1
|
Udono H, Nomura SIM, Takinoue M. Remote-controlled mechanical and directional motions of photoswitchable DNA condensates. Nat Commun 2025; 16:4479. [PMID: 40368917 PMCID: PMC12078559 DOI: 10.1038/s41467-025-59100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Membrane-free synthetic DNA-based condensates enable programmable control of dynamic behaviors as shown by phase-separated condensates in biological cells. We demonstrate remote-controlled microflow using photocontrollable state transitions of DNA condensates, assembled from multi-branched DNA nanostructures via sticky-end (SE) hybridization. Introducing azobenzene into SEs enables their photoswitchable binding affinity, which underlies photoreversible fluidity of the resulting condensates that transition between gel/liquid/dissociated states in a wavelength-dependent manner. Leveraging base-sequence programmability, spatially coupled orthogonal DNA condensates with divergent photoresponsive capabilities perform multi-modal mechanical actions that depend on azobenzene insertion sites in the SE, including switching flows radially expanding and converging under photoswitching. Localizing photoswitching within a DNA liquid condensate generates two distinct directional motions, whose contrasting morphology, direction, and lifetime are determined by switching frequency. Numerical simulations reveal its regulatory role in weight-adjusting energy-exchanging and energy-dissipative interactions between the photoirradiated and unirradiated domains.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, School of Computing, Institute of Science Tokyo, Yokohama, Kanagawa, 226-8501, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Masahiro Takinoue
- Department of Computer Science, School of Computing, Institute of Science Tokyo, Yokohama, Kanagawa, 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research (IIR), Institute of Science Tokyo, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
2
|
Qin Y, Sohn YS, Nechushtai R, Xia F, Huang F, Willner I. Enzyme- and DNAzyme-Driven Transient Assembly of DNA-Based Phase-Separated Coacervate Microdroplets. J Am Chem Soc 2025; 147:16141-16153. [PMID: 40305858 DOI: 10.1021/jacs.5c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
An assembly of dissipative, transient, DNA-based microdroplet (MD) coacervates in the presence of auxiliary enzymes (endonucleases and nickases) or MD-embedded DNAzyme is introduced. Two pairs of different Y-shaped DNA core frameworks modified with toehold tethers are cross-linked by complementary toehold-functionalized duplexes, engineered to be cleaved by EcoRI or HindIII endonucleases, or cross-linked by palindromic strands that include pre-engineered Nt.BbvCI or Nb.BtsI nicking sites, demonstrating transient evolution/depletion of phase-separated MD coacervates. By mixing the pairs of endonuclease- or nickase-responsive MDs, programmed or gated transient formation/depletion of MD frameworks is presented. In addition, by cross-linking a pre-engineered Y-shaped core framework with a sequence-designed fuel strand, phase separation of MD coacervates with embedded Mg2+-DNAzyme units is introduced. The DNAzyme-catalyzed cleavage of a ribonucleobase-modified hairpin substrate, generating the waste product of the metabolite fragments, leads to the metabolite-driven separation of the cross-linked coacervates, resulting in the temporal evolution and depletion of the DNAzyme-functionalized MDs. By employing a light-responsive caged hairpin structure, the light-modulated fueled evolution and depletion of the DNAzyme-active MDs are presented. The enzyme- or DNAzyme-catalyzed transient evolution/depletion of the MD coacervates provides protocell frameworks mimicking dynamic transient processes of native cells. The possible application of MDs as functional carriers for the temporal, dose-controlled release of loads is addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Wang D, Zhou L, Zhang X, Zhou Z, Huang Z, Gao N. Supramolecular Switching of Liquid-Liquid Phase Separation for Orchestrating Enzyme Kinetics. Angew Chem Int Ed Engl 2025; 64:e202422601. [PMID: 39833115 DOI: 10.1002/anie.202422601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Dynamic liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and associated assembly and disassembly of biomolecular condensates play crucial roles in cellular organization and metabolic networks. These processes are often regulated by supramolecular interactions. However, the complex and disordered structures of IDPs, coupled with their rapid conformational fluctuations, pose significant challenges for reconstructing supramolecularly-regulated dynamic LLPS systems and quantitatively illustrating variations in molecular interactions. Inspired by the structural feature of IDPs that facilitates LLPS, we designed a simplified phase-separating molecule, Nap-o-Nap, consisting of two naphthalene moieties linked by an ethylene glycol derivative. This compound exhibits LLPS under physiological conditions, forming coacervate microdroplets that undergo multiple cycles of disassembly and reassembly upon stoichiometric addition of Cucurbit[7]uril and Adamantane, respectively, based upon competitive host-guest interactions. Importantly, such reversible control offers a unique route to quantify entropically dominant nature (ΔS=14.0 cal ⋅ mol-1 ⋅ K-1) within the LLPS process, in which the binding affinity of host-guest interactions (ΔG=-14.9 kcal ⋅ mol-1) surpass that of the LLPS of Nap-o-Nap (ΔG=-2.1 kcal ⋅ mol-1), enabling the supramolecular regulation process. The supramolecularly switched LLPS, along with selective client recruitment and exclusion by resultant coacervates, provides a promising platform for either boosting or retarding enzymatic reactions, thereby orchestrating biological enzyme kinetics.
Collapse
Affiliation(s)
- Deyi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Lingying Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xiaokun Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zixiang Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zehuan Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ning Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
4
|
Wang M, Nan H, Wang M, Yang S, Liu L, Wang HH, Nie Z. Responsive DNA artificial cells for contact and behavior regulation of mammalian cells. Nat Commun 2025; 16:2410. [PMID: 40069211 PMCID: PMC11897219 DOI: 10.1038/s41467-025-57770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments. These compartments can integrate functional nucleic acid (FNA) modules and light-responsive gold nanorods (AuNRs) to establish a programmable sense-and-respond mechanism to specific stimuli, such as light or ions, orchestrating diverse biological functions, including tissue formation and cellular signaling. By combining two designer STARMs into a dual-channel system, we achieve orthogonally regulated cellular signaling in multicellular communities. Ultimately, the in vivo therapeutic efficacy of STARM in light-guided muscle regeneration in living animals demonstrates the promising potential of smart artificial cells in regenerative medicine.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hexin Nan
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Meixia Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
| | - Sihui Yang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Lin Liu
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Biology, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| |
Collapse
|
5
|
Sahu N, Guchhait C, Mohanta I, Suriyaa V, Adhikari B. Cu(I)-Induced G-Quartets: Robust Supramolecular Polymers Exhibiting Heating-Induced Aqueous Phase Transitions Into Gel or Precipitate. Angew Chem Int Ed Engl 2025; 64:e202417508. [PMID: 39832125 DOI: 10.1002/anie.202417508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions. For the first time, guided by Cu+, guanosine (G) formed a highly stable G-quartet (G4.Cu+)/G-quadruplex as a non-canonical DNA secondary structure with temperature tolerance, distinct from the well-known G4.K+. The G4.Cu+ self-assembled in water through π-π stacking, metallophilic and hydrophobic interactions, forming thermally robust SPs. This enhanced stability is attributed to the stronger coordination of Cu+ to four carbonyl oxygens of G-quartet and the presence of Cu+- - -Cu+ attractive metallophilic interactions in Cu+-induced G-quadruplex, exhibiting a significantly higher interaction energy than K+ as determined computationally. Remarkably, the aqueous SP solution exhibited heating-induced phase transitions-forming a hydrogel through dehydration-driven crosslinking of SPs below cloud temperature (Tcp) and a hydrophobic collapse-induced solid precipitate above Tcp, showcasing a lower critical solution temperature (LCST) behavior. Notably, this LCST behavior of G4.Cu+ SP originates from biomolecular functionality rather than commonly exploited thermo-responsive oligoethylene glycols with supramolecular assemblies. Furthermore, exploiting the redox reversibility of Cu+/Cu2+, we demonstrated control over the assembly and disassembly of G-quartets/G-quadruplex and gelation reversibly.
Collapse
Affiliation(s)
- Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, India, 769008
| | - Chandrakanta Guchhait
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, India, 769008
| | - Indrajit Mohanta
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, India, 769008
| | - Vembanan Suriyaa
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, India, 769008
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, India, 769008
| |
Collapse
|
6
|
Karmakar SD, Speck T. Dependencies between effective parameters in coarse-grained models for phase separation of DNA-based fluids. J Chem Phys 2024; 161:234907. [PMID: 39692499 DOI: 10.1063/5.0232651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
DNA is now firmly established as a versatile and robust platform for achieving synthetic nanostructures. While the folding of single molecules into complex structures is routinely achieved through engineering basepair sequences, very little is known about the emergence of structure on larger scales in DNA fluids. The fact that polymeric DNA fluids can undergo phase separation into dense fluid and dilute gas opens avenues to design hierachical and multifarious assemblies. Here, we investigate to which extent the phase behavior of single-stranded DNA fluids can be captured by a minimal model of semiflexible charged homopolymers while neglecting specific hybridization interactions. We first characterize the single-polymer behavior and then perform direct coexistence simulations to test the model against experimental data. While low-resolution models show great promise to bridge the gap to relevant length and time scales, obtaining consistent and transferable parameters is challenging. In particular, we conclude that counterions not only determine the effective range of direct electrostatic interactions but also contribute to the effective attractions.
Collapse
Affiliation(s)
- Soumen De Karmakar
- Institute for Theoretical Physics IV, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Li K, Chen H, Li D, Yang C, Zhang H, Zhu Z. Empowering DNA-Based Information Processing: Computation and Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68749-68771. [PMID: 39648356 DOI: 10.1021/acsami.4c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements. This review summarizes the advances in materials and interfaces that facilitate DNA computation and DNA data storage. We begin with a brief overview of the fundamental functions and principles of DNA computation and DNA data storage. Subsequently, we delve into DNA computing systems based on various materials and interfaces, including microbeads, nanomaterials, DNA nanostructures, hydrophilic-hydrophobic compartmentalization, hydrogels, metal-organic frameworks, and microfluidics. We also explore DNA data storage systems, encompassing encapsulation materials, microfluidics techniques, DNA nanostructures, and living cells. Finally, we discuss the current bottlenecks and obstacles in the fields and provide insights into potential future developments.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Dayang Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Bucci J, Malouf L, Tanase DA, Farag N, Lamb JR, Rubio-Sánchez R, Gentile S, Del Grosso E, Kaminski CF, Di Michele L, Ricci F. Enzyme-Responsive DNA Condensates. J Am Chem Soc 2024; 146:31529-31537. [PMID: 39503320 PMCID: PMC11583213 DOI: 10.1021/jacs.4c08919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Membrane-less compartments and organelles are widely acknowledged for their role in regulating cellular processes, and there is an urgent need to harness their full potential as both structural and functional elements of synthetic cells. Despite rapid progress, synthetically recapitulating the nonequilibrium, spatially distributed responses of natural membrane-less organelles remains elusive. Here, we demonstrate that the activity of nucleic-acid cleaving enzymes can be localized within DNA-based membrane-less compartments by sequestering the respective DNA or RNA substrates. Reaction-diffusion processes lead to complex nonequilibrium patterns, dependent on enzyme concentration. By arresting similar dynamic patterns, we spatially organize different substrates in concentric subcompartments, which can be then selectively addressed by different enzymes, demonstrating spatial distribution of enzymatic activity. Besides expanding our ability to engineer advanced biomimetic functions in synthetic membrane-less organelles, our results may facilitate the deployment of DNA-based condensates as microbioreactors or platforms for the detection and quantitation of enzymes and nucleic acids.
Collapse
Affiliation(s)
- Juliette Bucci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Layla Malouf
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Diana A Tanase
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nada Farag
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Jacob R Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Roger Rubio-Sánchez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
9
|
Yin C, Yu X, Chen C, Jin X, Tian L. Engineering the Spatial Distribution of Amphiphilic Molecule within Complex Coacervate Microdroplet via Modulating Charge Strength of Polyelectrolytes. SMALL METHODS 2024; 8:e2301760. [PMID: 38725320 DOI: 10.1002/smtd.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Indexed: 10/24/2024]
Abstract
The investigation of the interplay between complex coacervate microdroplets and amphiphilic molecules offers valuable insights into the processes of prebiotic compartmentalization on the early Earth and presents a promising avenue for future advancements in biotechnology. Herein, the interaction between complex coacervate microdroplets and amphiphilic molecule (decanoic acid) is systematically investigated by varying charge strengths of negatively charged polyelectrolytes (DNA and PAA) and positively charged polyelectrolytes (PDDA and DEAE-Dextran). It is found that the interaction between amphiphilic molecule and complex coacervate microdroplets depended on the delicate balance between the interaction between decanoic acid and polyelectrolyte and the interaction between two polyelectrolytes. The different spatial distribution of amphiphilic molecule can result in differences in the internal microenvironment, which can further alter the uptake or exclusion of small molecules and biomolecules with different charges and polarities and functional biological process.
Collapse
Affiliation(s)
- Chengying Yin
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chong Chen
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Xiaofen Jin
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Liangfei Tian
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
10
|
Li C, Wang D, Gao H, Fu T, He L, Han D, Tan W. Leveraging DNA-Encoded Cell-Mimics for Environment-Adaptive Transmembrane Channel Release-Induced Cell Death. Angew Chem Int Ed Engl 2024; 63:e202406186. [PMID: 38738850 DOI: 10.1002/anie.202406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/14/2024]
Abstract
The advancement of cell-mimic materials, which can forge sophisticated physicochemical dialogues with living cells, has unlocked a realm of intriguing prospects within the fields of synthetic biology and biomedical engineering. Inspired by the evolutionarily acquired ability of T lymphocytes to release perforin and generate transmembrane channels on targeted cells for killing, herein we present a pioneering DNA-encoded artificial T cell mimic model (ARTC) that accurately mimics T-cell-like behavior. ARTC responds to acidic conditions similar to those found in the tumor microenvironment and then selectively releases a G-rich DNA strand (LG4) embedded with C12 lipid and cholesterol molecules. Once released, LG4 effectively integrates into the membranes of neighboring live cells, behaving as an artificial transmembrane channel that selectively transports K+ ions and disrupts cellular homeostasis, ultimately inducing apoptosis. We hope that the emergence of ARTC will usher in new perspectives for revolutionizing future disease treatment and catalyzing the development of advanced biomedical technologies.
Collapse
Affiliation(s)
- Chunying Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Dan Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haiyan Gao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Lei He
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Da Han
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Zhang L, Chen M, Wang Z, Zhong M, Chen H, Li T, Wang L, Zhao Z, Zhang XB, Ke G, Liu Y, Tan W. Spatiotemporal Regulation of Cell Fate in Living Systems Using Photoactivatable Artificial DNA Membraneless Organelles. ACS CENTRAL SCIENCE 2024; 10:1201-1210. [PMID: 38947212 PMCID: PMC11212128 DOI: 10.1021/acscentsci.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
Coacervates formed by liquid-liquid phase separation emerge as important biomimetic models for studying the dynamic behaviors of membraneless organelles and synchronously motivating the creation of smart architectures with the regulation of cell fate. Despite continuous progress, it remains challenging to balance the trade-offs among structural stability, versatility, and molecular communication for regulation of cell fate and systemic investigation in a complex physiological system. Herein, we present a self-stabilizing and fastener-bound gain-of-function methodology to create a new type of synthetic DNA membraneless organelle (MO) with high stability and controlled bioactivity on the basis of DNA coacervates. Specifically, long single-strand DNA generated by rolling circle amplification (RCA) is selected as the scaffold that assembles into membraneless coacervates via phase separation. Intriguingly, the as-formed DNA MO can recruit RCA byproducts and other components to achieve self-stabilization, nanoscale condensation, and function encoding. As a proof of concept, photoactivatable DNA MO is constructed and successfully employed for time-dependent accumulation and spatiotemporal management of cancer in a mouse model. This study offers new, important insights into synthetic membraneless organelles for the basic understanding and manipulation of important life processes.
Collapse
Affiliation(s)
- Lili Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Mei Chen
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Materials Science and Engineering, Aptamer
Engineering Center of Hunan Province, Hunan
University, Changsha, Hunan 410082, China
| | - Zhiqiang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Minjuan Zhong
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Li
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhihui Zhao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Guoliang Ke
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
13
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
14
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
15
|
Jeon K, Lee C, Lee JY, Kim DN. DNA Hydrogels with Programmable Condensation, Expansion, and Degradation for Molecular Carriers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38696548 DOI: 10.1021/acsami.3c17633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Molecular carriers are necessary for the controlled release of drugs and genes to achieve the desired therapeutic outcomes. DNA hydrogels can be a promising candidate in this application with their distinctive sequence-dependent programmability, which allows precise encapsulation of specific cargo molecules and stimuli-responsive release of them at the target. However, DNA hydrogels are inherently susceptible to the degradation of nucleases, making them vulnerable in a physiological environment. To be an effective molecular carrier, DNA hydrogels should be able to protect encapsulated cargo molecules until they reach the target and release them once they are reached. Here, we develop a simple way of controlling the enzyme resistance of DNA hydrogels for cargo protection and release by using cation-mediated condensation and expansion. We found that DNA hydrogels condensed by spermine are highly resistant to enzymatic degradation. They become degradable again if expanded back to their original, uncondensed state by sodium ions interfering with the interaction between spermine and DNA. These controllable condensation, expansion, and degradation of DNA hydrogels pave the way for the development of DNA hydrogels as an effective molecular carrier.
Collapse
Affiliation(s)
- Kyounghwa Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Liu W, Deng J, Song S, Sethi S, Walther A. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior. Commun Chem 2024; 7:100. [PMID: 38693272 PMCID: PMC11063173 DOI: 10.1038/s42004-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Biomolecular coacervates are emerging models to understand biological systems and important building blocks for designer applications. DNA can be used to build up programmable coacervates, but often the processes and building blocks to make those are only available to specialists. Here, we report a simple approach for the formation of dynamic, multivalency-driven coacervates using long single-stranded DNA homopolymer in combination with a series of palindromic binders to serve as a synthetic coacervate droplet. We reveal details on how the length and sequence of the multivalent binders influence coacervate formation, how to introduce switching and autonomous behavior in reaction circuits, as well as how to engineer wetting, engulfment and fusion in multi-coacervate system. Our simple-to-use model DNA coacervates enhance the understanding of coacervate dynamics, fusion, phase transition mechanisms, and wetting behavior between coacervates, forming a solid foundation for the development of innovative synthetic and programmable coacervates for fundamental studies and applications.
Collapse
Affiliation(s)
- Wei Liu
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jie Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Soumya Sethi
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
17
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
18
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Mu W, Jia L, Zhou M, Wu J, Lin Y, Mann S, Qiao Y. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat Chem 2024; 16:158-167. [PMID: 37932411 DOI: 10.1038/s41557-023-01356-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Bottom-up assembly of higher-order cytomimetic systems capable of coordinated physical behaviours, collective chemical signalling and spatially integrated processing is a key challenge in the study of artificial multicellularity. Here we develop an interactive binary population of coacervate microdroplets that spontaneously self-sort into chain-like protocell networks with an alternating sequence of structurally and compositionally dissimilar microdomains with hemispherical contact points. The protocell superstructures exhibit macromolecular self-sorting, spatially localized enzyme/ribozyme biocatalysis and interdroplet molecular translocation. They are capable of topographical reconfiguration using chemical or light-mediated stimuli and can be used as a micro-extraction system for macroscale biomolecular sorting. Our methodology opens a pathway towards the self-assembly of multicomponent protocell networks based on selective processes of coacervate droplet-droplet adhesion and fusion, and provides a step towards the spontaneous orchestration of protocell models into artificial tissues and colonies with ordered architectures and collective functions.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Lallemang M, Akintayo CO, Wenzel C, Chen W, Sielaff L, Ripp A, Jessen HJ, Balzer BN, Walther A, Hugel T. Hierarchical Mechanical Transduction of Precision-Engineered DNA Hydrogels with Sacrificial Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59714-59721. [PMID: 38095074 DOI: 10.1021/acsami.3c15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Engineering the response to external signals in mechanically switchable hydrogels is important to promote smart materials applications. However, comparably little attention has focused on embedded precision mechanisms for autonomous nonlinear response in mechanical profiles in hydrogels, and we lack understanding of how the behavior from the molecular scale transduces to the macroscale. Here, we design a nonlinear stress-strain response into hydrogels by engineering sacrificial DNA hairpin loops into model network hydrogels formed from star-shaped building blocks. We characterize the force-extension response of single DNA hairpins and are able to describe how the specific topology influences the nonlinear mechanical behavior at different length scales. For this purpose, we utilize force spectroscopy as well as microscopic and macroscopic deformation tests. This study contributes to a better understanding of designing nonlinear strain-adaptive features into hydrogel materials.
Collapse
Affiliation(s)
- Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Cecilia Oluwadunsin Akintayo
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Christiane Wenzel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | - Lucca Sielaff
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Alexander Ripp
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Henning J Jessen
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg 79104, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
21
|
Wadsworth GM, Zahurancik WJ, Zeng X, Pullara P, Lai LB, Sidharthan V, Pappu RV, Gopalan V, Banerjee PR. RNAs undergo phase transitions with lower critical solution temperatures. Nat Chem 2023; 15:1693-1704. [PMID: 37932412 PMCID: PMC10872781 DOI: 10.1038/s41557-023-01353-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Paul Pullara
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
22
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
23
|
Lu T, Javed S, Bonfio C, Spruijt E. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. SMALL METHODS 2023; 7:e2300294. [PMID: 37354057 DOI: 10.1002/smtd.202300294] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Compartmentalization is crucial for the functioning of cells. Membranes enclose and protect the cell, regulate the transport of molecules entering and exiting the cell, and organize cellular machinery in subcompartments. In addition, membraneless condensates, or coacervates, offer dynamic compartments that act as biomolecular storage centers, organizational hubs, or reaction crucibles. Emerging evidence shows that phase-separated membraneless bodies in the cell are involved in a wide range of functional interactions with cellular membranes, leading to transmembrane signaling, membrane remodeling, intracellular transport, and vesicle formation. Such functional and dynamic interplay between phase-separated droplets and membranes also offers many potential benefits to artificial cells, as shown by recent studies involving coacervates and liposomes. Depending on the relative sizes and interaction strength between coacervates and membranes, coacervates can serve as artificial membraneless organelles inside liposomes, as templates for membrane assembly and hybrid artificial cell formation, as membrane remodelers for tubulation and possibly division, and finally, as cargo containers for transport and delivery of biomolecules across membranes by endocytosis or direct membrane crossing. Here, recent experimental examples of each of these functions are reviewed and the underlying physicochemical principles and possible future applications are discussed.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Sadaf Javed
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Claudia Bonfio
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg, 67083, France
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
24
|
Takinoue M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 2023; 13:20230021. [PMID: 37577000 PMCID: PMC10415743 DOI: 10.1098/rsfs.2023.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Living systems are molecular assemblies whose dynamics are maintained by non-equilibrium chemical reactions. To date, artificial cells have been studied from such physical and chemical viewpoints. This review briefly gives a perspective on using DNA droplets in constructing artificial cells. A DNA droplet is a coacervate composed of DNA nanostructures, a novel category of synthetic DNA self-assembled systems. The DNA droplets have programmability in physical properties based on DNA base sequence design. The aspect of DNA as an information molecule allows physical and chemical control of nanostructure formation, molecular assembly and molecular reactions through the design of DNA base pairing. As a result, the construction of artificial cells equipped with non-equilibrium behaviours such as dynamical motions, phase separations, molecular sensing and computation using chemical energy is becoming possible. This review mainly focuses on such dynamical DNA droplets for artificial cell research in terms of computation and non-equilibrium chemical reactions.
Collapse
Affiliation(s)
- Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
25
|
Li J, Yang C, Zhang L, Li C, Xie S, Fu T, Zhang Z, Li L, Qi L, Lyu Y, Chen F, He L, Tan W. Phase Separation of DNA-Encoded Artificial Cells Boosts Signal Amplification for Biosensing. Angew Chem Int Ed Engl 2023; 62:e202306691. [PMID: 37455257 DOI: 10.1002/anie.202306691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Life-like hierarchical architecture shows great potential for advancing intelligent biosensing, but modular expansion of its sensitivity and functionality remains a challenge. Drawing inspiration from intracellular liquid-liquid phase separation, we discovered that a DNA-encoded artificial cell with a liquid core (LAC) can enhance peroxidase-like activity of Hemin and its DNA G-quadruplex aptamer complex (DGAH) without substrate-selectivity, unlike its gelled core (GAC) counterpart. The LAC is easily engineered as an ultrasensitive biosensing system, benefiting from DNA's high programmability and unique signal amplification capability mediated by liquid-liquid phase separation. As proof of concept, its versatility was successfully demonstrated by coupling with two molecular recognition elements to monitor tumor-related microRNA and profile cancer cell phenotypes. This scalable design philosophy offers new insights into the design of next generation of artificial cells-based biosensors.
Collapse
Affiliation(s)
- Juncai Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Cai Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lizhuan Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunying Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ziwen Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Longjie Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lubin Qi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lei He
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
26
|
Li Y, Zheng H, Lu H, Duan M, Li C, Li M, Li J, Wang L, Li Q, Chen J, Shen J. Noncanonical Condensation of Nucleic Acid Chains by Hydrophobic Gold Nanocrystals. JACS AU 2023; 3:2206-2215. [PMID: 37654586 PMCID: PMC10466341 DOI: 10.1021/jacsau.3c00252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Nucleic acid condensates are essential for various biological processes and have numerous applications in nucleic acid nanotechnology, gene therapy, and mRNA vaccines. However, unlike the in vivo condensation that is dependent on motor proteins, the in vitro condensation efficiency remains to be improved. Here, we proposed a hydrophobic interaction-driven mechanism for condensing long nucleic acid chains using atomically precise hydrophobic gold nanoclusters (Au NCs). We found that hydrophobic Au NCs could condense long single-stranded DNA or RNA to form composites of spherical nanostructures, which further assembled into bead-shaped suprastructures in the presence of excessive Au NCs. Thus, suprastructures displayed gel-like behaviors, and Au NCs could diffuse freely inside the condensates, which resemble the collective motions of condensin complexes inside chromosomes. The dynamic hydrophobic interactions between Au NCs and bases allow for the reversible release of nucleic acids in the presence of mild triggering agents. Our method represents a significant advancement toward the development of more efficient and versatile nucleic acid condensation techniques.
Collapse
Affiliation(s)
- Yu Li
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Department
of Stem Cells and Regenerative Medicine, Translational Medicine Research
Center, Naval Medical University, 800, Xiangyin Road, Shanghai 200433 ,China
| | - Haoran Zheng
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- Zhangjiang
Laboratory, 100 Haike
Road, Shanghai 201210, China
| | - Mulin Duan
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Zhangjiang
Laboratory, 100 Haike
Road, Shanghai 201210, China
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Liu W, Lupfer C, Samanta A, Sarkar A, Walther A. Switchable Hydrophobic Pockets in DNA Protocells Enhance Chemical Conversion. J Am Chem Soc 2023; 145:7090-7094. [PMID: 36971596 DOI: 10.1021/jacs.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Synthetic cell models help us understand living cells and the origin of life. Key aspects of living cells are crowded interiors where secondary structures, such as the cytoskeleton and membraneless organelles/condensates, can form. These can form dynamically and serve structural or functional purposes, such as protection from heat shock or as crucibles for various biochemical reactions. Inspired by these phenomena, we introduce a crowded all-DNA protocell and encapsulate a temperature-switchable DNA-b-polymer block copolymer, in which the synthetic polymer phase-segregates at elevated temperatures. We find that thermoreversible phase segregation of the synthetic polymer occurs via bicontinuous phase separation, resulting in artificial organelle structures that can reorient into larger domains depending on the viscoelastic properties of the protocell interior. Fluorescent sensors confirm the formation of hydrophobic compartments, which enhance the reactivity of bimolecular reactions. This study leverages the strengths of biological and synthetic polymers to construct advanced biohybrid artificial cells that provide insights into phase segregation under crowded conditions and the formation of organelles and microreactors in response to environmental stress.
Collapse
|
28
|
Hauf S, Yokobayashi Y. Chemical control of phase separation in DNA solutions. Chem Commun (Camb) 2023; 59:3751-3754. [PMID: 36911995 DOI: 10.1039/d2cc06901f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We designed a series of DNA sequences comprising a trinucleotide repeat segment and a small molecule-binding aptamer. Optimization of the DNA sequences and reaction conditions enabled chemical control of phase separation of DNA condensates. Our results demonstrate a new strategy to regulate biomolecular phase transition.
Collapse
Affiliation(s)
- Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 904-0495, Japan.
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 904-0495, Japan.
| |
Collapse
|
29
|
Li H, Yan Y, Chen J, Shi K, Song C, Ji Y, Jia L, Li J, Qiao Y, Lin Y. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates. SCIENCE ADVANCES 2023; 9:eade5853. [PMID: 36857444 PMCID: PMC9977178 DOI: 10.1126/sciadv.ade5853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Engineering artificial cellular systems capable of perceiving and transmitting external signals across membranes to activate downstream targets and coordinate protocellular responses is key to build cell-cell communications and protolife. Here, we report a synthetic photoreceptor-mediated signaling pathway with the integration of light harvesting, photo-to-chemical energy conversion, signal transmission, and amplification in synthetic cells, which ultimately resulted in protocell subcompartmentalization. Key to our design is a ruthenium-bipyridine complex that acts as a membrane-anchored photoreceptor to convert visible light into chemical information and transduce signals across the lipid membrane via flip-flop motion. By coupling receptor-mediated phototransduction with biological recognition and enzymatic cascade reactions, we further develop protocell signaling-encoded Boolean logic gates. Our results illustrate a minimal cell model to mimic the photoreceptor cells that can transduce the energy of light into intracellular responses and pave the way to modular control over the flow of information for complex metabolic and signaling pathways.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuwen Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
31
|
Tang J, Liang A, Yao C, Yang D. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials. Chemistry 2023; 29:e202202673. [PMID: 36263767 DOI: 10.1002/chem.202202673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The Review by Yang, Yao and colleagues (DOI: 10.1002/chem.202202673) describes recent developments in biofunctional DNA hydrogels and DNA nanocomplexes based on rolling circle amplification (RCA) and introduces assembly strategies and functionalization methods of the ultralong single-strand DNA produced by RCA to construct biofunctional materials.
Collapse
Affiliation(s)
- Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Aiqi Liang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
32
|
Confinement-Induced Fractionation and Liquid-Liquid Phase Separation of Polymer Mixtures. Polymers (Basel) 2023; 15:polym15030511. [PMID: 36771812 PMCID: PMC9921168 DOI: 10.3390/polym15030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The formation of (bio)molecular condensates via liquid-liquid phase separation in cells has received increasing attention, as these aggregates play important functional and regulatory roles within biological systems. However, the majority of studies focused on the behavior of pure systems in bulk solutions, thus neglecting confinement effects and the interplay between the numerous molecules present in cells. To better understand the physical mechanisms driving condensation in cellular environments, we perform molecular simulations of binary polymer mixtures in spherical droplets, considering both monodisperse and polydisperse molecular weight distributions for the longer polymer species. We find that confinement induces a spatial separation of the polymers by length, with the longer ones moving to the droplet center. This partitioning causes a distinct increase in the local polymer concentration near the droplet center, which is more pronounced in polydisperse systems. Consequently, the confined systems exhibit liquid-liquid phase separation at average polymer concentrations where bulk systems are still in the one-phase regime.
Collapse
|
33
|
Liu W, Samanta A, Deng J, Akintayo CO, Walther A. Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angew Chem Int Ed Engl 2022; 61:e202208951. [PMID: 36112754 PMCID: PMC9828218 DOI: 10.1002/anie.202208951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Liquid-liquid phase separation provides a versatile approach to fabricating cell-mimicking coacervates. Recently, it was discovered that phase separation of single-stranded DNA (ssDNA) allows for forming protocells and microgels in multicomponent systems. However, the mechanism of the ssDNA phase separation is not comprehensively understood. Here, we present mechanistic insights into the metal-dependent phase separation of ssDNA and leverage this understanding for a straightforward formation of all-DNA droplets. Two phase separation temperatures are found that correspond to the formation of primary nuclei and a growth process. Ca2+ allows for irreversible, whereas Mg2+ leads to reversible phase separation. Capitalizing on these differences makes it possible to control the information transfer of one-component DNA droplets and two-component core-shell protocells. This study introduces new kinetic traps of phase separating ssDNA that lead to new phenomena in cell-mimicking systems.
Collapse
Affiliation(s)
- Wei Liu
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Avik Samanta
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Jie Deng
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany,Present address: Department of Cancer BiologyDana-Farber Cancer Institute and Wyss Institute for Biologically Inspired EngineeringHarvard Medical SchoolBostonMA 02115USA
| | - Cecilia Oluwadunsin Akintayo
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany,Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany,Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
34
|
Lu C, Xu Y, Huang PJJ, Zandieh M, Wang Y, Zheng J, Liu J. Protection of DNA by metal ions at 95 °C: from lower critical solution temperature (LCST) behavior to coordination-driven self-assembly. NANOSCALE 2022; 14:14613-14622. [PMID: 36156621 DOI: 10.1039/d2nr03461a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While polyvalent metal ions and heating can both degrade nucleic acids, we herein report that a combination of them leads to stabilization. After incubating 4 mM various metal ions and DNA oligonucleotides at 95 °C for 3 h at pH 6 or 8, metal ions were divided into four groups based on gel electrophoresis results. Mg2+ can stabilize DNA at pH 6 without forming stable nanoparticles at room temperature. Co2+, Cu2+, Cd2+, Mn2+ and Zn2+ all protected the DNA and formed nanoparticles, whereas the nanoparticles formed with Fe2+ and Ni2+ were so stable that they remained even in the presence of EDTA. At pH 8, Ce3+ and Pb2+ showed degraded DNA bands. For Mg2+, better protection was achieved with higher metal and DNA concentrations. By monitoring temperature-programmed fluorescence change, a sudden drop in fluorescence intensity attributable to the lower critical solution temperature (LCST) transition of DNA was found to be around 80 °C for Mg2+, while this transition temperature decreased with increasing Mn2+ concentration. The unexpected thermal stability of DNA enabled by metal ions is useful for extending the application of DNA at high temperatures, forming coordination-driven nanomaterials, and it might offer insights into the origin of life on the early Earth.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yuancong Xu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yihao Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
35
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Samanta A, Hörner M, Liu W, Weber W, Walther A. Signal-processing and adaptive prototissue formation in metabolic DNA protocells. Nat Commun 2022; 13:3968. [PMID: 35803944 PMCID: PMC9270428 DOI: 10.1038/s41467-022-31632-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
The fundamental life-defining processes in living cells, such as replication, division, adaptation, and tissue formation, occur via intertwined metabolic reaction networks that process signals for downstream effects with high precision in a confined, crowded environment. Hence, it is crucial to understand and reenact some of these functions in wholly synthetic cell-like entities (protocells) to envision designing soft materials with life-like traits. Herein, we report on all-DNA protocells composed of a liquid DNA interior and a hydrogel-like shell, harboring a catalytically active DNAzyme, that converts DNA signals into functional metabolites that lead to downstream adaptation processes via site-selective strand displacement reactions. The downstream processes include intra-protocellular phenotype-like changes, prototissue formation via multivalent interactions, and chemical messenger communication between active sender and dormant receiver cell populations for sorted heteroprototissue formation. The approach integrates several tools of DNA-nanoscience in a synchronized way to mimic life-like behavior in artificial systems for future interactive materials.
Collapse
Affiliation(s)
- Avik Samanta
- A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Maximilian Hörner
- Faculty of Biology, Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wei Liu
- A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Wilfried Weber
- Faculty of Biology, Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany. .,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany.
| |
Collapse
|
37
|
Lee C, Do S, Lee JY, Kim M, Kim SM, Shin Y, Kim DN. Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers. Nucleic Acids Res 2022; 50:4187-4196. [PMID: 35390157 PMCID: PMC9023257 DOI: 10.1093/nar/gkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensitivity and weak interaction force remain a barrier for the facile and scalable assembly of DNA structures toward higher-order structures. We conducted this study to provide an alternative, non-base-pairing approach to connect nanoscale DNA units to yield micrometer-sized gels based on the sequential phase transition of amphiphilic unit structures. Strong electrostatic interactions between DNA nanostructures and polyelectrolyte spermines led to the formation of giant phase-separated aggregates of monomer units. Gelation could be initiated by the addition of NaCl, which weakened the electrostatic DNA-spermine interaction while attractive interactions between cholesterols created stable networks by crosslinking DNA monomers. In contrast to the conventional DNA gelation techniques, our system used solid aggregates as a precursor for DNA microgels. Therefore, in situ gelation could be achieved by depositing aggregates on the desired substrate and subsequently initiating a phase transition. Our approach can expand the utility and functionality of DNA hydrogels by using more complex nucleic acid assemblies as unit structures and combining the technique with top-down microfabrication methods.
Collapse
Affiliation(s)
- Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Minju Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Yongdae Shin
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
38
|
Yao S, Liao Y, Pan R, Zhu W, Xu Y, Yang Y, Qian X. Programmed co-assembly of DNA-peptide hybrid microdroplets by phase separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Affiliation(s)
- Dong Wang
- Department of Biological and Environmental Engineering Cornell University Ithaca New York 14853 USA
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Micro-Nano Research and Diagnosis Center Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Dan Luo
- Department of Biological and Environmental Engineering Cornell University Ithaca New York 14853 USA
- Kavli Institute at Cornell for Nanoscale Science Cornell University Ithaca New York 14853 USA
| |
Collapse
|
40
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
41
|
Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun 2021; 12:6620. [PMID: 34785657 PMCID: PMC8595643 DOI: 10.1038/s41467-021-26733-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Liquid-liquid phase separation of multivalent proteins and RNAs drives the formation of biomolecular condensates that facilitate membrane-free compartmentalization of subcellular processes. With recent advances, it is becoming increasingly clear that biomolecular condensates are network fluids with time-dependent material properties. Here, employing microrheology with optical tweezers, we reveal molecular determinants that govern the viscoelastic behavior of condensates formed by multivalent Arg/Gly-rich sticker-spacer polypeptides and RNA. These condensates behave as Maxwell fluids with an elastically-dominant rheological response at shorter timescales and a liquid-like behavior at longer timescales. The viscous and elastic regimes of these condensates can be tuned by the polypeptide and RNA sequences as well as their mixture compositions. Our results establish a quantitative link between the sequence- and structure-encoded biomolecular interactions at the microscopic scale and the rheological properties of the resulting condensates at the mesoscale, enabling a route to systematically probe and rationally engineer biomolecular condensates with programmable mechanics.
Collapse
Affiliation(s)
| | | | - Matthew Pham
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
42
|
Wang D, Liu P, Luo D. Putting DNA to Work as Generic Polymeric Materials. Angew Chem Int Ed Engl 2021; 61:e202110666. [PMID: 34545660 DOI: 10.1002/anie.202110666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 01/10/2023]
Abstract
DNA is a true polymer that stores the genetic information of an organism. With its amazing biological and polymeric characteristics, DNA has been regarded as a universal building block for the construction of diverse materials for real-world applications. Through various approaches including ligation, polymerization, chemical crosslinking, and physical crosslinking, both pure and hybrid DNA gels have been developed as generic materials. This Review discusses recent advances in the construction of DNA-based networks without considering any of DNA's genetic properties. In addition, we highlight the biomedical and non-biomedical applications of DNA as generic materials. Owing to the superb molecular recognition, self-assembly, and responsiveness of DNA, a mushrooming number of DNA materials with various properties have been developed for general utilization.
Collapse
Affiliation(s)
- Dong Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
43
|
Akintayo CO, Creusen G, Straub P, Walther A. Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Oluwadunsin Akintayo
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Guido Creusen
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Paula Straub
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
44
|
Huang Y, Wang X, Li J, Lin Y, Chen H, Liu X, Huang X. Reversible Light‐Responsive Coacervate Microdroplets with Rapid Regulation of Enzymatic Reaction Rate. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
45
|
Mu W, Ji Z, Zhou M, Wu J, Lin Y, Qiao Y. Membrane-confined liquid-liquid phase separation toward artificial organelles. SCIENCE ADVANCES 2021; 7:eabf9000. [PMID: 34049872 PMCID: PMC8163073 DOI: 10.1126/sciadv.abf9000] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 05/04/2023]
Abstract
As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Wang X, Zhang P, Tian L. Spatiotemporal organization of coacervate microdroplets. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Ludwanowski S, Samanta A, Loescher S, Barner‐Kowollik C, Walther A. A Modular Fluorescent Probe for Viscosity and Polarity Sensing in DNA Hybrid Mesostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003740. [PMID: 33717858 PMCID: PMC7927630 DOI: 10.1002/advs.202003740] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Indexed: 05/05/2023]
Abstract
There exists a critical need in biomedical molecular imaging and diagnostics for molecular sensors that report on slight changes to their local microenvironment with high spatial fidelity. Herein, a modular fluorescent probe, termed StyPy, is rationally designed which features i) an enormous and tunable Stokes shift based on twisted intramolecular charge transfer (TICT) processes with no overlap, a broad emission in the far-red/near-infrared (NIR) region of light and extraordinary quantum yields of fluorescence, ii) a modular applicability via facile para-fluoro-thiol reaction (PFTR), and iii) a polarity- and viscosity-dependent emission. This renders StyPy as a particularly promising molecular sensor. Based on the thorough characterization on the molecular level, StyPy reports on the viscosity change in all-DNA microspheres and indicates the hydrophilic and hydrophobic compartments of hybrid DNA-based mesostructures consisting of latex beads embedded in DNA microspheres. Moreover, the enormous Stokes shift of StyPy enables one to detect multiple fluorophores, while using only a single laser line for excitation in DNA protocells. The authors anticipate that the presented results for multiplexing information are of direct importance for advanced imaging in complex soft matter and biological systems.
Collapse
Affiliation(s)
- Simon Ludwanowski
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges‐Köhler‐Allee 105Freiburg79110Germany
| | - Avik Samanta
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges‐Köhler‐Allee 105Freiburg79110Germany
| | - Sebastian Loescher
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges‐Köhler‐Allee 105Freiburg79110Germany
| | - Christopher Barner‐Kowollik
- Centre for Material ScienceSchool of ChemistryPhysics and Mechanical EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 18Karlsruhe76128Germany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges‐Köhler‐Allee 105Freiburg79110Germany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 105FreiburgD‐79110Germany
| |
Collapse
|
48
|
Eisold S, Hoppe Alvarez L, Ran K, Hengsbach R, Fink G, Centeno Benigno S, Mayer J, Wöll D, Simon U. DNA introduces an independent temperature responsiveness to thermosensitive microgels and enables switchable plasmon coupling as well as controlled uptake and release. NANOSCALE 2021; 13:2875-2882. [PMID: 33306082 DOI: 10.1039/d0nr05650b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel DNA-microgel hybrid system with dual thermal responsiveness is introduced uitilizing covalent coupling of single stranded DNA (ssDNA) to thermoresponsive microgels (μGs). The spatial distribution of the coupling sites for the ssDNA was characterized with 3D superresolution fluorescence microscopy. The DNA-functionalized μGs remain thermoresponsive and can take up dye-labeled complementary ssDNA, which can be released again by overcoming the dehybridization temperature of the DNA independently of the volume phase transition (VPT) of the μGs. The same holds for nano-objects represented by plasmonic gold nanoparticles (AuNPs), the penetration depth of which was visualized via TEM tomography and 3D reconstruction and which show enhanced plasmonic coupling in the collapsed state of the μG and thus gets switchable. In contrast, if ssDNA was taken up just by non-specific interactions, i.e. into non-functionalized μGs, its release is temperature-independent and can only be induced by increasing the salt concentration. Thus, the incorporated ssDNA represents highly selectice binding sites determined by their base number and sequence, which makes the VPT, beeing determined by the μG composition, and the reversible uptake and release enabled through programmable DNA hybridization are independent features. The combination with the typically high biocompatibility and the retained swellability and permeability hold promise for new fundamental insights as well as for potential applications in biological environments.
Collapse
Affiliation(s)
- Sabine Eisold
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Karoui H, Seck MJ, Martin N. Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Chem Sci 2021; 12:2794-2802. [PMID: 34164043 PMCID: PMC8179374 DOI: 10.1039/d0sc06418a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Membraneless organelles are phase-separated droplets that are dynamically assembled and dissolved in response to biochemical reactions in cells. Complex coacervate droplets produced by associative liquid-liquid phase separation offer a promising approach to mimic such dynamic compartmentalization. Here, we present a model for membraneless organelles based on enzyme/polyelectrolyte complex coacervates able to induce their own condensation and dissolution. We show that glucose oxidase forms coacervate droplets with a cationic polysaccharide on a narrow pH range, so that enzyme-driven monotonic pH changes regulate the emergence, growth, decay and dissolution of the droplets depending on the substrate concentration. Significantly, we demonstrate that time-programmed coacervate assembly and dissolution can be achieved in a single-enzyme system. We further exploit this self-driven enzyme phase separation to produce multiphase droplets via dynamic polyion self-sorting in the presence of a secondary coacervate phase. Taken together, our results open perspectives for the realization of programmable synthetic membraneless organelles based on self-regulated enzyme/polyelectrolyte complex coacervation.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| | - Marianne J Seck
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| |
Collapse
|
50
|
Deng J, Walther A. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation. Chem 2020; 6:3329-3343. [PMID: 35252623 PMCID: PMC7612463 DOI: 10.1016/j.chempr.2020.09.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multivalency-driven liquid-liquid phase separation (LLPS) is essential in biomolecular condensates to facilitate spatiotemporal regulation of biological functions. Providing programmable model systems would help to better understand the LLPS processes in biology, and furnish new types of compartmentalized synthetic reaction crucibles that exploit biological principles. Herein, we demonstrate a concept for programming LLPS using transient multivalency between ATP-driven sequence-defined functionalized nucleic acid polymers (SfNAPs), which serve as simple models for membrane-less organelles. The ATP-driven SfNAPs are transiently formed by an enzymatic reaction network (ERN) of concurrent ATP-powered DNA ligation and DNA restriction. The lifetimes can be programmed by the ATP concentration, which manifests on the LLPS length scale in tunable lifetimes for the all-DNA coacervates. Critically, the prominent programmability of the DNA-based building blocks allows to encode distinct molecular recognitions for multiple multivalent systems, enabling sorted LLPS and thus multicomponent DNA coacervates, reminiscent of the diverse membraneless organelles in biological systems. The ATP-driven coacervates are capable for multivalent trapping of micron-scale colloids and biomolecules to generate functions as emphasized for rate enhancements in enzymatic cascades. This work supports ATP-driven multivalent coacervation as a valuable mechanism for dynamic multicomponent and function biomolecular condensate mimics and for autonomous materials design in general.
Collapse
Affiliation(s)
- Jie Deng
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier- Straße 31, 79104 Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier- Straße 31, 79104 Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|