1
|
Singh R, Pérez-Varela M, Colquhoun JM, Kröger C, Hamrock FJ, Shaibah A, Neidle EL, Rather PN. CsrA-mediated regulation of a virulence switch in Acinetobacter baumannii. mBio 2025; 16:e0405824. [PMID: 39998216 PMCID: PMC11980544 DOI: 10.1128/mbio.04058-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
CsrA is an RNA binding protein that functions as a global regulator in bacteria. We demonstrate that, in Acinetobacter baumannii, CsrA acts as a positive regulator of the switch from virulent (VIR-O) to avirulent (AV-T) subpopulations. This regulation is mediated, in part, by CsrA interfering with Rho-dependent termination in the mRNA leader region of the ABUW_1645 gene, encoding the primary TetR-type transcriptional regulator that drives cells from the VIR-O to the AV-T state. We demonstrate that CsrA directly binds to the ABUW_1645 mRNA leader region and interferes with Rho binding. We identify three small RNAs (sRNAs) designated CsrB, CsrC, and CsrD that bind to CsrA and inhibit its activity. Individual overexpression of each sRNA greatly decreased the rate of VIR-O to AV-T switching. Individual deletions of each sRNA increased the frequency of VIR-O to AV-T switching, with loss of CsrB giving the highest increase at 2.4-fold. The expression of each sRNA was strongly dependent on the GacA response regulator and the expression of each sRNA was higher in VIR-O cells than in AV-T variants. This regulation provides a mechanism for the differential control of CsrA activity between VIR-O and AV-T variants. IMPORTANCE The World Health Organization has ranked Acinetobacter baumannii atop its "priority pathogens" list highlighting the urgent need for new therapeutics against this pathogen. Many A. baumannii strains including AB5075 can rapidly switch between cell subpopulations that are virulent or avirulent. In this study, we identify the RNA binding protein CsrA as an important regulator of this switch. Since this switch represents an "Achilles Heel" for pathogenesis, our work may shed light on new mechanisms to lock cells into the avirulent state to block disease.
Collapse
Affiliation(s)
- Raja Singh
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - María Pérez-Varela
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Jennifer M. Colquhoun
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Carsten Kröger
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fergal J. Hamrock
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ali Shaibah
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ellen L. Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Philip N. Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Alseth EO, Roush C, Irby I, Kopylov M, Bobe D, Diggs MW, Nguyen K, Xu H, Schmidt-Krey I, Bryksin AV, Rather PN. Mystique, a broad host range Acinetobacter phage, reveals the impact of culturing conditions on phage isolation and infectivity. PLoS Pathog 2025; 21:e1012986. [PMID: 40208916 PMCID: PMC12013898 DOI: 10.1371/journal.ppat.1012986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/22/2025] [Accepted: 02/16/2025] [Indexed: 04/12/2025] Open
Abstract
With the global rise of antimicrobial resistance, phage therapy is increasingly re-gaining traction as a strategy to treat bacterial infections. For phage therapy to be successful however, we first need to isolate appropriate candidate phages for both clinical and experimental research. Acinetobacter baumannii is an opportunistic pathogen known for its ability to rapidly evolve resistance to antibiotics, making it a prime target for phage therapy. Yet phage isolation may be hampered by A. baumannii's ability to rapidly switch between capsular states. Here, we report the discovery and structural characterisation of a novel lytic phage, Mystique. This phage was initially isolated against the wild-type AB5075: a commonly used clinical model strain. When screening Mystique on 103 highly diverse isolates of A. baumannii, we found that it has a broad host range, being able to infect 85.4% of all tested strains when tested on bacterial lawns - a host range that expanded to 91.3% when tested in liquid culture. This variation between solid and liquid culturing conditions on phage infectivity was also observed for several other phages in our collection that were assumed unable to infect AB5075, and some capsule negative mutants that seemed resistant to Mystique proved susceptible when assayed in liquid. This highlights how differences in culturing conditions can drastically impact phage infectivity, with important consequences for phage isolation and characterisation efforts. Finally, Mystique was found to be able to infect other species of Acinetobacter, making it a multi-species phage with broad applicability for further research.
Collapse
Affiliation(s)
- Ellinor O Alseth
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Carli Roush
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Iris Irby
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mykhailo Kopylov
- New York Structural Biology Center, New York, New York, United States of America
| | - Daija Bobe
- New York Structural Biology Center, New York, New York, United States of America
| | - Monneh W Diggs
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kristy Nguyen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Huaijin Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ingeborg Schmidt-Krey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Anton V Bryksin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Molecular Evolution Core Facility, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Atlanta VA Healthcare System, Decatur, Georgia, United States of America
| |
Collapse
|
3
|
de Dios R, Gadar K, Proctor CR, Maslova E, Han J, Soliman MAN, Krawiel D, Dunbar EL, Singh B, Peros S, Killelea T, Warnke AL, Haugland MM, Bolt EL, Lentz CS, Rudolph CJ, McCarthy RR. Saccharin disrupts bacterial cell envelope stability and interferes with DNA replication dynamics. EMBO Mol Med 2025:10.1038/s44321-025-00219-1. [PMID: 40169895 DOI: 10.1038/s44321-025-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Saccharin has been part of the human diet for over 100 years, and there is a comprehensive body of evidence demonstrating that it can influence the gut microbiome, ultimately impacting human health. However, the precise mechanisms through which saccharin can impact bacteria have remained elusive. In this work, we demonstrate that saccharin inhibits cell division, leading to cell filamentation with altered DNA synthesis dynamics. We show that these effects on the cell are superseded by the formation of bulges emerging from the cell envelope, which ultimately trigger cell lysis. We demonstrate that saccharin can inhibit the growth of both Gram-negative and Gram-positive bacteria as well as disrupt key phenotypes linked to host colonisation, such as motility and biofilm formation. In addition, we test its potential to disrupt established biofilms (single-species as well as polymicrobial) and its capacity to re-sensitise multidrug-resistant pathogens to last-resort antibiotics. Finally, we present in vitro and ex vivo evidence of the versatility of saccharin as a potential antimicrobial by integrating it into an effective hydrogel wound dressing.
Collapse
Affiliation(s)
- Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Chris R Proctor
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Evgenia Maslova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Jie Han
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Mohamed A N Soliman
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Dominika Krawiel
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Emma L Dunbar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706-1544, USA
| | - Bhupender Singh
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Stelinda Peros
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Tom Killelea
- School of Life Sciences, Faculty of Medicine & Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Anna-Luisa Warnke
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Marius M Haugland
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Edward L Bolt
- School of Life Sciences, Faculty of Medicine & Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Christian J Rudolph
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
4
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2025; 16:561-604. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
5
|
Bayliss CD, Clark JL, van der Woude MW. 100+ years of phase variation: the premier bacterial bet-hedging phenomenon. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001537. [PMID: 40014379 PMCID: PMC11868660 DOI: 10.1099/mic.0.001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Stochastic, reversible switches in the expression of Salmonella flagella variants were first described by Andrewes in 1922. Termed phase variation (PV), subsequent research found that this phenomenon was widespread among bacterial species and controlled expression of major determinants of bacterial-host interactions. Underlying mechanisms were not discovered until the 1970s/1980s but were found to encompass intrinsic aspects of DNA processes (i.e. DNA slippage and recombination) and DNA modifications (i.e. DNA methylation). Despite this long history, discoveries are ongoing with expansions of the phase-variable repertoire into new organisms and novel insights into the functions of known loci and switching mechanisms. Some of these discoveries are somewhat controversial as the term 'PV' is being applied without addressing key aspects of the phenomenon such as whether mutations or epigenetic changes are reversible and generated prior to selection. Another 'missing' aspect of PV research is the impact of these adaptive switches in real-world situations. This review provides a perspective on the historical timeline of the discovery of PV, the current state-of-the-art, controversial aspects of classifying phase-variable loci and possible 'missing' real-world effects of this phenomenon.
Collapse
Affiliation(s)
- Christopher D. Bayliss
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jack L. Clark
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Marjan W. van der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
6
|
Jiao M, He W, Ouyang Z, Yu Q, Zhang J, Qin Q, Wang R, Guo X, Liu R, He X, Hwang PM, Zheng F, Wen Y. Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis. SCIENCE ADVANCES 2025; 11:eadq9686. [PMID: 39813328 PMCID: PMC11734730 DOI: 10.1126/sciadv.adq9686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in Acinetobacter baumannii. Crystal structures of molybdate-coordinated A. baumannii ModA show a noncanonical disulfide bond with a conformational change between reduced and oxidized states. Disulfide bond formation reduced binding affinity to molybdate by two orders of magnitude and contributes to its substrate preference. ModA-mediated molybdate binding was important for A. baumannii infection in a murine pneumonia model. Together, our study sheds light on the structural and functional diversity of molybdate uptake and highlights a potential target for antibacterial development.
Collapse
Affiliation(s)
- Min Jiao
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ruochen Wang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaolong Guo
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ruihan Liu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peter M. Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
7
|
Flaugnatti N, Bader L, Croisier-Coeytaux M, Blokesch M. Capsular polysaccharide restrains type VI secretion in Acinetobacter baumannii. eLife 2025; 14:e101032. [PMID: 39749675 PMCID: PMC11731876 DOI: 10.7554/elife.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025] Open
Abstract
The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.
Collapse
Affiliation(s)
- Nicolas Flaugnatti
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Loriane Bader
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Mary Croisier-Coeytaux
- Bioelectron Microscopy Core Facility, School of Life Sciences, Station 19, EPFL-SV-PTBIOEM, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
11
|
Islam MM, Mahbub NU, Shin WS, Oh MH. Phage-encoded depolymerases as a strategy for combating multidrug-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1462620. [PMID: 39512587 PMCID: PMC11540826 DOI: 10.3389/fcimb.2024.1462620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Acinetobacter baumannii, a predominant nosocomial pathogen, represents a grave threat to public health due to its multiple antimicrobial resistance. Managing patients afflicted with severe infections caused by multiple drug-resistant A. baumannii is particularly challenging, given the associated high mortality rates and unfavorable prognoses. The diminishing efficacy of antibiotics against this superbug underscores the urgent necessity for novel treatments or strategies to address this formidable issue. Bacteriophage-derived polysaccharide depolymerase enzymes present a potential approach to combating this pathogen. These enzymes target and degrade the bacterial cell's exopolysaccharide, capsular polysaccharide, and lipopolysaccharide, thereby disrupting biofilm formation and impairing the bacteria's defense mechanisms. Nonetheless, the narrow host range of phage depolymerases limits their therapeutic efficacy. Despite the benefits of these enzymes, phage-resistant strains have been identified, highlighting the complexity of phage-host interactions and the need for further investigation. While preliminary findings are encouraging, current investigations are limited, and clinical trials are imperative to advance this treatment approach for broader clinical applications. This review explores the potential of phage-derived depolymerase enzymes against A. baumannii infections.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
12
|
Hamrock F, Ryan D, Shaibah A, Ershova A, Mogre A, Sulimani M, Ben Taarit S, Reichardt S, Hokamp K, Westermann A, Kröger C. Global analysis of the RNA-RNA interactome in Acinetobacter baumannii AB5075 uncovers a small regulatory RNA repressing the virulence-related outer membrane protein CarO. Nucleic Acids Res 2024; 52:11283-11300. [PMID: 39149883 PMCID: PMC11472050 DOI: 10.1093/nar/gkae668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen that infects critically ill patients. The emergence of antimicrobial resistant A. baumannii has exacerbated the need to characterize environmental adaptation, antibiotic resistance and pathogenicity and their genetic regulators to inform intervention strategies. Critical to adaptation to changing environments in bacteria are small regulatory RNAs (sRNAs), however, the role that sRNAs play in the biology of A. baumannii is poorly understood. To assess the regulatory function of sRNAs and to uncover their RNA interaction partners, we employed an RNA proximity ligation and sequencing method (Hi-GRIL-seq) in three different environmental conditions. Forty sRNAs were ligated to sRNA-RNA chimeric sequencing reads, suggesting that sRNA-mediated gene regulation is pervasive in A. baumannii. In-depth characterization uncovered the sRNA Aar to be a post-transcriptional regulator of four mRNA targets including the transcript encoding outer membrane protein CarO. Aar initiates base-pairing with these mRNAs using a conserved seed region of nine nucleotides, sequestering the ribosome binding sites and inhibiting translation. Aar is differentially expressed in multiple stress conditions suggesting a role in fine-tuning translation of the Aar-target molecules. Our study provides mechanistic insights into sRNA-mediated gene regulation in A. baumannii and represents a valuable resource for future RNA-centric research endeavours.
Collapse
Affiliation(s)
- Fergal J Hamrock
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniel Ryan
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Ali Shaibah
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Anna S Ershova
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aalap Mogre
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Maha M Sulimani
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Safa Ben Taarit
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Karsten Hokamp
- Department of Genetics, School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alexander J Westermann
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Carsten Kröger
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Kungwani NA, Panda J, Mishra AK, Chavda N, Shukla S, Vikhe K, Sharma G, Mohanta YK, Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb Pathog 2024; 195:106874. [PMID: 39181190 DOI: 10.1016/j.micpath.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in clinical microbes has led to a search for novel antibiotics for combating bacterial infections. The treatment of bacterial infections becomes more challenging with the onset of biofilm formation. AMR is further accelerated by biofilm physiology and differential gene expression in bacteria with an inherent resistance to conventional antibiotics. In the search for innovative strategies to control the spread of AMR in clinical isolates, plant-derived therapeutic metabolites can be repurposed to control biofilm-associated drug resistance. Unlike antibiotics, designed to act on a single cellular process, phytochemicals can simultaneously target multiple cellular components. Furthermore, they can disrupt biofilm formation and inhibit quorum sensing, offering a comprehensive approach to combat bacterial infections. In bacterial biofilms, the first line of AMR is due to biofilms associated with the extracellular matrix, diffusion barriers, quorum sensing, and persister cells. These extracellular barriers can be overcome using phytochemical-based antibiotic adjuvants to increase the efficacy of antibiotic treatment and restrict the spread of AMR. Furthermore, phytochemicals can be used to target bacterial intracellular machinery such as DNA replication, protein synthesis, efflux pumps, and degrading enzymes. In parallel with pristine phytochemicals, phyto-derived nanomaterials have emerged as an effective means of fighting bacterial biofilms. These nanomaterials can be formulated to cross the biofilm barriers and function on cellular targets. This review focuses on the synergistic effects of phytochemicals and phyto-derived nanomaterials in controlling the progression of biofilm-related AMR. IT provides comprehensive insights into recent advancements and the underlying mechanisms of the use of phyto-derived adjuvants and nanomaterials.
Collapse
Affiliation(s)
- Neelam Amit Kungwani
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Sudhir Shukla
- Homi Bhabha National Institute, Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, 603102, India
| | - Kalyani Vikhe
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Gunjan Sharma
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
14
|
Tayabali AF, Dirieh Y, Groulx E, Elfarawi N, Di Fruscio S, Melanson K, Moteshareie H, Al-Gafari M, Navarro M, Bernatchez S, Demissie Z, Anoop V. Survival and virulence of Acinetobacter baumannii in microbial mixtures. BMC Microbiol 2024; 24:324. [PMID: 39243004 PMCID: PMC11378493 DOI: 10.1186/s12866-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1β, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.
Collapse
Affiliation(s)
- Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Nusaybah Elfarawi
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sabrina Di Fruscio
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Kristina Melanson
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mustafa Al-Gafari
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Martha Navarro
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Stéphane Bernatchez
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Zerihun Demissie
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Valar Anoop
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
15
|
Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, Qiao L, Bai R, Wang S, Yin W, Dong Y, Bai L, Yang H, Shen J, Wu C, Hu F, Wang Y. Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci U S A 2024; 121:e2400446121. [PMID: 39150777 PMCID: PMC11363291 DOI: 10.1073/pnas.2400446121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.
Collapse
Affiliation(s)
- Shikai Song
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
- Poultry Research Institute, Shandong Academy of Agricultural Science, Jinan250100, Shandong, China
| | - Shixin Yang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Ruicheng Zheng
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yue Cao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yao Wang
- Shandong Animal Disease Prevention and Control Center, Jinan250100, Shandong, China
| | - Lu Qiao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shuge Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Wenjuan Yin
- Department of Microbiology and Immunology, College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding071002, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Hui Yang
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
16
|
Cooper C, Legood S, Wheat RL, Forrest D, Sharma P, Haycocks JRJ, Grainger DC. H-NS is a bacterial transposon capture protein. Nat Commun 2024; 15:7137. [PMID: 39164300 PMCID: PMC11335895 DOI: 10.1038/s41467-024-51407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
The histone-like nucleoid structuring (H-NS) protein is a DNA binding factor, found in gammaproteobacteria, with functional equivalents in diverse microbes. Universally, such proteins are understood to silence transcription of horizontally acquired genes. Here, we identify transposon capture as a major overlooked function of H-NS. Using genome-scale approaches, we show that H-NS bound regions are transposition "hotspots". Since H-NS often interacts with pathogenicity islands, such targeting creates clinically relevant phenotypic diversity. For example, in Acinetobacter baumannii, we identify altered motility, biofilm formation, and interactions with the human immune system. Transposon capture is mediated by the DNA bridging activity of H-NS and, if absent, more ubiquitous transposition results. Consequently, transcribed and essential genes are disrupted. Hence, H-NS directs transposition to favour evolutionary outcomes useful for the host cell.
Collapse
Affiliation(s)
- Charles Cooper
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Simon Legood
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rachel L Wheat
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - David Forrest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Prateek Sharma
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - David C Grainger
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Męcik M, Stefaniak K, Harnisz M, Korzeniewska E. Hospital and municipal wastewater as a source of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48813-48838. [PMID: 39052110 PMCID: PMC11310256 DOI: 10.1007/s11356-024-34436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The increase in the prevalence of carbapenem-resistant Gram-negative bacteria, in particular Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA), poses a serious threat for public health worldwide. This article reviews the alarming data on the prevalence of infections caused by CRAB and CRPA pathogens and their presence in hospital and municipal wastewater, and it highlights the environmental impact of antibiotic resistance. The article describes the key role of antibiotic resistance genes (ARGs) in the acquisition of carbapenem resistance and sheds light on bacterial resistance mechanisms. The main emphasis was placed on the transfer of ARGs not only in the clinical setting, but also in the environment, including water, soil, and food. The aim of this review was to expand our understanding of the global health risks associated with CRAB and CRPA in hospital and municipal wastewater and to analyze the spread of these micropollutants in the environment. A review of the literature published in the last decade will direct research on carbapenem-resistant pathogens, support the implementation of effective preventive measures and interventions, and contribute to the development of improved strategies for managing this problem.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Kornelia Stefaniak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
18
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat Commun 2024; 15:5258. [PMID: 38898034 PMCID: PMC11187135 DOI: 10.1038/s41467-024-49590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
Affiliation(s)
- Gi Young Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Wang W, Qiu Z, Li H, Wu X, Cui Y, Xie L, Chang B, Li P, Zeng H, Ding T. Patient-derived pathogenic microbe deposition enhances exposure risk in pediatric clinics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171703. [PMID: 38490424 DOI: 10.1016/j.scitotenv.2024.171703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Healthcare-associated infections (HAIs) pose significant risks to pediatric patients in outpatient settings. To prevent HAIs, understanding the sources and transmission routes of pathogenic microorganisms is crucial. This study aimed to identify the sources of opportunistic bacterial pathogens (OBPs) in pediatric outpatient settings and determine their transmission routes. Furthermore, assessing the public health risks associated with the core OBPs is important. We collected 310 samples from various sites in pediatric outpatient areas and quantified the bacteria using qPCR and CFU counting. We also performed 16S rRNA gene and single-bacterial whole-genome sequencing to profile the transmission routes and antibiotic resistance characteristics of OBPs. We observed significant variations in microbial diversity and composition among sampling sites in pediatric outpatient settings, with active communication of the microbiota between linked areas. We found that the primary source of OBPs in multi-person contact areas was the hand surface, particularly in pediatric patients. Five core OBPs, Staphylococcus epidermidis, Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus oralis, were mainly derived from pediatric patients and spread into the environment. These OBPs accumulated at multi-person contact sites, resulting in high microbial diversity in these areas. Transmission tests confirmed the challenging spread of these pathogens, with S. epidermidis transferring from the patient's hand to the environment, leading to an increased abundance and emergence of related strains. More importantly, S. epidermidis isolated from pediatric patients carried more antibiotic-resistance genes. In addition, two strains of multidrug-resistant A. baumannii were isolated from both a child and a parent, confirming the transmission of the five core OBPs centered around pediatric patients and multi-person contact areas. Our results demonstrate that pediatric patients serve as a significant source of OBPs in pediatric outpatient settings. OBPs carried by pediatric patients pose a high public health risk. To effectively control HAIs, increasing hand hygiene measures in pediatric patients and enhancing the frequency of disinfection in multi-person contact areas remains crucial. By targeting these preventive measures, the spread of OBPs can be reduced, thereby mitigating the risk of HAIs in pediatric outpatient settings.
Collapse
Affiliation(s)
- Wan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Zongyao Qiu
- Center for Disease Control and Prevention of Nanhai District, Foshan 528200, China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaorong Wu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lixiang Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bozhen Chang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Peipei Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Hong Zeng
- Center for Disease Control and Prevention of Nanhai District, Foshan 528200, China.
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
20
|
Xiao N, Li Y, Lin H, Yang J, Xiao G, Jiang Z, Zhang Y, Chen W, Zhou P, Sun Z, Li J. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli in Animal Farms in Hunan Province, China. Microorganisms 2024; 12:653. [PMID: 38674598 PMCID: PMC11051881 DOI: 10.3390/microorganisms12040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-drug resistance of bacteria producing extended-spectrum β-lactamase (ESBL) is a public health challenge. Thus, this study aimed to investigate the antimicrobial susceptibility of ESBL-producing Escherichia coli (ESBL-EC) in Hunan Province, China. A total of 1366 fecal samples were collected from pig, chicken, and cattle farms over a six-year period, which were assessed using strain isolation, 16S rRNA identification, polymerase chain reaction, drug sensitivity testing, whole-genome sequencing, and bioinformatics analysis. The results showed an overall prevalence of 6.66% for ESBL-EC strains, with ESBL positivity extents for pigs, chickens, and cattle isolates at 6.77%, 6.54%, and 12.5%, respectively. Most ESBL-EC isolates were resistant to cefotaxime, tetracycline, and trimethoprim-sulfamethoxazole; however, all the isolates were susceptible to meropenem, with relatively low resistance to amikacin and tigecycline. Various multi-locus sequence types with different origins and similar affinities were identified, with ST155 (n = 16) being the most common subtype. Several types of resistance genes were identified among the 91 positive strains, with beta-lactamase blaCTX-M-55 being the most common ESBL genotype. IncFIB was the predominant plasmid type. Widespread use of antibiotics in animal farming may increase antibiotic resistance, posing a serious threat to the health of farmed animals and, thus, to human food security and health.
Collapse
Affiliation(s)
- Ning Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Yujuan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Hongguang Lin
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Zonghan Jiang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Yunqiang Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Pengcheng Zhou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (N.X.); (J.Y.); (G.X.); (Z.J.); (Y.Z.); (W.C.); (P.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (H.L.)
| |
Collapse
|
21
|
Menon ND, Poudel S, Sastry AV, Rychel K, Szubin R, Dillon N, Tsunemoto H, Hirose Y, Nair BG, Kumar GB, Palsson BO, Nizet V. Independent component analysis reveals 49 independently modulated gene sets within the global transcriptional regulatory architecture of multidrug-resistant Acinetobacter baumannii. mSystems 2024; 9:e0060623. [PMID: 38189271 PMCID: PMC10878099 DOI: 10.1128/msystems.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Acinetobacter baumannii causes severe infections in humans, resists multiple antibiotics, and survives in stressful environmental conditions due to modulations of its complex transcriptional regulatory network (TRN). Unfortunately, our global understanding of the TRN in this emerging opportunistic pathogen is limited. Here, we apply independent component analysis, an unsupervised machine learning method, to a compendium of 139 RNA-seq data sets of three multidrug-resistant A. baumannii international clonal complex I strains (AB5075, AYE, and AB0057). This analysis allows us to define 49 independently modulated gene sets, which we call iModulons. Analysis of the identified A. baumannii iModulons reveals validating parallels to previously defined biological operons/regulons and provides a framework for defining unknown regulons. By utilizing the iModulons, we uncover potential mechanisms for a RpoS-independent general stress response, define global stress-virulence trade-offs, and identify conditions that may induce plasmid-borne multidrug resistance. The iModulons provide a model of the TRN that emphasizes the importance of transcriptional regulation of virulence phenotypes in A. baumannii. Furthermore, they suggest the possibility of future interventions to guide gene expression toward diminished pathogenic potential.IMPORTANCEThe rise in hospital outbreaks of multidrug-resistant Acinetobacter baumannii infections underscores the urgent need for alternatives to traditional broad-spectrum antibiotic therapies. The success of A. baumannii as a significant nosocomial pathogen is largely attributed to its ability to resist antibiotics and survive environmental stressors. However, there is limited literature available on the global, complex regulatory circuitry that shapes these phenotypes. Computational tools that can assist in the elucidation of A. baumannii's transcriptional regulatory network architecture can provide much-needed context for a comprehensive understanding of pathogenesis and virulence, as well as for the development of targeted therapies that modulate these pathways.
Collapse
Affiliation(s)
- Nitasha D. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Nicholas Dillon
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Biological Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yujiro Hirose
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Mushtaq F, Nadeem A, Yabrag A, Bala A, Karah N, Zlatkov N, Nyunt Wai S, Uhlin BE, Ahmad I. Colony phase variation switch modulates antimicrobial tolerance and biofilm formation in Acinetobacter baumannii. Microbiol Spectr 2024; 12:e0295623. [PMID: 38205963 PMCID: PMC10845969 DOI: 10.1128/spectrum.02956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii causes one of the most difficult-to-treat nosocomial infections. Polycationic drugs like polymyxin B or colistin and tetracycline drugs such as doxycycline or minocycline are commonly used to treat infections caused by carbapenem-resistant A. baumannii. Here, we show that a subpopulation of cells associated with the opaque/translucent colony phase variation by A. baumannii AB5075 displays differential tolerance to subinhibitory concentrations of colistin and tetracycline. Using a variety of microscopic techniques, we demonstrate that extracellular polysaccharide moieties mediate colistin tolerance to opaque A. baumannii at single-cell level and that mushroom-shaped biofilm structures protect opaque bacteria at the community level. The colony switch phenotype is found to alter several traits of A. baumannii, including long-term survival under desiccation, tolerance to ethanol, competition with Escherichia coli, and intracellular survival in the environmental model host Acanthamoeba castellanii. Additionally, our findings suggest that extracellular DNA associated with membrane vesicles can promote colony switching in a DNA recombinase-dependent manner.IMPORTANCEAs a WHO top-priority drug-resistant microbe, Acinetobacter baumannii significantly contributes to hospital-associated infections worldwide. One particularly intriguing aspect is its ability to reversibly switch its colony morphotype on agar plates, which has been remarkably underexplored. In this study, we employed various microscopic techniques and phenotypic assays to investigate the colony phase variation switch under different clinically and environmentally relevant conditions. Our findings reveal that the presence of a poly N-acetylglucosamine-positive extracellular matrix layer contributes to the protection of bacteria from the bactericidal effects of colistin. Furthermore, we provide intriguing insights into the multicellular lifestyle of A. baumannii, specifically in the context of colony switch variation within its predatory host, Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Fizza Mushtaq
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Aftab Nadeem
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Abdelbasset Yabrag
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Anju Bala
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nabil Karah
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nikola Zlatkov
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Irfan Ahmad
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
23
|
Pérez-Varela M, Singh R, Colquhoun JM, Starich OG, Tierney ARP, Tipton KA, Rather PN. Evidence for Rho-dependent control of a virulence switch in Acinetobacter baumannii. mBio 2024; 15:e0270823. [PMID: 38085026 PMCID: PMC10790780 DOI: 10.1128/mbio.02708-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/31/2023] Open
Abstract
IMPORTANCE Acinetobacter baumannii is a significant cause of infections in the healthcare setting. More recently, A. baumannii has been a leading cause of secondary bacterial pneumonia in patients infected with SARS-CoV-2 and the overall frequency of A. baumannii infection increased 78% during the COVID-19 pandemic. A. baumannii can exist in virulent or avirulent subpopulations and this interconversion is mediated by the expression of a family of TetR-type transcriptional regulators. In this study, we demonstrate that Rho is a key regulatory component in the expression of these TetR regulators. Overall, this study is the first to address a role for Rho in A. baumannii and provides additional evidence for the role of Rho in regulating diversity in bacterial subpopulations.
Collapse
Affiliation(s)
- María Pérez-Varela
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Raja Singh
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Jennifer M. Colquhoun
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Olivia G. Starich
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Aimee R. P. Tierney
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Kyle A. Tipton
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Philip N. Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573590. [PMID: 38260632 PMCID: PMC10802248 DOI: 10.1101/2023.12.28.573590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control the length or acetylation of Vi is enough to create different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper-capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo-capsule variants have primarily been identified in Africa, whereas the hyper-capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
|
25
|
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Trends Microbiol 2023; 31:1238-1250. [PMID: 37487768 DOI: 10.1016/j.tim.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic bacterium responsible for nosocomial and community-acquired infections. This pathogen is globally disseminated and associated with high levels of antibiotic resistance, which makes it an important threat to human health. Recently, new evidence showed that several A. baumannii isolates can survive and proliferate within eukaryotic professional and/or nonprofessional phagocytic cells, with in vivo consequences. This review provides updated information and describes the tools that A. baumannii possesses to adhere, colonize, and replicate in host cells. Additionally, we emphasize the high genetic and phenotypic heterogeneity detected amongst A. baumannii isolates and its impact on the bacterial intracellular features. We also discuss the need for standardized methods to characterize this pathogen robustly and consequently consider some strains as facultative intracellular bacteria.
Collapse
Affiliation(s)
- Alexandra Maure
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
26
|
Jiao M, He W, Ouyang Z, Qin Q, Guo Y, Zhang J, Bai Y, Guo X, Yu Q, She J, Hwang PM, Zheng F, Wen Y. Mechanistic and structural insights into the bifunctional enzyme PaaY from Acinetobacter baumannii. Structure 2023; 31:935-947.e4. [PMID: 37329879 DOI: 10.1016/j.str.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
PaaY is a thioesterase that enables toxic metabolites to be degraded through the bacterial phenylacetic acid (PA) pathway. The Acinetobacter baumannii gene FQU82_01591 encodes PaaY, which we demonstrate to possess γ-carbonic anhydrase activity in addition to thioesterase activity. The crystal structure of AbPaaY in complex with bicarbonate reveals a homotrimer with a canonical γ-carbonic anhydrase active site. Thioesterase activity assays demonstrate a preference for lauroyl-CoA as a substrate. The AbPaaY trimer structure shows a unique domain-swapped C-termini, which increases the stability of the enzyme in vitro and decreases its susceptibility to proteolysis in vivo. The domain-swapped C-termini impact thioesterase substrate specificity and enzyme efficacy without affecting carbonic anhydrase activity. AbPaaY knockout reduced the growth of Acinetobacter in media containing PA, decreased biofilm formation, and impaired hydrogen peroxide resistance. Collectively, AbPaaY is a bifunctional enzyme that plays a key role in the metabolism, growth, and stress response mechanisms of A. baumannii.
Collapse
Affiliation(s)
- Min Jiao
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Bai
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaolong Guo
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junjun She
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
27
|
Maharjan RP, Sullivan GJ, Adams F, Shah B, Hawkey J, Delgado N, Semenec L, Dinh H, Li L, Short F, Parkhill J, Paulsen I, Barquist L, Eijkelkamp B, Cain A. DksA is a conserved master regulator of stress response in Acinetobacter baumannii. Nucleic Acids Res 2023; 51:6101-6119. [PMID: 37158230 PMCID: PMC10325922 DOI: 10.1093/nar/gkad341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.
Collapse
Affiliation(s)
- Ram P Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Geraldine J Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Bhumika S Shah
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Victoria, Australia
| | - Natasha Delgado
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Liping Li
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080Würzburg, Germany
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| |
Collapse
|
28
|
Xiao S, Mi J, Chen Y, Feng K, Mei L, Liao X, Wu Y, Wang Y. The abundance and diversity of antibiotic resistance genes in layer chicken ceca is associated with farm enviroment. Front Microbiol 2023; 14:1177404. [PMID: 37455745 PMCID: PMC10348872 DOI: 10.3389/fmicb.2023.1177404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023] Open
Abstract
Industrialized layer chicken feedlots harbor complex environmental microbial communities that affect the enrichment and exchange of gut bacteria and antibiotic resistance genes (ARGs). However, the contribution of different environmental sources to the gut ARGs of layer chickens is not clear. Here, layer chicken gut and environmental samples (air, water, feed, cage, feather, maternal hen feces, uropygial glands) were collected during the early 3 month period before the laying of eggs, and the source and characteristics of the gut microorganisms and ARGs were analyzed by performing 16S rRNA and metagenomic sequencing. The results showed that the abundances of Bacteroidetes and Actinobacteria in cecum of layer chickens gradually increased, while that of Proteobacteria decreased with age, and the number and relative abundance of ARGs decreased significantly with age. On day 5, 57% of the layer chicken cecal ARGs were from feather samples, and 30% were from cage samples. Subsequently, the contribution of cage ARGs became progressively more prominent over time. At days 30 and 57, the contribution of cage ARGs to the chick cecal ARGs reached 63.3 and 69.5%, respectively. The bacterial community composition (especially the abundances of Klebsiella pneumoniae and Escherichia coli) was the major factor impacting the ARG profile. K. pneumoniae and E. coli were mainly transmitted from feathers to the layer chicken cecum, and the contribution rates were 32 and 3.4%, respectively. In addition, we observed the transmission of ARG-carrying bacteria (Bacteroides fragilis) from the cage to the gut, with a contribution rate of 11.5%. It is noteworthy that B. fragilis is an opportunistic pathogen that may cause diarrhea in laying hens. These results can provide reference data for the healthy breeding of layer chickens and the prevention and control of ARG pollution.
Collapse
Affiliation(s)
- Shasha Xiao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiandui Mi
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingxin Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kunxian Feng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liang Mei
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, China
| |
Collapse
|
29
|
Colquhoun JM, Farokhyfar M, Anderson AC, Bethel CR, Bonomo RA, Clarke AJ, Rather PN. Collateral Changes in Cell Physiology Associated with ADC-7 β-Lactamase Expression in Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0464622. [PMID: 37074187 PMCID: PMC10269689 DOI: 10.1128/spectrum.04646-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
The ADC (AmpC) β-lactamase is universally present in the Acinetobacter baumannii chromosome, suggesting it may have a yet-to-be-identified cellular function. Using peptidoglycan composition analysis, we show that overexpressing the ADC-7 β-lactamase in A. baumannii drives changes consistent with altered l,d-transpeptidase activity. Based on this, we tested whether cells overexpressing ADC-7 would exhibit new vulnerabilities. As proof of principle, a screen of transposon insertions revealed that an insertion in the distal 3' end of canB, encoding carbonic anhydrase, resulted in a significant loss of viability when the adc-7 gene was overexpressed. A canB deletion mutant exhibited a more pronounced loss of viability than the transposon insertion, and this became amplified when cells overexpressed ADC-7. Interestingly, overexpression of the OXA-23 or TEM-1 β-lactamases also led to a pronounced loss of viability in cells with reduced carbonic anhydrase activity. In addition, we demonstrate that reduced CanB activity led to increased sensitivity to peptidoglycan synthesis inhibitors and to the carbonic anhydrase inhibitor ethoxzolamide. Furthermore, this strain exhibited a synergistic interaction with the peptidoglycan inhibitor fosfomycin and ethoxzolamide. Our results highlight the impact of ADC-7 overexpression on cell physiology and reveal that the essential carbonic anhydrase CanB may represent a novel target for antimicrobial agents that would exhibit increased potency against β-lactamase-overexpressing A. baumannii. IMPORTANCE Acinetobacter baumannii has become resistant to all classes of antibiotics, with β-lactam resistance responsible for the majority of treatment failures. New classes of antimicrobials are needed to treat this high-priority pathogen. This study had uncovered a new genetic vulnerability in β-lactamase-expressing A. baumannii, where reduced carbonic anhydrase activity becomes lethal. Inhibitors of carbonic anhydrase could represent a new method for treating A. baumannii infections.
Collapse
Affiliation(s)
- Jennifer M. Colquhoun
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| | | | - Alexander C. Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio, USA
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Philip N. Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
30
|
Abstract
Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Leukert L, Tietgen M, Krause FF, Schultze TG, Fuhrmann DC, Debruyne C, Salcedo SP, Visekruna A, Wittig L, Göttig S. Infection of Endothelial Cells with Acinetobacter baumannii Reveals Remodelling of Mitochondrial Protein Complexes. Microbiol Spectr 2023; 11:e0517422. [PMID: 37052493 PMCID: PMC10269660 DOI: 10.1128/spectrum.05174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Acinetobacter baumannii is an antibiotic-resistant, Gram-negative pathogen that causes a multitude of nosocomial infections. However, pathogenicity mechanisms and the host cell response during infection remain unclear. In this study, we determined virulence traits of A. baumannii clinical isolates belonging to the most widely disseminated international clonal lineage, international cluster 2 (IC2), in vitro and in vivo. Complexome profiling of primary human endothelial cells with A. baumannii revealed that mitochondria, and in particular complexes of the electron transport chain, are important host cell targets. Infection with highly virulent A. baumannii remodelled assembly of mitochondrial protein complexes and led to metabolic adaptation. These were characterized by reduced mitochondrial respiration and glycolysis in contrast to those observed in infection with low-pathogenicity A. baumannii. Perturbation of oxidative phosphorylation, destabilization of mitochondrial ribosomes, and interference with mitochondrial metabolic pathways were identified as important pathogenicity mechanisms. Understanding the interaction of human host cells with the current global A. baumannii clone is the basis to identify novel therapeutic targets. IMPORTANCE Virulence traits of Acinetobacter baumannii isolates of the worldwide most prevalent international clonal lineage, IC2, remain largely unknown. In our study, multidrug-resistant IC2 clinical isolates differed substantially in their virulence potential despite their close genetic relatedness. Our data suggest that, at least for some isolates, mitochondria are important target organelles during infection of primary human endothelial cells. Complexes of the respiratory chain were extensively remodelled after infection with a highly virulent A. baumannii strain, leading to metabolic adaptation characterized by severely reduced respiration and glycolysis. Perturbations of both mitochondrial morphology and mitoribosomes were identified as important pathogenicity mechanisms. Our data might help to further decipher the molecular mechanisms of A. baumannii and host mitochondrial interaction during infection.
Collapse
Affiliation(s)
- Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - Felix F. Krause
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Tilman G. Schultze
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Charline Debruyne
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P. Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - llka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Bai J, Raustad N, Denoncourt J, van Opijnen T, Geisinger E. Genome-wide phage susceptibility analysis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity. PLoS Pathog 2023; 19:e1010928. [PMID: 37289824 PMCID: PMC10249906 DOI: 10.1371/journal.ppat.1010928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Phage have gained renewed interest as an adjunctive treatment for life-threatening infections with the resistant nosocomial pathogen Acinetobacter baumannii. Our understanding of how A. baumannii defends against phage remains limited, although this information could lead to improved antimicrobial therapies. To address this problem, we identified genome-wide determinants of phage susceptibility in A. baumannii using Tn-seq. These studies focused on the lytic phage Loki, which targets Acinetobacter by unknown mechanisms. We identified 41 candidate loci that increase susceptibility to Loki when disrupted, and 10 that decrease susceptibility. Combined with spontaneous resistance mapping, our results support the model that Loki uses the K3 capsule as an essential receptor, and that capsule modulation provides A. baumannii with strategies to control vulnerability to phage. A key center of this control is transcriptional regulation of capsule synthesis and phage virulence by the global regulator BfmRS. Mutations hyperactivating BfmRS simultaneously increase capsule levels, Loki adsorption, Loki replication, and host killing, while BfmRS-inactivating mutations have the opposite effect, reducing capsule and blocking Loki infection. We identified novel BfmRS-activating mutations, including knockouts of a T2 RNase protein and the disulfide formation enzyme DsbA, that hypersensitize bacteria to phage challenge. We further found that mutation of a glycosyltransferase known to alter capsule structure and bacterial virulence can also cause complete phage resistance. Finally, additional factors including lipooligosaccharide and Lon protease act independently of capsule modulation to interfere with Loki infection. This work demonstrates that regulatory and structural modulation of capsule, known to alter A. baumannii virulence, is also a major determinant of susceptibility to phage.
Collapse
Affiliation(s)
- Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jason Denoncourt
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, CISID, Cambridge, Massachusetts, United States of America
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Peters DL, Davis CM, Harris G, Zhou H, Rather PN, Hrapovic S, Lam E, Dennis JJ, Chen W. Characterization of Virulent T4-Like Acinetobacter baumannii Bacteriophages DLP1 and DLP2. Viruses 2023; 15:v15030739. [PMID: 36992448 PMCID: PMC10051250 DOI: 10.3390/v15030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The world is currently facing a global health crisis due to the rapid increase in antimicrobial-resistant bacterial infections. One of the most concerning pathogens is Acinetobacter baumannii, which is listed as a Priority 1 pathogen by the World Health Organization. This Gram-negative bacterium has many intrinsic antibiotic resistance mechanisms and the ability to quickly acquire new resistance determinants from its environment. A limited number of effective antibiotics against this pathogen complicates the treatment of A. baumannii infections. A potential treatment option that is rapidly gaining interest is “phage therapy”, or the clinical application of bacteriophages to selectively kill bacteria. The myoviruses DLP1 and DLP2 (vB_AbaM-DLP_1 and vB_AbaM-DLP_2, respectively) were isolated from sewage samples using a capsule minus variant of A. baumannii strain AB5075. Host range analysis of these phages against 107 A. baumannii strains shows a limited host range, infecting 15 and 21 for phages DLP1 and DLP2, respectively. Phage DLP1 has a large burst size of 239 PFU/cell, a latency period of 20 min, and virulence index of 0.93. In contrast, DLP2 has a smaller burst size of 24 PFU/cell, a latency period of 20 min, and virulence index of 0.86. Both phages show potential for use as therapeutics to combat A. baumannii infections.
Collapse
Affiliation(s)
- Danielle L. Peters
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Correspondence:
| | - Carly M. Davis
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Greg Harris
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Hongyan Zhou
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Philip N. Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Sabahudin Hrapovic
- Aquatic and Crop Resource Development (ACRD) Research Center, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development (ACRD) Research Center, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
34
|
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol 2023; 13:1053968. [PMID: 36968113 PMCID: PMC10038080 DOI: 10.3389/fcimb.2023.1053968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infectionAcinetobacter baumannii is a gram-negative multidrug-resistant nosocomial pathogen and a major cause of hospital acquired infetions. Carbapenem resistant A. baumannii has been categorised as a Priority1 critial pathogen by the World Health Organisation. A. baumannii is responsible for infections in hospital settings, clinical sectors, ventilator-associated pneumonia, and bloodstream infections with a mortality rates up to 35%. With the development of advanced genome sequencing, molecular mechanisms of manipulating bacterial genomes, and animal infection studies, it has become more convenient to identify the factors that play a major role in A. baumannii infection and its persistence. In the present review, we have explored the mechanism of infection, virulence factors, and various other factors associated with the pathogenesis of this organism. Additionally, the role of the innate and adaptive immune response, and the current progress in the development of innovative strategies to combat this multidrug-resistant pathogen is also discussed.
Collapse
Affiliation(s)
- Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| |
Collapse
|
35
|
Samernate T, Htoo HH, Sugie J, Chavasiri W, Pogliano J, Chaikeeratisak V, Nonejuie P. High-Resolution Bacterial Cytological Profiling Reveals Intrapopulation Morphological Variations upon Antibiotic Exposure. Antimicrob Agents Chemother 2023; 67:e0130722. [PMID: 36625642 PMCID: PMC9933734 DOI: 10.1128/aac.01307-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Phenotypic heterogeneity is crucial to bacterial survival and could provide insights into the mechanism of action (MOA) of antibiotics, especially those with polypharmacological actions. Although phenotypic changes among individual cells could be detected by existing profiling methods, due to the data complexity, only population average data were commonly used, thereby overlooking the heterogeneity. In this study, we developed a high-resolution bacterial cytological profiling method that can capture morphological variations of bacteria upon antibiotic treatment. With an unprecedented single-cell resolution, this method classifies morphological changes of individual cells into known MOAs with an overall accuracy above 90%. We next showed that combinations of two antibiotics induce altered cell morphologies that are either unique or similar to that of an antibiotic in the combinations. With these combinatorial profiles, this method successfully revealed multiple cytological changes caused by a natural product-derived compound that, by itself, is inactive against Acinetobacter baumannii but synergistically exerts its multiple antibacterial activities in the presence of colistin. The findings have paved the way for future single-cell profiling in bacteria and have highlighted previously underappreciated intrapopulation variations caused by antibiotic perturbation.
Collapse
Affiliation(s)
- Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
36
|
Lai SJ, Tu IF, Tseng TS, Tsai YH, Wu SH. The deficiency of poly-β-1,6-N-acetyl-glucosamine deacetylase trigger A. baumannii to convert to biofilm-independent colistin-tolerant cells. Sci Rep 2023; 13:2800. [PMID: 36797306 PMCID: PMC9935895 DOI: 10.1038/s41598-023-30065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that can be resistant to antibiotics by rapidly modulating its anti-drug mechanisms. The multidrug-resistant A. baumannii has been considered one of the most threatening pathogens to our society. Biofilm formation and persistent cells within the biofilm matrix are recognized as intractable problems, especially in hospital-acquired infections. Poly-β-1,6-N-acetyl-glucosamine (PNAG) is one of the important building blocks in A. baumannii's biofilm. Here, we discover a protein phosphoryl-regulation on PNAG deacetylase, AbPgaB1, in which residue Ser411 was phosphorylated. The phosphoryl-regulation on AbPgaB1 modulates the product turnover rate in which deacetylated PNAG is produced and reflected in biofilm production. We further uncovered the PgaB deficient A. baumannii strain shows the lowest level of biofilm production but has a high minimal inhibition concentration to antibiotic colistin and tetracycline. Based on bactericidal post-antibiotic effects and time-dependent killing assays with antibacterial drugs, we claim that the PgaB-deficient A. baumannii converts to colistin-tolerant cells. This study utilizes a biofilm-independent colistin-tolerant model of A. baumannii to further investigate its characteristics and mechanisms to better understand clinical outcomes.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404333, Taiwan. .,Research Center for Cancer Biology, China Medical University, Taichung, 404333, Taiwan.
| | - I-Fan Tu
- grid.28665.3f0000 0001 2287 1366Institute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Tien-Sheng Tseng
- grid.260542.70000 0004 0532 3749Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Tsai
- grid.510951.90000 0004 7775 6738Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132 China
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
37
|
Valcek A, Philippe C, Whiteway C, Robino E, Nesporova K, Bové M, Coenye T, De Pooter T, De Coster W, Strazisar M, Van der Henst C. Phenotypic Characterization and Heterogeneity among Modern Clinical Isolates of Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0306122. [PMID: 36475894 PMCID: PMC9927488 DOI: 10.1128/spectrum.03061-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogenic bacterium prioritized by WHO and CDC because of its increasing antibiotic resistance. Heterogeneity among strains represents the hallmark of A. baumannii bacteria. We wondered to what extent extensively used strains, so-called reference strains, reflect the dynamic nature and intrinsic heterogeneity of these bacteria. We analyzed multiple phenotypic traits of 43 nonredundant, modern, and multidrug-resistant, extensively drug-resistant, and pandrug-resistant clinical isolates and broadly used strains of A. baumannii. Comparison of these isolates at the genetic and phenotypic levels confirmed a high degree of heterogeneity. Importantly, we observed that a significant portion of modern clinical isolates strongly differs from several historically established strains in the light of colony morphology, cellular density, capsule production, natural transformability, and in vivo virulence. The significant differences between modern clinical isolates of A. baumannii and established strains could hamper the study of A. baumannii, especially concerning its virulence and resistance mechanisms. Hence, we propose a variable collection of modern clinical isolates that are characterized at the genetic and phenotypic levels, covering a wide range of the phenotypic spectrum, with six different macrocolony type groups, from avirulent to hypervirulent phenotypes, and with naturally noncapsulated to hypermucoid strains, with intermediate phenotypes as well. Strain-specific mechanistic observations remain interesting per se, and established "reference" strains have undoubtedly been shown to be very useful to study basic mechanisms of A. baumannii biology. However, any study based on a specific strain of A. baumannii should be compared to modern and clinically relevant isolates. IMPORTANCE Acinetobacter baumannii is a bacterium prioritized by the CDC and WHO because of its increasing antibiotic resistance, leading to treatment failures. The hallmark of this pathogen is the high heterogeneity observed among isolates, due to a very dynamic genome. In this context, we tested if a subset of broadly used isolates, considered "reference" strains, was reflecting the genetic and phenotypic diversity found among currently circulating clinical isolates. We observed that the so-called reference strains do not cover the whole diversity of the modern clinical isolates. While formerly established strains successfully generated a strong base of knowledge in the A. baumannii field and beyond, our study shows that a rational choice of strain, related to a specific biological question, should be taken into consideration. Any data obtained with historically established strains should also be compared to modern and clinically relevant isolates, especially concerning drug screening, resistance, and virulence contexts.
Collapse
Affiliation(s)
- Adam Valcek
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Philippe
- Research Unit in the Biology of Microorganisms (URBM), NARILIS, University of Namur (UNamur), Namur, Belgium
| | - Clémence Whiteway
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kristina Nesporova
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
38
|
de Dios R, Proctor CR, Maslova E, Dzalbe S, Rudolph CJ, McCarthy RR. Artificial sweeteners inhibit multidrug-resistant pathogen growth and potentiate antibiotic activity. EMBO Mol Med 2023; 15:e16397. [PMID: 36412260 PMCID: PMC9832836 DOI: 10.15252/emmm.202216397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is one of the most pressing concerns of our time. The human diet is rich with compounds that alter bacterial gut communities and virulence-associated behaviours, suggesting food additives may be a niche for the discovery of novel anti-virulence compounds. Here, we identify three artificial sweeteners, saccharin, cyclamate and acesulfame-K (ace-K), that have a major growth inhibitory effect on priority pathogens. We further characterise the impact of ace-K on multidrug-resistant Acinetobacter baumannii, demonstrating that it can disable virulence behaviours such as biofilm formation, motility and the ability to acquire exogenous antibiotic-resistant genes. Further analysis revealed the mechanism of growth inhibition is through bulge-mediated cell lysis and that cells can be rescued by cation supplementation. Antibiotic sensitivity assays demonstrated that at sub-lethal concentrations, ace-K can resensitise A. baumannii to last resort antibiotics, including carbapenems. Using a novel ex vivo porcine skin wound model, we show that ace-K antimicrobial activity is maintained in the wound microenvironment. Our findings demonstrate the influence of artificial sweeteners on pathogen behaviour and uncover their therapeutic potential.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Chris R Proctor
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Sindija Dzalbe
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Christian J Rudolph
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
39
|
Zou D, Chang J, Lu S, Xu J, Hu P, Zhang K, Sun X, Guo W, Li Y, Liu Z, Ren H. Analysis of virulence proteins in pathogenic Acinetobacter baumannii to provide early warning of zoonotic risk. Microbiol Res 2023; 266:127222. [DOI: 10.1016/j.micres.2022.127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
40
|
Ding L, Yang Y, Zheng C, Sun G, Han R, Guo Y, Yin D, Wu S, Zhu D, Hu F. Activities of Eravacycline, Tedizolid, Norvancomycin, Nemonoxacin, Ceftaroline, and Comparators against 1,871 Staphylococcus and 1,068 Enterococcus Species Isolates from China: Updated Report of the CHINET Study 2019. Microbiol Spectr 2022; 10:e0171522. [PMID: 36326536 PMCID: PMC9769667 DOI: 10.1128/spectrum.01715-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
To evaluate the in vitro activities of eravacycline, tedizolid, nemonoxacin, norvancomycin, and ceftaroline against Staphylococcus and Enterococcus species isolates were collected as part of the China Antimicrobial Surveillance Network (CHINET) in 2019 to provide susceptibility data for Staphylococcus spp. and Enterococcus spp. for their future development and application in clinical practice. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution reference method. Eravacycline was highly active against Staphylococcus and Enterococcus species isolates, proved by the MIC50/90: 0.06/0.125, 0.06/0.25, 0.06/0.25, 0.06/0.25, 0.125/0.5, 0.125/0.25, and 0.03/0.06 mg/L for Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), S. epidermidis, S. hominis, S. haemolyticus, Enterococcus faecalis, and E. faecium, respectively. S. aureus isolates tested were fully susceptible to tedizolid. Still, nonsusceptible isolates were found for E. faecalis (72/567 [12.7%]) and E. faecium (12/501 [2.4%]). Norvancomycin at 2 mg/L could inhibit 100% of Staphylococcus spp., while 1 mg/L of ceftaroline could inhibit 78.9% of MRSA and 99.9% of methicillin-susceptible S. aureus (MSSA) isolates. Additionally, nemonoxacin was also active against Staphylococcus and Enterococcus species isolates tested (shown by the following MIC90s and ranges, in milligrams per liter: 2 and ≤0.015 to 8 for MRSA, 0.25 and ≤0.015 to 4 for MSSA, 0.5 and ≤0.015 to 8 for S. epidermidis, and 4 and ≤0.015 to >32 for E. faecalis). In conclusion, both eravacycline and tedizolid were highly active against clinical isolates of Staphylococcus spp. and Enterococcus spp. recently collected across China. Nemonoxacin showed potent activity against Staphylococcus spp. and E. faecalis but limited activity against E. faecium. Norvancomycin and ceftaroline displayed highly potent activity against Staphylococcus spp. IMPORTANCE Antimicrobial resistance has become a severe threat to global public health. According to statistics, nearly 700,000 people die from bacterial infections worldwide (J. O'Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 2014; C. Y. Chin, K. A. Tipton, M. Farokhyfar, E. M. Burd, et al., Nat Microbiol 3:563-569, 2018, https://doi.org/10.1038/s41564-018-0151-5). The number of bacterial infections is expected to climb to 10 million by 2050, showing that bacterial resistance has become a significant problem that cannot be ignored. It is crucial to develop new antimicrobial agents to combat antimicrobial-resistant bacteria. In this study, we evaluated the in vitro activities of eravacycline, tedizolid, nemonoxacin, norvancomycin, and ceftaroline against Staphylococcus spp. and Enterococcus species isolates which were collected as part of CHINET in 2019. We believe that this study can provide susceptibility data for Staphylococcus spp. and Enterococcus spp. for their future development and application in clinical practice.
Collapse
Affiliation(s)
- Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Changhe Zheng
- Yancheng Tinghu District People’s Hospital, Jiangsu, China
| | - Gang Sun
- The First Division Hospital of Xinjiang Corps, Xinjiang, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Demei Zhu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
41
|
Abstract
The ability of bacteria to respond to changes in their environment is critical to their survival, allowing them to withstand stress, form complex communities, and induce virulence responses during host infection. A remarkable feature of many of these bacterial responses is that they are often variable across individual cells, despite occurring in an isogenic population exposed to a homogeneous environmental change, a phenomenon known as phenotypic heterogeneity. Phenotypic heterogeneity can enable bet-hedging or division of labor strategies that allow bacteria to survive fluctuating conditions. Investigating the significance of phenotypic heterogeneity in environmental transitions requires dynamic, single-cell data. Technical advances in quantitative single-cell measurements, imaging, and microfluidics have led to a surge of publications on this topic. Here, we review recent discoveries on single-cell bacterial responses to environmental transitions of various origins and complexities, from simple diauxic shifts to community behaviors in biofilm formation to virulence regulation during infection. We describe how these studies firmly establish that this form of heterogeneity is prevalent and a conserved mechanism by which bacteria cope with fluctuating conditions. We end with an outline of current challenges and future directions for the field. While it remains challenging to predict how an individual bacterium will respond to a given environmental input, we anticipate that capturing the dynamics of the process will begin to resolve this and facilitate rational perturbation of environmental responses for therapeutic and bioengineering purposes.
Collapse
|
42
|
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci 2022; 1518:166-182. [PMID: 36316792 PMCID: PMC9771954 DOI: 10.1111/nyas.14918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jessica R. Petrey
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lauren D. Palmer
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
43
|
Pérez-Varela M, Tierney ARP, Dawson E, Hutcheson AR, Tipton KA, Anderson SE, Haldopoulos ME, Song S, Tomlinson BR, Shaw LN, Weiss DS, Kim M, Rather PN. Stochastic activation of a family of TetR type transcriptional regulators controls phenotypic heterogeneity in Acinetobacter baumannii. PNAS NEXUS 2022; 1:pgac231. [PMID: 36704122 PMCID: PMC9802203 DOI: 10.1093/pnasnexus/pgac231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Phenotypic heterogeneity is an important mechanism for regulating bacterial virulence, where a single regulatory switch is typically activated to generate virulent and avirulent subpopulations. The opportunistic pathogen Acinetobacter baumannii can transition at high frequency between virulent opaque (VIR-O) and avirulent translucent subpopulations, distinguished by cells that form opaque or translucent colonies. We demonstrate that expression of 11 TetR-type transcriptional regulators (TTTRs) can drive cells from the VIR-O opaque subpopulation to cells that form translucent colonies. Remarkably, in a subpopulation of VIR-O cells, four of these TTTRs were stochastically activated in different combinations to drive cells to the translucent state. The resulting translucent subvariants exhibited unique phenotypic differences and the majority were avirulent. Due to their functional redundancy, a quadruple mutant with all four of these TTTRs inactivated was required to observe a loss of switching from the VIR-O state. Further, we demonstrate a small RNA, SrvS, acts as a "rheostat," where the levels of SrvS expression influences both the VIR-O to translucent switching frequency, and which TTTR is activated when VIR-O cells switch. In summary, this work has revealed a new paradigm for phenotypic switching in bacteria, where an unprecedented number of related transcriptional regulators are activated in different combinations to control virulence and generate unique translucent subvariants with distinct phenotypic properties.
Collapse
Affiliation(s)
- María Pérez-Varela
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Aimee R P Tierney
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Emma Dawson
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Anna R Hutcheson
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Kyle A Tipton
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Sarah E Anderson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Marina E Haldopoulos
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaina Song
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - David S Weiss
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
de Dios R, Gadar K, McCarthy RR. A high-efficiency scar-free genome-editing toolkit for Acinetobacter baumannii. J Antimicrob Chemother 2022; 77:3390-3398. [PMID: 36216579 PMCID: PMC9704439 DOI: 10.1093/jac/dkac328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current mutagenesis tools for Acinetobacter baumannii leave selection markers or residual sequences behind, or involve tedious counterselection and screening steps. Furthermore, they are usually adapted for model strains, rather than for MDR clinical isolates. OBJECTIVES To develop a scar-free genome-editing tool suitable for chromosomal and plasmid modifications in MDR A. baumannii AB5075. METHODS We prove the efficiency of our adapted genome-editing system by deleting the multidrug efflux pumps craA, cmlA5 and resistance island 2 (RI2), as well as curing plasmid p1AB5075, and combining these mutations. We then characterized the susceptibility of the mutants compared with the WT to different antibiotics (i.e. chloramphenicol, amikacin and tobramycin) by disc diffusion assays and determined the MIC for each strain. RESULTS We successfully adapted the genome-editing protocol to A. baumannii AB5075, achieving a double recombination frequency close to 100% and routinely securing the construction of a mutant within 10 working days. Furthermore, we show that both CraA and p1AB5075 are involved in chloramphenicol resistance, and that RI2 and p1AB5075 play a role in resistance to amikacin and tobramycin. CONCLUSIONS We have developed a versatile and highly efficient genome-editing tool for A. baumannii. We have demonstrated it can be used to modify both the chromosome and native plasmids. By challenging the method, we show the role of CraA and p1AB5075 in antibiotic resistance.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | | |
Collapse
|
45
|
Ahsan U, Mushtaq F, Saleem S, Malik A, Sarfaraz H, Shahzad M, Uhlin BE, Ahmad I. Emergence of high colistin resistance in carbapenem resistant Acinetobacter baumannii in Pakistan and its potential management through immunomodulatory effect of an extract from Saussurea lappa. Front Pharmacol 2022; 13:986802. [PMID: 36188613 PMCID: PMC9523213 DOI: 10.3389/fphar.2022.986802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Carbapenem resistant Acinetobacter baumannii has emerged as one of the most difficult to treat nosocomial bacterial infections in recent years. It was one of the major causes of secondary infections in Covid-19 patients in developing countries. The polycationic polypeptide antibiotic colistin is used as a last resort drug to treat carbapenem resistant A. baumannii infections. Therefore, resistance to colistin is considered as a serious medical threat. The purpose of this study was to assess the current status of colistin resistance in Pakistan, a country where carbapenem resistant A. bumannii infections are endemic, to understand the impact of colistin resistance on virulence in mice and to assess alternative strategies to treat such infections. Out of 150 isolates collected from five hospitals in Pakistan during 2019-20, 84% were carbapenem resistant and 7.3% were additionally resistant to colistin. There were two isolates resistant to all tested antibiotics and 83% of colistin resistant isolates were susceptible to only tetracycline family drugs doxycycline and minocycline. Doxycycline exhibited a synergetic bactericidal effect with colistin even in colistin resistant isolates. Exposure of A. baumannii 17978 to sub inhibitory concentrations of colistin identified novel point mutations associated with colistin resistance. Colistin tolerance acquired independent of mutations in lpxA, lpxB, lpxC, lpxD, and pmrAB supressed the proinflammatory immune response in epithelial cells and the virulence in a mouse infection model. Moreover, the oral administration of water extract of Saussuria lappa, although not showing antimicrobial activity against A. baumannii in vitro, lowered the number of colonizing bacteria in liver, spleen and lung of the mouse model and also lowered the levels of neutrophils and interleukin 8 in mice. Our findings suggest that the S. lappa extract exhibits an immunomodulatory effect with potential to reduce and cure systemic infections by both opaque and translucent colony variants of A. baumannii.
Collapse
Affiliation(s)
- Umaira Ahsan
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Fizza Mushtaq
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Abdul Malik
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Hira Sarfaraz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Irfan Ahmad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
46
|
Tian C, Xing M, Fu L, Zhao Y, Fan X, Wang S. Emergence of uncommon KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Front Cell Infect Microbiol 2022; 12:943735. [PMID: 36034705 PMCID: PMC9411868 DOI: 10.3389/fcimb.2022.943735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To characterize one KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Methods A. pittii TCM strain was isolated from a bloodstream infection (BSI). Antimicrobial susceptibility tests were conducted via disc diffusion and broth microdilution. Stability experiments of blaNDM-1 and blaOXA-820 carbapenemase genes were further performed. Whole-genome sequencing (WGS) was performed on the Illumina and Oxford Nanopore platforms. Multilocus sequence typing (MLST) was analyzed based on the Pasteur and Oxford schemes. Resistance genes, virulence factors, and insertion sequences (ISs) were identified with ABRicate based on ResFinder 4.0, virulence factor database (VFDB), and ISfinder. Capsular polysaccharide (KL), lipooligosaccharide outer core (OCL), and plasmid reconstruction were tested using Kaptive and PLACNETw. PHASTER was used to predict prophage regions. A comparative genomics analysis of all ST220 A. pittii strains from the public database was carried out. Point mutations, average nucleotide identity (ANI), DNA–DNA hybridization (DDH) distances, and pan-genome analysis were performed. Results A. pittii TCM was ST220Pas and ST1818Oxf with KL38 and OCL6, respectively. It was resistant to imipenem, meropenem, and ciprofloxacin but still susceptible to amikacin, colistin, and tigecycline. WGS revealed that A. pittii TCM contained one circular chromosome and four plasmids. The Tn125 composite transposon, including blaNDM-1, was located in the chromosome with 3-bp target site duplications (TSDs). Many virulence factors and the blaOXA-820 carbapenemase gene were also identified. The stability assays revealed that blaNDM-1 and blaOXA-820 were stabilized by passage in an antibiotic-free medium. Moreover, 12 prophage regions were identified in the chromosome. Phylogenetic analysis showed that there are 11 ST220 A. pittii strains, and one collected from Anhui, China was closely related. All ST220 A. pittii strains presented high ANI and DDH values; they ranged from 99.85% to 100% for ANI and from 97.4% to 99.9% for DDH. Pan-genome analysis revealed 3,200 core genes, 0 soft core genes, 1,571 shell genes, and 933 cloud genes among the 11 ST220 A. pittii strains. Conclusions The coexistence of chromosomal NDM-1 and OXA-820 carbapenemases in A. pittii presents a huge challenge in healthcare settings. Increased surveillance of this species in hospital and community settings is urgently needed.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengyu Xing
- Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Xueyu Fan
- Department of Clinical Laboratory, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Siwei Wang
- Core Facility, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- *Correspondence: Siwei Wang,
| |
Collapse
|
47
|
Guo L, Wang L, Zhao Q, Ye L, Ye K, Ma Y, Shen D, Yang J. Genomic Analysis of KPC-2-Producing Klebsiella pneumoniae ST11 Isolates at the Respiratory Department of a Tertiary Care Hospital in Beijing, China. Front Microbiol 2022; 13:929826. [PMID: 35783384 PMCID: PMC9244631 DOI: 10.3389/fmicb.2022.929826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important pathogen causing hospital-associated outbreaks worldwide. The spread of K. pneumoniae carbapenemase-2 (KPC-2)-producing CRKP is primarily associated with sequence type (ST) 11. Methods A total of 152 KPC-2-producing K. pneumoniae ST11 isolates were collected from the respiratory department of a tertiary care hospital in Beijing, China between 2009 and 2018. The genome sequencing of these isolates was performed on the HiSeq X Ten sequencer. Multilocus sequence typing (MLST), capsular type, plasmid replicon types and resistance genes were identified. Fifteen isolates were selected for the subsequent single-molecule real-time (SMRT) sequencing on the PacBio RS II. Alignment of the complete sequences of the plasmids carrying blaKPC–2 and/or virulence genes was performed by using BRIG and Easyfig. Results From 2012 to 2018, the detection rate of the blaKPC–2-carrying CRKP rose rapidly from 3.3 to 28.1%. KPC-2-producing K. pneumoniae ST11 isolates were dominant in CRKP, which emerged in 2012 and caused several outbreaks. Most isolates exhibited multidrug-resistant to commonly used antibiotics, while all the isolates remained susceptible to tigecycline and polymyxin B. The single nucleotide polymorphism (SNP) analysis showed that all these 152 KPC-2-producing K. pneumoniae ST11 isolates could be divided into three genetically distinct clades (A, B, and C) and eleven subclades (A1–A9 and B1–B2). The majority belonged to clade A with KL47 serotype (n = 117, 77.0%), while KL64 and KL16 were identified in clades B and C, respectively. The blaKPC–2-carrying plasmids exhibited diverse types, namely, IncFII (pHN7A8)/IncR(6/15), IncFII (pHN7A8)/IncpA1763–KPC (5/15), IncFII (pHN7A8) (1/15), IncR (1/15), and IncpA1763–KPC (1/15). The genetic environment of blaKPC–2 showed nine IS26-based composite transposons, which had a basic core structure ISKpn27-blaKPC–2-ΔISKpn6. About 27.6% (42/152) isolates co-carried 2 to 4 virulence marker genes (namely, peg344, iucA, iroB, rmpA, and rmpA2) for hvKp strains. At least three isolates were identified to harbor virulence gene-carrying plasmids. Conclusion KPC-2-producing K. pneumoniae ST11 was highly heterogeneous in our hospital. Transmission of these strains was mainly mediated by twelve high-risk clones. The blaKPC–2-carrying plasmids and genetic environment of blaKPC–2 genes exhibited active evolution in K. pneumoniae ST11. More attention should be paid to the tendency of KPC-2-ST11 to acquire hypervirulent plasmids.
Collapse
|
48
|
Tan YC, Lahiri C. Promising Acinetobacter baumannii Vaccine Candidates and Drug Targets in Recent Years. Front Immunol 2022; 13:900509. [PMID: 35720310 PMCID: PMC9204607 DOI: 10.3389/fimmu.2022.900509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
In parallel to the uncontrolled use of antibiotics, the emergence of multidrug-resistant bacteria, like Acinetobacter baumannii, has posed a severe threat. A. baumannii predominates in the nosocomial setting due to its ability to persist in hospitals and survive antibiotic treatment, thereby eventually leading to an increasing prevalence and mortality due to its infection. With the increasing spectra of drug resistance and the incessant collapse of newly discovered antibiotics, new therapeutic countermeasures have been in high demand. Hence, recent research has shown favouritism towards the long-term solution of designing vaccines. Therefore, being a realistic alternative strategy to combat this pathogen, anti-A. Baumannii vaccines research has continued unearthing various antigens with variable results over the last decade. Again, other approaches, including pan-genomics, subtractive proteomics, and reverse vaccination strategies, have shown promise for identifying promiscuous core vaccine candidates that resulted in chimeric vaccine constructs. In addition, the integration of basic knowledge of the pathobiology of this drug-resistant bacteria has also facilitated the development of effective multiantigen vaccines. As opposed to the conventional trial-and-error approach, incorporating the in silico methods in recent studies, particularly network analysis, has manifested a great promise in unearthing novel vaccine candidates from the A. baumannii proteome. Some studies have used multiple A. baumannii data sources to build the co-functional networks and analyze them by k-shell decomposition. Additionally, Whole Genomic Protein Interactome (GPIN) analysis has utilized a rational approach for identifying essential proteins and presenting them as vaccines effective enough to combat the deadly pathogenic threats posed by A. baumannii. Others have identified multiple immune nodes using network-based centrality measurements for synergistic antigen combinations for different vaccination strategies. Protein-protein interactions have also been inferenced utilizing structural approaches, such as molecular docking and molecular dynamics simulation. Similar workflows and technologies were employed to unveil novel A. baumannii drug targets, with a similar trend in the increasing influx of in silico techniques. This review integrates the latest knowledge on the development of A. baumannii vaccines while highlighting the in silico methods as the future of such exploratory research. In parallel, we also briefly summarize recent advancements in A. baumannii drug target research.
Collapse
Affiliation(s)
- Yong Chiang Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
49
|
Hubeny J, Korzeniewska E, Buta-Hubeny M, Zieliński W, Rolbiecki D, Harnisz M. Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153437. [PMID: 35122847 DOI: 10.1016/j.scitotenv.2022.153437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 05/29/2023]
Abstract
The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/blaOXA-51 complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| |
Collapse
|
50
|
Whiteway C, Valcek A, Philippe C, Strazisar M, De Pooter T, Mateus I, Breine A, Van der Henst C. Scarless excision of an insertion sequence restores capsule production and virulence in Acinetobacter baumannii. THE ISME JOURNAL 2022; 16:1473-1477. [PMID: 34949784 PMCID: PMC9038732 DOI: 10.1038/s41396-021-01179-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
We identify a new mechanism mediating capsule production and virulence in the WHO and CDC priority ESKAPE pathogen Acinetobacter baumannii. Non-capsulated and avirulent bacteria can revert into a capsulated and virulent state upon scarless excision of an ISAba13 insertion sequence under stress conditions. Reversion events fully restore capsule production and in vivo virulence. This increases our knowledge about A. baumannii genome dynamics, and the regulation of capsule production, virulence and resistance.
Collapse
Affiliation(s)
- Clémence Whiteway
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adam Valcek
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Philippe
- Research Unit in the Biology of Microorganisms (URBM), NARILIS, University of Namur (UNamur), Namur, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ivan Mateus
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium. .,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|