zhang Y, Liu X, Wang Y, Xiao X, Jian H. A systematic analysis of marine lysogens and proviruses. Nat Commun 2023; 14:6013. [PMID: 37758717 PMCID: PMC10533544 DOI: 10.1038/s41467-023-41699-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are ubiquitous in the oceans, exhibiting high abundance and diversity. Here, we systematically analyze existing genomic sequences of marine prokaryotes to compile a Marine Prokaryotic Genome Dataset (MPGD, consisting of over 12,000 bacterial and archaeal genomes) and a Marine Temperate Viral Genome Dataset (MTVGD). At least 40% of the MPGD genomes contain one or more proviral sequences, indicating that they are lysogens. The MTVGD includes over 12,900 viral contigs or putative proviruses, clustered into 10,897 viral genera. We show that lysogens and proviruses are abundant in marine ecosystems, particularly in the deep sea, and marine lysogens differ from non-lysogens in multiple genomic features and growth properties. We reveal several virus-host interaction networks of potential ecological relevance, and identify proviruses that appear to be able to infect (or to be transferred between) different bacterial classes and phyla. Auxiliary metabolic genes in the MTVGD are enriched in functions related to carbohydrate metabolism. Finally, we experimentally demonstrate the impact of a prophage on the transcriptome of a representative marine Shewanella bacterium. Our work contributes to a better understanding of the ecology of marine prokaryotes and their viruses.
Collapse
Affiliation(s)
- Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Lei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Yecheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Qingxue Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
17
|
Liu H, Liu WW, Haro-Moreno JM, Xu B, Zheng Y, Liu J, Tian J, Zhang XH, Zhou NY, Qin L, Zhu Y, Rodriguez-Valera F, Zhang C. A moderately thermophilic origin of a novel family of marine group II euryarchaeota from deep ocean. iScience 2023; 26:107664. [PMID: 37680465 PMCID: PMC10480650 DOI: 10.1016/j.isci.2023.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Marine group II (MGII) is the most abundant planktonic heterotrophic archaea in the ocean. The evolutionary history of MGII archaea is elusive. In this study, 13 new MGII metagenome-assembled genomes were recovered from surface to the hadal zone in Challenger Deep of the Mariana Trench; four of them from the deep ocean represent a novel group. The optimal growth temperature (OGT) of the common ancestor of MGII has been estimated to be at about 60°C and OGTs of MGIIc, MGIIb, and MGIIa at 47°C-50ºC, 37°C-44ºC, and 30°C-37ºC, respectively, suggesting the adaptation of these species to different temperatures during evolution. The estimated OGT range of MGIIc was supported by experimental measurements of cloned β-galactosidase that showed optimal enzyme activity around 50°C. These results indicate that MGIIc may have originated from a common ancestor that lived in warm or even hot marine environment, such as hydrothermal vents.
Collapse
Affiliation(s)
- Haodong Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Wei Liu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Bu Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Yanfen Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| |
Collapse
|
18
|
Roda-Garcia JJ, Haro-Moreno JM, López-Pérez M. Evolutionary pathways for deep-sea adaptation in marine planktonic Actinobacteriota. Front Microbiol 2023; 14:1159270. [PMID: 37234526 PMCID: PMC10205998 DOI: 10.3389/fmicb.2023.1159270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The deep ocean, one of the largest ecosystems on earth, is dominated by microorganisms that are keystones in the regulation of biogeochemical cycles. However, the evolutionary pathways underlying the specific adaptations required (e.g., high pressure and low temperature) by this unique niche remain understudied. Here, we analyzed the first representatives belonging to the order Acidimicrobiales, a group of marine planktonic Actinobacteriota, that specifically inhabits the aphotic zone of the oceanic water column (>200 m). Compared with their epipelagic counterparts, deep-sea representatives showed the same evolution in genome architecture with higher GC content, longer intergenic spaces as well as higher nitrogen (N-ARSC) and lower carbon (C-ARSC) content in encoded amino acid residue side chains consistent with the higher nitrogen concentration and lower carbon concentration in deep waters compared to the photic zone. Metagenomic recruitment showed distribution patterns that allowed the description of different ecogenomic units within the three deep water-associated genera defined by our phylogenomic analyses (UBA3125, S20-B6 and UBA9410). The entire genus UBA3125 was found exclusively associated with oxygen minimum zones linked to the acquisition of genes involved in denitrification. Genomospecies of genus S20-B6 recruited in samples from both mesopelagic (200-1,000 m) and bathypelagic (1000-4,000 m) zones, including polar regions. Diversity in the genus UBA9410 was higher, with genomospecies widely distributed in temperate zones, others in polar regions, and the only genomospecies associated with abyssal zones (>4,000 m). At the functional level, groups beyond the epipelagic zone have a more complex transcriptional regulation including in their genomes a unique WhiB paralog. In addition, they showed higher metabolic potential for organic carbon and carbohydrate degradation as well as the ability to accumulate glycogen as a source of carbon and energy. This could compensate for energy metabolism in the absence of rhodopsins, which is only present in genomes associated with the photic zone. The abundance in deep samples of cytochrome P450 monooxygenases associated with the genomes of this order suggests an important role in remineralization of recalcitrant compounds throughout the water column.
Collapse
|
19
|
Lanclos VC, Rasmussen AN, Kojima CY, Cheng C, Henson MW, Faircloth BC, Francis CA, Thrash JC. Ecophysiology and genomics of the brackish water adapted SAR11 subclade IIIa. THE ISME JOURNAL 2023; 17:620-629. [PMID: 36739346 PMCID: PMC10030771 DOI: 10.1038/s41396-023-01376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.
Collapse
Affiliation(s)
- V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anna N Rasmussen
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Conner Y Kojima
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael W Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
Rodríguez-Gijón A, Buck M, Andersson AF, Izabel-Shen D, Nascimento FJA, Garcia SL. Linking prokaryotic genome size variation to metabolic potential and environment. ISME COMMUNICATIONS 2023; 3:25. [PMID: 36973336 PMCID: PMC10042847 DOI: 10.1038/s43705-023-00231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
While theories and models have appeared to explain genome size as a result of evolutionary processes, little work has shown that genome sizes carry ecological signatures. Our work delves into the ecological implications of microbial genome size variation in benthic and pelagic habitats across environmental gradients of the brackish Baltic Sea. While depth is significantly associated with genome size in benthic and pelagic brackish metagenomes, salinity is only correlated to genome size in benthic metagenomes. Overall, we confirm that prokaryotic genome sizes in Baltic sediments (3.47 Mbp) are significantly bigger than in the water column (2.96 Mbp). While benthic genomes have a higher number of functions than pelagic genomes, the smallest genomes coded for a higher number of module steps per Mbp for most of the functions irrespective of their environment. Some examples of this functions are amino acid metabolism and central carbohydrate metabolism. However, we observed that nitrogen metabolism was almost absent in pelagic genomes and was mostly present in benthic genomes. Finally, we also show that Bacteria inhabiting Baltic sediments and water column not only differ in taxonomy, but also in their metabolic potential, such as the Wood-Ljungdahl pathway or the presence of different hydrogenases. Our work shows how microbial genome size is linked to abiotic factors in the environment, metabolic potential and taxonomic identity of Bacteria and Archaea within aquatic ecosystems.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
21
|
Microbial and Viral Genome and Proteome Nitrogen Demand Varies across Multiple Spatial Scales within a Marine Oxygen Minimum Zone. mSystems 2023; 8:e0109522. [PMID: 36920198 PMCID: PMC10134851 DOI: 10.1128/msystems.01095-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles.
Collapse
|
22
|
Ngugi DK, Acinas SG, Sánchez P, Gasol JM, Agusti S, Karl DM, Duarte CM. Abiotic selection of microbial genome size in the global ocean. Nat Commun 2023; 14:1384. [PMID: 36914646 PMCID: PMC10011403 DOI: 10.1038/s41467-023-36988-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome.
Collapse
Affiliation(s)
- David K Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Susana Agusti
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaií at Mãnoa, Honolulu, USA
| | - Carlos M Duarte
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| |
Collapse
|
23
|
Abstract
The rise of global temperature causes the degradation of the substantial reserves of carbon (C) stored in tundra soils, in which microbial processes play critical roles. Viruses are known to influence the soil C cycle by encoding auxiliary metabolic genes and infecting key microorganisms, but their regulation of microbial communities under climate warming remains unexplored. In this study, we evaluated the responses of viral communities for about 5 years of experimental warming at two depths (15 to 25 cm and 45 to 55 cm) in the Alaskan permafrost region. Our results showed that the viral community and functional gene composition and abundances (including viral functional genes related to replication, structure, infection, and lysis) were significantly influenced by environmental conditions such as total nitrogen (N), total C, and soil thawing duration. Although long-term warming did not impact the viral community composition at the two depths, some glycoside hydrolases encoded by viruses were more abundant at both depths of the warmed plots. With the continuous reduction of total C, viruses may alleviate methane release by altering infection strategies on methanogens. Importantly, viruses can adopt lysogenic and lytic lifestyles to manipulate microbial communities at different soil depths, respectively, which could be one of the major factors causing the differences in microbial responses to warming. This study provides a new ecological perspective on how viruses regulate the responses of microbes to warming at community and functional scales. IMPORTANCE Permafrost thawing causes microbial release of greenhouse gases, exacerbating climate warming. Some previous studies examined the responses of the microbial communities and functions to warming in permafrost region, but the roles of viruses in mediating the responses of microbial communities to warming are poorly understood. This study revealed that warming induced changes in some viral functional classes and in the virus/microbe ratios for specific lineages, which might influence the entire microbial community. Furthermore, differences in viral communities and functions, along with soil depths, are important factors influencing microbial responses to warming. Collectively, our study revealed the regulation of microbial communities by viruses and demonstrated the importance of viruses in the microbial ecology research.
Collapse
|
24
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Amano C, Reinthaler T, Sintes E, Varela MM, Stefanschitz J, Kaneko S, Nakano Y, Borchert W, Herndl GJ, Utsumi M. A device for assessing microbial activity under ambient hydrostatic pressure: The in situ microbial incubator (ISMI). LIMNOLOGY AND OCEANOGRAPHY, METHODS 2023; 21:69-81. [PMID: 38505832 PMCID: PMC10946486 DOI: 10.1002/lom3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 03/21/2024]
Abstract
Microbes in the dark ocean are exposed to hydrostatic pressure increasing with depth. Activity rate measurements and biomass production of dark ocean microbes are, however, almost exclusively performed under atmospheric pressure conditions due to technical constraints of sampling equipment maintaining in situ pressure conditions. To evaluate the microbial activity under in situ hydrostatic pressure, we designed and thoroughly tested an in situ microbial incubator (ISMI). The ISMI allows autonomously collecting and incubating seawater at depth, injection of substrate and fixation of the samples after a preprogramed incubation time. The performance of the ISMI was tested in a high-pressure tank and in several field campaigns under ambient hydrostatic pressure by measuring prokaryotic bulk 3H-leucine incorporation rates. Overall, prokaryotic leucine incorporation rates were lower at in situ pressure conditions than under to depressurized conditions reaching only about 50% of the heterotrophic microbial activity measured under depressurized conditions in bathypelagic waters in the North Atlantic Ocean off the northwestern Iberian Peninsula. Our results show that the ISMI is a valuable tool to reliably determine the metabolic activity of deep-sea microbes at in situ hydrostatic pressure conditions. Hence, we advocate that deep-sea biogeochemical and microbial rate measurements should be performed under in situ pressure conditions to obtain a more realistic view on deep-sea biotic processes.
Collapse
Affiliation(s)
- Chie Amano
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
| | - Eva Sintes
- Instituto Español de Oceanografía‐CSIC, Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Marta M. Varela
- Instituto Español de Oceanografia‐CSIC, Centro Oceanografico de A CoruñaA CoruñaSpain
| | - Julia Stefanschitz
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
- Present address:
Marine Evolutionary Ecology, Deep‐Sea Biology Group, GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | | | - Yoshiyuki Nakano
- Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
- NIOZ, Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, Utrecht UniversityTexelThe Netherlands
| | - Motoo Utsumi
- Faculty of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaIbarakiJapan
| |
Collapse
|
26
|
Blumberg K, Miller M, Ponsero A, Hurwitz B. Ontology-driven analysis of marine metagenomics: what more can we learn from our data? Gigascience 2022; 12:giad088. [PMID: 37941395 PMCID: PMC10632069 DOI: 10.1093/gigascience/giad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The proliferation of metagenomic sequencing technologies has enabled novel insights into the functional genomic potentials and taxonomic structure of microbial communities. However, cyberinfrastructure efforts to manage and enable the reproducible analysis of sequence data have not kept pace. Thus, there is increasing recognition of the need to make metagenomic data discoverable within machine-searchable frameworks compliant with the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles for data stewardship. Although a variety of metagenomic web services exist, none currently leverage the hierarchically structured terminology encoded within common life science ontologies to programmatically discover data. RESULTS Here, we integrate large-scale marine metagenomic datasets with community-driven life science ontologies into a novel FAIR web service. This approach enables the retrieval of data discovered by intersecting the knowledge represented within ontologies against the functional genomic potential and taxonomic structure computed from marine sequencing data. Our findings highlight various microbial functional and taxonomic patterns relevant to the ecology of prokaryotes in various aquatic environments. CONCLUSIONS In this work, we present and evaluate a novel Semantic Web architecture that can be used to ask novel biological questions of existing marine metagenomic datasets. Finally, the FAIR ontology searchable data products provided by our API can be leveraged by future research efforts.
Collapse
Affiliation(s)
- Kai Blumberg
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Miller
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Alise Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Bonnie Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
27
|
Farzad R, Ha AD, Aylward FO. Diversity and genomics of giant viruses in the North Pacific Subtropical Gyre. Front Microbiol 2022; 13:1021923. [PMID: 36504832 PMCID: PMC9732441 DOI: 10.3389/fmicb.2022.1021923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
Large double-stranded DNA viruses of the phylum Nucleocytoviricota, often referred to as "giant viruses," are ubiquitous members of marine ecosystems that are important agents of mortality for eukaryotic plankton. Although giant viruses are known to be prevalent in marine systems, their activities in oligotrophic ocean waters remain unclear. Oligotrophic gyres constitute the majority of the ocean and assessing viral activities in these regions is therefore critical for understanding overall marine microbial processes. In this study, we generated 11 metagenome-assembled genomes (MAGs) of giant viruses from samples previously collected from Station ALOHA in the North Pacific Subtropical Gyre. Phylogenetic analyses revealed that they belong to the orders Imitervirales (n = 6), Algavirales (n = 4), and Pimascovirales (n = 1). Genome sizes ranged from ~119-574 kbp, and several of the genomes encoded predicted TCA cycle components, cytoskeletal proteins, collagen, rhodopsins, and proteins potentially involved in other cellular processes. Comparison with other marine metagenomes revealed that several have broad distribution across ocean basins and represent abundant viral constituents of pelagic surface waters. Our work sheds light on the diversity of giant viruses present in oligotrophic ocean waters across the globe.
Collapse
Affiliation(s)
- Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States,Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, United States,*Correspondence: Frank O. Aylward,
| |
Collapse
|
28
|
Mercury isotopic evidence for the importance of particles as a source of mercury to marine organisms. Proc Natl Acad Sci U S A 2022; 119:e2208183119. [PMID: 36279440 PMCID: PMC9636975 DOI: 10.1073/pnas.2208183119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of methylmercury in pelagic fish remains unclear, with many unanswered questions regarding the production and degradation of this neurotoxin in the water column. We used mercury (Hg) stable isotope ratios of marine particles and biota to elucidate the cycling of methylmercury prior to incorporation into the marine food web. The Hg isotopic composition of particles, zooplankton, and fish reveals preferential methylation of Hg within small (< 53 µm) marine particles in the upper 400 m of the North Pacific Ocean. Mass-dependent Hg isotope ratios (δ
202
Hg) recorded in small particles overlap with previously estimated δ
202
Hg values for methylmercury sources to Pacific and Atlantic Ocean food webs. Particulate compound specific isotope analysis of amino acids (CSIA-AA) yield δ
15
N values that indicate more-significant microbial decomposition in small particles compared to larger particles. CSIA-AA and Hg isotope data also suggest that large particles (> 53 µm) collected in the equatorial ocean are distinct from small particles and resemble fecal pellets. Additional evidence for Hg methylation within small particles is provided by a statistical mixing model of even mass–independent (Δ
200
Hg and Δ
204
Hg) isotope values, which demonstrates that Hg within near-surface marine organisms (0–150 m) originates from a combination of rainfall and marine particles. In contrast, in meso- and upper bathypelagic organisms (200–1,400 m), the majority of Hg originates from marine particles with little input from wet deposition. The occurrence of methylation within marine particles is supported further by a correlation between Δ
200
Hg and Δ
199
Hg values, demonstrating greater overlap in the Hg isotopic composition of marine organisms with marine particles than with total gaseous Hg or wet deposition.
Collapse
|
29
|
Eppley JM, Biller SJ, Luo E, Burger A, DeLong EF. Marine viral particles reveal an expansive repertoire of phage-parasitizing mobile elements. Proc Natl Acad Sci U S A 2022; 119:e2212722119. [PMID: 36256808 PMCID: PMC9618062 DOI: 10.1073/pnas.2212722119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Phage satellites are mobile genetic elements that propagate by parasitizing bacteriophage replication. We report here the discovery of abundant and diverse phage satellites that were packaged as concatemeric repeats within naturally occurring bacteriophage particles in seawater. These same phage-parasitizing mobile elements were found integrated in the genomes of dominant co-occurring bacterioplankton species. Like known phage satellites, many marine phage satellites encoded genes for integration, DNA replication, phage interference, and capsid assembly. Many also contained distinctive gene suites indicative of unique virus hijacking, phage immunity, and mobilization mechanisms. Marine phage satellite sequences were widespread in local and global oceanic virioplankton populations, reflecting their ubiquity, abundance, and temporal persistence in marine planktonic communities worldwide. Their gene content and putative life cycles suggest they may impact host-cell phage immunity and defense, lateral gene transfer, bacteriophage-induced cell mortality and cellular host and virus productivity. Given that marine phage satellites cannot be distinguished from bona fide viral particles via commonly used microscopic techniques, their predicted numbers (∼3.2 × 1026 in the ocean) may influence current estimates of virus densities, production, and virus-induced mortality. In total, the data suggest that marine phage satellites have potential to significantly impact the ecology and evolution of bacteria and their viruses throughout the oceans. We predict that any habitat that harbors bacteriophage will also harbor similar phage satellites, making them a ubiquitous feature of most microbiomes on Earth.
Collapse
Affiliation(s)
- John M. Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| | - Steven J. Biller
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| | - Andrew Burger
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| | - Edward F. DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| |
Collapse
|
30
|
Lloyd CC, Brown S, Balmonte JP, Hoarfrost A, Ghobrial S, Arnosti C. Particles act as ‘specialty centers’ with expanded enzymatic function throughout the water column in the western North Atlantic. Front Microbiol 2022; 13:882333. [PMID: 36246226 PMCID: PMC9553992 DOI: 10.3389/fmicb.2022.882333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Heterotrophic bacteria initiate the degradation of high molecular weight organic matter by producing an array of extracellular enzymes to hydrolyze complex organic matter into sizes that can be taken up into the cell. These bacterial communities differ spatially and temporally in composition, and potentially also in their enzymatic complements. Previous research has shown that particle-associated bacteria can be considerably more active than bacteria in the surrounding bulk water, but most prior studies of particle-associated bacteria have been focused on the upper ocean - there are few measurements of enzymatic activities of particle-associated bacteria in the mesopelagic and bathypelagic ocean, although the bacterial communities in the deep are dependent upon degradation of particulate organic matter to fuel their metabolism. We used a broad suite of substrates to compare the glucosidase, peptidase, and polysaccharide hydrolase activities of particle-associated and unfiltered seawater microbial communities in epipelagic, mesopelagic, and bathypelagic waters across 11 stations in the western North Atlantic. We concurrently determined bacterial community composition of unfiltered seawater and of samples collected via gravity filtration (>3 μm). Overall, particle-associated bacterial communities showed a broader spectrum of enzyme activities compared with unfiltered seawater communities. These differences in enzymatic activities were greater at offshore than at coastal locations, and increased with increasing depth in the ocean. The greater differences in enzymatic function measured on particles with depth coincided with increasing differences in particle-associated community composition, suggesting that particles act as ‘specialty centers’ that are essential for degradation of organic matter even at bathypelagic depths.
Collapse
Affiliation(s)
- C. Chad Lloyd
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: C. Chad Lloyd,
| | - Sarah Brown
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John Paul Balmonte
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, HADAL and Nordcee, University of Southern Denmark, Odense, Denmark
| | - Adrienne Hoarfrost
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Marine Sciences, University of Georgia, Athens, GA, United States
| | - Sherif Ghobrial
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Comstock J, Nelson CE, James A, Wear E, Baetge N, Remple K, Juknavorian A, Carlson CA. Bacterioplankton communities reveal horizontal and vertical influence of an Island Mass Effect. Environ Microbiol 2022; 24:4193-4208. [PMID: 35691616 PMCID: PMC9796716 DOI: 10.1111/1462-2920.16092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
Coral reefs are highly productive ecosystems with distinct biogeochemistry and biology nestled within unproductive oligotrophic gyres. Coral reef islands have often been associated with a nearshore enhancement in phytoplankton, a phenomenon known as the Island Mass Effect (IME). Despite being documented more than 60 years ago, much remains unknown about the extent and drivers of IMEs. Here we utilized 16S rRNA gene metabarcoding as a biological tracer to elucidate horizontal and vertical influence of an IME around the islands of Mo'orea and Tahiti, French Polynesia. We show that those nearshore oceanic stations with elevated chlorophyll a included bacterioplankton found in high abundance in the reef environment, suggesting advection of reef water is the source of altered nearshore biogeochemistry. We also observed communities in the nearshore deep chlorophyll maximum (DCM) with enhanced abundances of upper euphotic bacterioplankton that correlated with intrusions of low-density, O2 rich water, suggesting island influence extends into the DCM.
Collapse
Affiliation(s)
- Jacqueline Comstock
- Department of Ecology, Evolution and Marine Biology and Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College ProgramUniversity of Hawai'i at MānoaHonoluluHIUSA
| | - Anna James
- Department of Ecology, Evolution and Marine Biology and Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Emma Wear
- Department of Ecology, Evolution and Marine Biology and Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Nicholas Baetge
- Department of Ecology, Evolution and Marine Biology and Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Kristina Remple
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College ProgramUniversity of Hawai'i at MānoaHonoluluHIUSA
| | | | - Craig A. Carlson
- Department of Ecology, Evolution and Marine Biology and Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
32
|
Diverse Genomic Traits Differentiate Sinking-Particle-Associated versus Free-Living Microbes throughout the Oligotrophic Open Ocean Water Column. mBio 2022; 13:e0156922. [PMID: 35862780 PMCID: PMC9426571 DOI: 10.1128/mbio.01569-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria and archaea are central to the production, consumption, and remineralization of dissolved and particulate organic matter and contribute critically to carbon delivery, nutrient availability, and energy transformations in the deep ocean. To explore environmentally relevant genomic traits of sinking-particle-associated versus free-living microbes, we compared habitat-specific metagenome-assembled genomes recovered throughout the water column in the North Pacific Subtropical Gyre. The genomic traits of sinking-particle-associated versus free-living prokaryotes were compositionally, functionally, and phylogenetically distinct. Substrate-specific transporters and extracellular peptidases and carbohydrate-active enzymes were more enriched and diverse in particle-associated microbes at all depths than in free-living counterparts. These data indicate specific roles for particle-attached microbes in particle substrate hydrolysis, uptake, and remineralization. Shallow-water particle-associated microbes had elevated genomic GC content and proteome nitrogen content and reduced proteome carbon content in comparison to abyssal particle-associated microbes. An inverse trend was observed for their sympatric free-living counterparts. These different properties of attached microbes are postulated to arise in part due to elevated organic and inorganic nitrogen availability inside sinking particles. Particle-attached microbes also were enriched in genes for environmental sensing via two-component regulatory systems, and cell-cell interactions via extracellular secretion systems, reflecting their surface-adapted lifestyles. Finally, particle-attached bacteria had greater predicted maximal growth efficiencies than free-living bacterioplankton at all depths. All of these particle-associated specific genomic and proteomic features appear to be driven by microhabitat-specific elevated nutrient and energy availability as well as surface-associated competitive and synergistic ecological interactions. Although some of these characteristics have been previously postulated or observed individually, we report them together here in aggregate via direct comparisons of cooccurring free-living and sinking-particle-attached microbial genomes from the open ocean.
Collapse
|
33
|
Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biol 2022; 12:220041. [PMID: 35857930 PMCID: PMC9277239 DOI: 10.1098/rsob.220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
Collapse
Affiliation(s)
- Matthew Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Thomas A. Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alyson E. Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
34
|
Nishimura Y, Yoshizawa S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci Data 2022; 9:305. [PMID: 35715423 PMCID: PMC9205870 DOI: 10.1038/s41597-022-01392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
Marine microorganisms are immensely diverse and play fundamental roles in global geochemical cycling. Recent metagenome-assembled genome studies, with particular attention to large-scale projects such as Tara Oceans, have expanded the genomic repertoire of marine microorganisms. However, published marine metagenome data is still underexplored. We collected 2,057 marine metagenomes covering various marine environments and developed a new genome reconstruction pipeline. We reconstructed 52,325 qualified genomes composed of 8,466 prokaryotic species-level clusters spanning 59 phyla, including genomes from the deep-sea characterized as deeper than 1,000 m (n = 3,337), low-oxygen zones of <90 μmol O2 per kg water (n = 7,884), and polar regions (n = 7,752). Novelty evaluation using a genome taxonomy database shows that 6,256 species (73.9%) are novel and include genomes of high taxonomic novelty, such as new class candidates. These genomes collectively expanded the known phylogenetic diversity of marine prokaryotes by 34.2%, and the species representatives cover 26.5-42.0% of prokaryote-enriched metagenomes. Thoroughly leveraging accumulated metagenomic data, this genome resource, named the OceanDNA MAG catalog, illuminates uncharacterized marine microbial 'dark matter' lineages.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
35
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Weinheimer AR, Aylward FO. Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages. THE ISME JOURNAL 2022; 16:1657-1667. [PMID: 35260829 PMCID: PMC9123017 DOI: 10.1038/s41396-022-01214-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Recent research has underscored the immense diversity and key biogeochemical roles of large DNA viruses in the ocean. Although they are important constituents of marine ecosystems, it is sometimes difficult to detect these viruses due to their large size and complex genomes. This is true for "jumbo" bacteriophages, which have genome sizes >200 kbp and large capsids reaching up to 0.45 µm in diameter. In this study, we sought to assess the genomic diversity and distribution of these bacteriophages in the ocean by generating and analyzing jumbo phage genomes from metagenomes. We recover 85 marine jumbo phages that ranged in size from 201 to 498 kilobases, and we examine their genetic similarities and biogeography together with a reference database of marine jumbo phage genomes. By analyzing Tara Oceans metagenomic data, we show that although most jumbo phages can be detected in a range of different size fractions, 17 of our bins tend to be found in those greater than 0.22 µm, potentially due to their large size. Our network-based analysis of gene-sharing patterns reveals that jumbo bacteriophages belong to five genome clusters that are typified by diverse replication strategies, genomic repertoires, and potential host ranges. Our analysis of jumbo phage distributions in the ocean reveals that depth is a major factor shaping their biogeography, with some phage genome clusters occurring preferentially in either surface or mesopelagic waters, respectively. Taken together, our findings indicate that jumbo phages are widespread community members in the ocean with complex genomic repertoires and ecological impacts that warrant further targeted investigation.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0913, USA
| |
Collapse
|
37
|
James CC, Barton AD, Allen LZ, Lampe RH, Rabines A, Schulberg A, Zheng H, Goericke R, Goodwin KD, Allen AE. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. Nat Commun 2022; 13:2448. [PMID: 35508497 PMCID: PMC9068609 DOI: 10.1038/s41467-022-30139-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
The ecological and oceanographic processes that drive the response of pelagic ocean microbiomes to environmental changes remain poorly understood, particularly in coastal upwelling ecosystems. Here we show that seasonal and interannual variability in coastal upwelling predicts pelagic ocean microbiome diversity and community structure in the Southern California Current region. Ribosomal RNA gene sequencing, targeting prokaryotic and eukaryotic microbes, from samples collected seasonally during 2014-2020 indicate that nitracline depth is the most robust predictor of spatial microbial community structure and biodiversity in this region. Striking ecological changes occurred due to the transition from a warm anomaly during 2014-2016, characterized by intense stratification, to cooler conditions in 2017-2018, representative of more typical upwelling conditions, with photosynthetic eukaryotes, especially diatoms, changing most strongly. The regional slope of nitracline depth exerts strong control on the relative proportion of highly diverse offshore communities and low biodiversity, but highly productive nearshore communities.
Collapse
Affiliation(s)
- Chase C James
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Andrew D Barton
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- Section of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Lisa Zeigler Allen
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Robert H Lampe
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Anne Schulberg
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Hong Zheng
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Ralf Goericke
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Kelly D Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, (Stationed at Southwest Fisheries Science Center), 4301 Rickenbacker Cswy, Miami, FL, 33149, United States
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States.
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States.
| |
Collapse
|
38
|
Linney MD, Eppley JM, Romano AE, Luo E, DeLong EF, Karl DM. Microbial Sources of Exocellular DNA in the Ocean. Appl Environ Microbiol 2022; 88:e0209321. [PMID: 35311515 PMCID: PMC9004351 DOI: 10.1128/aem.02093-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Exocellular DNA is operationally defined as the fraction of the total DNA pool that passes through a membrane filter (0.1 μm). It is composed of DNA-containing vesicles, viruses, and free DNA and is ubiquitous in all aquatic systems, although the sources, sinks, and ecological consequences are largely unknown. Using a method that provides separation of these three fractions, we compared open ocean depth profiles of DNA associated with each fraction. Pelagibacter-like DNA dominated the vesicle fractions for all samples examined over a depth range of 75 to 500 m. Viral DNA consisted predominantly of myovirus-like and podovirus-like DNA and contained the highest proportion of unannotated sequences. Euphotic zone free DNA (75 to 125 m) contained primarily bacterial and viral sequences, with bacteria dominating samples from the mesopelagic zone (500 to 1,000 m). A high proportion of mesopelagic zone free DNA sequences appeared to originate from surface waters, including a large amount of DNA contributed by high-light Prochlorococcus ecotypes. Throughout the water column, but especially in the mesopelagic zone, the composition of free DNA sequences was not always reflective of cooccurring microbial communities that inhabit the same sampling depth. These results reveal the composition of free DNA in different regions of the water column (euphotic and mesopelagic zones), with implications for dissolved organic matter cycling and export (by way of sinking particles and/or migratory zooplankton) as a delivery mechanism. IMPORTANCE With advances in metagenomic sequencing, the microbial composition of diverse environmental systems has been investigated, providing new perspectives on potential ecological dynamics and dimensions for experimental investigations. Here, we characterized exocellular free DNA via metagenomics, using a newly developed method that separates free DNA from cells, viruses, and vesicles, and facilitated the independent characterization of each fraction. The fate of this free DNA has both ecological consequences as a nutrient (N and P) source and potential evolutionary consequences as a source of genetic transformation. Here, we document different microbial sources of free DNA at the surface (0 to 200 m) versus depths of 250 to 1,000 m, suggesting that distinct free DNA production mechanisms may be present throughout the oligotrophic water column. Examining microbial processes through the lens of exocellular DNA provides insights into the production of labile dissolved organic matter (i.e., free DNA) at the surface (likely by viral lysis) and processes that influence the fate of sinking, surface-derived organic matter.
Collapse
Affiliation(s)
- Morgan D. Linney
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - John M. Eppley
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Anna E. Romano
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Elaine Luo
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Edward F. DeLong
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - David M. Karl
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| |
Collapse
|
39
|
Acker M, Hogle SL, Berube PM, Hackl T, Coe A, Stepanauskas R, Chisholm SW, Repeta DJ. Phosphonate production by marine microbes: Exploring new sources and potential function. Proc Natl Acad Sci U S A 2022; 119:e2113386119. [PMID: 35254902 PMCID: PMC8931226 DOI: 10.1073/pnas.2113386119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
SignificancePhosphonates are a class of phosphorus metabolites characterized by a highly stable C-P bond. Phosphonates accumulate to high concentrations in seawater, fuel a large fraction of marine methane production, and serve as a source of phosphorus to microbes inhabiting nutrient-limited regions of the oligotrophic ocean. Here, we show that 15% of all bacterioplankton in the surface ocean have genes phosphonate synthesis and that most belong to the abundant groups Prochlorococcus and SAR11. Genomic and chemical evidence suggests that phosphonates are incorporated into cell-surface phosphonoglycoproteins that may act to mitigate cell mortality by grazing and viral lysis. These results underscore the large global biogeochemical impact of relatively rare but highly expressed traits in numerically abundant groups of marine bacteria.
Collapse
Affiliation(s)
- Marianne Acker
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
- Department of Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Shane L. Hogle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, University of Turku, Turku 20500, Finland
| | - Paul M. Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ramunas Stepanauskas
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel J. Repeta
- Department of Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| |
Collapse
|
40
|
Liu YF, Yang L, Liu ZL, Chen J, Fang B, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ. Discovery of the non-cosmopolitan lineages in Candidatus Thermoprofundales. Environ Microbiol 2022; 24:3063-3080. [PMID: 35254697 DOI: 10.1111/1462-2920.15965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
The recently proposed order Candidatus Thermoprofundales, currently containing only one family-level lineage Marine Benthic Group-D (MBG-D), is distributed in global subsurface ecosystems and ecologically important, but its diversity, evolution and metabolism remain largely unknown. Here we described two novel family-level specialized lineages in Ca. Thermoprofundales, JdFR-43 and HyVt, which are restricted to specific biotopes (primarily in marine hydrothermal vents and occasionally in oil reservoirs and hot springs) in contrast to the cosmopolitan lineage MBG-D. The comparative genomics revealed that the specialized lineages have streamlined genomes, higher GC contents, enriched genes associated with nucleotide biosynthesis, ribosome biogenesis and DNA repair and additional thermostable aminopeptidases, enabling them to adapt to high-temperature habitats such as marine hydrothermal vents, deep subsurface oil reservoirs and hot springs. On the contrary, the unique metabolic traits of the cosmopolitan MBG-D, motility, glycolysis, butanoate metabolism, secondary metabolites production and additional genes for specific peptides and carbohydrates degradation potentially enhance its response to environmental change. Substrate preference is found for most MAGs across all lineages with the ability to utilize both polysaccharides (chitin and starch) and proteinaceous substances, whereas JdFR-43 members from oil reservoirs can only utilize proteins. These results expand the diversity of Ca. Thermoprofundales significantly and further improve our understandings of the adaptations of Ca. Thermoprofundales to various environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Liu Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Zhong-Lin Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jing Chen
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Bo Fang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.,Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
41
|
Dong Y, Wu S, Fan H, Li X, Li Y, Xu S, Bai Z, Zhuang X. Ecological selection of bacterial taxa with larger genome sizes in response to polycyclic aromatic hydrocarbons stress. J Environ Sci (China) 2022; 112:82-93. [PMID: 34955225 DOI: 10.1016/j.jes.2021.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous priority pollutants that cause great damage to the natural environment and health. Average genome size in a community is critical for shedding light on microbiome's functional response to pollution stress within an environment. Here, microcosms under different concentrations were performed to evaluate the selection of PAHs stress on the average genome size in a community. We found the distinct communities of significantly larger genome size with the increase of PAHs concentration gradients in soils, and consistent trends were discovered in soils at different latitudes. The abundance of Proteobacteria and Deinococcus-Thermus with relatively larger genomes increased along with PAHs stress and well adapted to polluted environments. In contrast, the abundance of Patescibacteria with a highly streamlined and smaller genome decreased, implying complex interactions between environmental selection and functional fitness resulted in bacteria with larger genomes becoming more abundant. Moreover, we confirmed the increased capacity for horizontal transfer of degrading genes between communities by showing an increased connection number per node positively related to the nidA gene along the concentration gradients in the co-occurrence network. Our findings suggest PAHs tend to select bacterial taxa with larger genome sizes, with significant consequences for community stability and potential biodegradation strategies.
Collapse
Affiliation(s)
- Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Yeast has evolved to minimize protein resource cost for synthesizing amino acids. Proc Natl Acad Sci U S A 2022; 119:2114622119. [PMID: 35042799 PMCID: PMC8795554 DOI: 10.1073/pnas.2114622119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Proteins, as essential biomolecules, account for a large fraction of cell mass, and thus the synthesis of the complete set of proteins (i.e., the proteome) represents a substantial part of the cellular resource budget. Therefore, cells might be under selective pressures to optimize the resource costs for protein synthesis, particularly the biosynthesis of the 20 proteinogenic amino acids. Previous studies showed that less energetically costly amino acids are more abundant in the proteomes of bacteria that survive under energy-limited conditions, but the energy cost of synthesizing amino acids was reported to be weakly associated with the amino acid usage in Saccharomyces cerevisiae. Here we present a modeling framework to estimate the protein cost of synthesizing each amino acid (i.e., the protein mass required for supporting one unit of amino acid biosynthetic flux) and the glucose cost (i.e., the glucose consumed per amino acid synthesized). We show that the logarithms of the relative abundances of amino acids in S. cerevisiae’s proteome correlate well with the protein costs of synthesizing amino acids (Pearson’s r = −0.89), which is better than that with the glucose costs (Pearson’s r = −0.5). Therefore, we demonstrate that S. cerevisiae tends to minimize protein resource, rather than glucose or energy, for synthesizing amino acids.
Collapse
|
43
|
Comparative Genomic Analyses of the Genus Nesterenkonia Unravels the Genomic Adaptation to Polar Extreme Environments. Microorganisms 2022; 10:microorganisms10020233. [PMID: 35208688 PMCID: PMC8875376 DOI: 10.3390/microorganisms10020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Nesterenkonia genus have been isolated from various habitats, like saline soil, salt lake, sponge-associated and the human gut, some of which are even located in polar areas. To identify their stress resistance mechanisms and draw a genomic profile across this genus, we isolated four Nesterenkonia strains from the lakes in the Tibetan Plateau, referred to as the third pole, and compared them with all other 30 high-quality Nesterenkonia genomes that are deposited in NCBI. The Heaps’ law model estimated that the pan-genome of this genus is open and the number of core, shell, cloud, and singleton genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%), respectively. Phylogenomic and ANI/AAI analysis indicated that all genomes can be divided into three main clades, named NES-1, NES-2, and NES-3. The strains isolated from lakes in the Tibetan Plateau were clustered with four strains from different sources in the Antarctic and formed a subclade within NES-2, described as NES-AT. Genome features of this subclade, including GC (guanine + cytosine) content, tRNA number, carbon/nitrogen atoms per residue side chain (C/N-ARSC), and amino acid composition, in NES-AT individuals were significantly different from other strains, indicating genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet conditions in polar areas. Functional analysis revealed the enrichment of specific genes involved in bacteriorhodopsin synthesis, biofilm formation, and more diverse nutrient substance metabolism genes in the NES-AT clade, suggesting potential adaptation strategies for energy metabolism in polar environments. This study provides a comprehensive profile of the genomic features of the Nesterenkonia genus and reveals the possible mechanism for the survival of Nesterenkonia isolates in polar areas.
Collapse
|
44
|
Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol 2022; 6:218-229. [DOI: 10.1038/s41559-021-01606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
|
45
|
Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, Garcia SL. A Genomic Perspective Across Earth's Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy. Front Microbiol 2022; 12:761869. [PMID: 35069467 PMCID: PMC8767057 DOI: 10.3389/fmicb.2021.761869] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Our view of genome size in Archaea and Bacteria has remained skewed as the data has been dominated by genomes of microorganisms that have been cultivated under laboratory settings. However, the continuous effort to catalog Earth's microbiomes, specifically propelled by recent extensive work on uncultivated microorganisms, provides an opportunity to revise our perspective on genome size distribution. We present a meta-analysis that includes 26,101 representative genomes from 3 published genomic databases; metagenomic assembled genomes (MAGs) from GEMs and stratfreshDB, and isolates from GTDB. Aquatic and host-associated microbial genomes present on average the smallest estimated genome sizes (3.1 and 3.0 Mbp, respectively). These are followed by terrestrial microbial genomes (average 3.7 Mbp), and genomes from isolated microorganisms (average 4.3 Mbp). On the one hand, aquatic and host-associated ecosystems present smaller genomes sizes in genera of phyla with genome sizes above 3 Mbp. On the other hand, estimated genome size in phyla with genomes under 3 Mbp showed no difference between ecosystems. Moreover, we observed that when using 95% average nucleotide identity (ANI) as an estimator for genetic units, only 3% of MAGs cluster together with genomes from isolated microorganisms. Although there are potential methodological limitations when assembling and binning MAGs, we found that in genome clusters containing both environmental MAGs and isolate genomes, MAGs were estimated only an average 3.7% smaller than isolate genomes. Even when assembly and binning methods introduce biases, estimated genome size of MAGs and isolates are very similar. Finally, to better understand the ecological drivers of genome size, we discuss on the known and the overlooked factors that influence genome size in different ecosystems, phylogenetic groups, and trophic strategies.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Julia K. Nuy
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Sarahi L. Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
46
|
Blumberg KL, Ponsero AJ, Bomhoff M, Wood-Charlson EM, DeLong EF, Hurwitz BL. Ontology-Enriched Specifications Enabling Findable, Accessible, Interoperable, and Reusable Marine Metagenomic Datasets in Cyberinfrastructure Systems. Front Microbiol 2021; 12:765268. [PMID: 34956127 PMCID: PMC8692764 DOI: 10.3389/fmicb.2021.765268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Marine microbial ecology requires the systematic comparison of biogeochemical and sequence data to analyze environmental influences on the distribution and variability of microbial communities. With ever-increasing quantities of metagenomic data, there is a growing need to make datasets Findable, Accessible, Interoperable, and Reusable (FAIR) across diverse ecosystems. FAIR data is essential to developing analytical frameworks that integrate microbiological, genomic, ecological, oceanographic, and computational methods. Although community standards defining the minimal metadata required to accompany sequence data exist, they haven’t been consistently used across projects, precluding interoperability. Moreover, these data are not machine-actionable or discoverable by cyberinfrastructure systems. By making ‘omic and physicochemical datasets FAIR to machine systems, we can enable sequence data discovery and reuse based on machine-readable descriptions of environments or physicochemical gradients. In this work, we developed a novel technical specification for dataset encapsulation for the FAIR reuse of marine metagenomic and physicochemical datasets within cyberinfrastructure systems. This includes using Frictionless Data Packages enriched with terminology from environmental and life-science ontologies to annotate measured variables, their units, and the measurement devices used. This approach was implemented in Planet Microbe, a cyberinfrastructure platform and marine metagenomic web-portal. Here, we discuss the data properties built into the specification to make global ocean datasets FAIR within the Planet Microbe portal. We additionally discuss the selection of, and contributions to marine-science ontologies used within the specification. Finally, we use the system to discover data by which to answer various biological questions about environments, physicochemical gradients, and microbial communities in meta-analyses. This work represents a future direction in marine metagenomic research by proposing a specification for FAIR dataset encapsulation that, if adopted within cyberinfrastructure systems, would automate the discovery, exchange, and re-use of data needed to answer broader reaching questions than originally intended.
Collapse
Affiliation(s)
- Kai L Blumberg
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Matthew Bomhoff
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Elisha M Wood-Charlson
- E.O. Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, University of Hawai'i, Honolulu, HI, United States
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States.,BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
47
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Microbes in a sea of sinking particles. Nat Microbiol 2021; 6:1479-1480. [PMID: 34789860 DOI: 10.1038/s41564-021-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Abstract
Selection for resource conservation can shape the coding sequences of organisms living in nutrient-limited environments. Recently, it was proposed that selection for resource conservation, specifically for nitrogen and carbon content, has also shaped the structure of the standard genetic code, such that the missense mutations the code allows tend to cause small increases in the number of nitrogen and carbon atoms in amino acids. Moreover, it was proposed that this optimization is not confounded by known optimizations of the standard genetic code, such as for polar requirement or hydropathy. We challenge these claims. We show the proposed optimization for nitrogen conservation is highly sensitive to choice of null model and the proposed optimization for carbon conservation is confounded by the known conservative nature of the standard genetic code with respect to the molecular volume of amino acids. There is therefore little evidence the standard genetic code is optimized for resource conservation. We discuss our findings in the context of null models of the standard genetic code.
Collapse
Affiliation(s)
- Hana Rozhoňová
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| |
Collapse
|
50
|
Phylogenomics of SAR116 Clade Reveals Two Subclades with Different Evolutionary Trajectories and an Important Role in the Ocean Sulfur Cycle. mSystems 2021; 6:e0094421. [PMID: 34609172 PMCID: PMC8547437 DOI: 10.1128/msystems.00944-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SAR116 clade within the class Alphaproteobacteria represents one of the most abundant groups of heterotrophic bacteria inhabiting the surface of the ocean. The small number of cultured representatives of SAR116 (only two to date) is a major bottleneck that has prevented an in-depth study at the genomic level to understand the relationship between genome diversity and its role in the marine environment. In this study, we use all publicly available genomes to provide a genomic overview of the phylogeny, metabolism, and biogeography within the SAR116 clade. This increased genomic diversity has led to the discovery of two subclades that, despite coexisting in the same environment, display different properties in their genomic makeup. One represents a novel subclade for which no pure cultures have been isolated and is composed mainly of single-amplified genomes (SAGs). Genomes within this subclade showed convergent evolutionary trajectories with more streamlined features, such as low GC content (ca. 30%), short intergenic spacers (<22 bp), and strong purifying selection (low ratio of nonsynonymous to synonymous polymorphisms [dN/dS]). Besides, they were more abundant in metagenomic databases recruiting at the deep chlorophyll maximum. Less abundant and restricted to the upper photic layers of the global ocean, the other subclade of SAR116, enriched in metagenome-assembled genomes (MAGs), included the only two pure cultures. Genomic analysis suggested that both clades have a significant role in the sulfur cycle with differences in the way both clades can metabolize dimethylsulfoniopropionate (DMSP). IMPORTANCE The SAR116 clade of Alphaproteobacteria is a ubiquitous group of heterotrophic bacteria inhabiting the surface of the ocean, but the information about their ecology and population genomic diversity is scarce due to the difficulty of getting pure culture isolates. The combination of single-cell genomics and metagenomics has become an alternative approach to study these kinds of microbes. Our results expand the understanding of the genomic diversity, distribution, and lifestyles within this clade and provide evidence of different evolutionary trajectories in the genomic makeup of the two subclades that could serve to illustrate how evolutionary pressure can drive different adaptations to the same environment. Therefore, the SAR116 clade represents an ideal model organism for the study of the evolutionary streamlining of genomes in microbes that have relatively close relatedness to each other.
Collapse
|