1
|
Advincula X, Fong KD, Michaelides A, Schran C. Protons Accumulate at the Graphene-Water Interface. ACS NANO 2025; 19:17728-17737. [PMID: 40294165 PMCID: PMC12080325 DOI: 10.1021/acsnano.5c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Water's ability to autoionize into hydroxide and hydronium ions profoundly influences surface properties, rendering interfaces either basic or acidic. While it is well-established that protons show an affinity to the air-water interface, a critical knowledge gap exists in technologically relevant surfaces like the graphene-water interface. Here we use machine learning-based simulations with first-principles accuracy to unravel the behavior of hydroxide and hydronium ions at the graphene-water interface. Our findings reveal that protons accumulate at the graphene-water interface, with the hydronium ion predominantly residing in the first contact layer of water. In contrast, the hydroxide ion exhibits a bimodal distribution, found both near the surface and further away from it. Analysis of the underlying electronic structure reveals local polarization effects, resulting in counterintuitive charge rearrangement. Proton propensity to the graphene-water interface challenges the interpretation of surface experiments and is expected to have far-reaching consequences for ion conductivity, interfacial reactivity, and proton-mediated processes.
Collapse
Affiliation(s)
- Xavier
R. Advincula
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K.
| | - Kara D. Fong
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K.
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K.
| | - Christoph Schran
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K.
| |
Collapse
|
2
|
Sattari-Esfahlan SM, Mirzaei S, Josline MJ, Moon JY, Hyun SH, Jang H, Lee JH. Amorphous boron nitride: synthesis, properties and device application. NANO CONVERGENCE 2025; 12:22. [PMID: 40314909 PMCID: PMC12048386 DOI: 10.1186/s40580-025-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.
Collapse
Affiliation(s)
| | - Saeed Mirzaei
- CEITEC BUT, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
- Fraunhofer Institute for Material and Beam Technology, WinterbergstraBe 28, E01277, Dresden, Germany
| | | | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sang-Hwa Hyun
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Houk Jang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| | - Jae-Hyun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117575, Singapore.
| |
Collapse
|
3
|
Mayner E, Ronceray N, Lihter M, Chen TH, Watanabe K, Taniguchi T, Radenovic A. Monitoring Electrochemical Dynamics through Single-Molecule Imaging of hBN Surface Emitters in Organic Solvents. ACS NANO 2024; 18:27401-27410. [PMID: 39321411 PMCID: PMC11468151 DOI: 10.1021/acsnano.4c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electrochemical techniques conventionally lack spatial resolution and average local information over an entire electrode. While advancements in spatial resolution have been made through scanning probe methods, monitoring dynamics over large areas is still challenging, and it would be beneficial to be able to decouple the probe from the electrode itself. In this work, we leverage single molecule microscopy to spatiotemporally monitor analyte surface concentrations over a wide area using unmodified hexagonal boron nitride (hBN) in organic solvents. Through a sensing scheme based on redox-active species interactions with fluorescent emitters at the surface of hBN, we observe a region of a linear decrease in the number of emitters against increasingly positive potentials applied to a nearby electrode. We find consistent trends in electrode reaction kinetics vs overpotentials between potentiostat-reported currents and optically read emitter dynamics, showing Tafel slopes greater than 290 mV·decade-1. Finally, we draw on the capabilities of spectral single-molecule localization microscopy (SMLM) to monitor the fluorescent species' identity, enabling multiplexed readout. Overall, we show dynamic measurements of analyte concentration gradients on a micrometer-length scale with nanometer-scale depth and precision. Considering the many scalable options for engineering fluorescent emitters with two-dimensional (2D) materials, our method holds promise for optically detecting a range of interacting species with exceptional localization precision.
Collapse
Affiliation(s)
- Eveline Mayner
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Martina Lihter
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
- Institute
of Physics, Bijenicka
46, Zagreb HR-10000, Croatia
| | - Tzu-Heng Chen
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, Institute of Bioengineering
Ecole Polytechnique Federale de Lausanne, EPFL STI IBI-STI LBEN BM, Lausanne CH-1015, Switzerland
| |
Collapse
|
4
|
Li Y, Yang S, Bao W, Tao Q, Jiang X, Li J, He P, Wang G, Qi K, Dong H, Ding G, Xie X. Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots. Nat Commun 2024; 15:6634. [PMID: 39103388 DOI: 10.1038/s41467-024-50982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Investigating proton transport at the interface in an excited state facilitates the mechanistic investigation and utilization of nanomaterials. However, there is a lack of suitable tools for in-situ and interfacial analysis. Here we addresses this gap by in-situ observing the proton transport of graphene quantum dots (GQDs) in an excited state through reduction of magnetic resonance relaxation time. Experimental results, utilizing 0.1 mT ultra-low-field nuclear magnetic resonance relaxometry compatible with a light source, reveal the light-induced proton dissociation and acidity of GQDs' microenvironment in the excited state (Hammett acidity function: -13.40). Theoretical calculations demonstrate significant acidity enhancement in -OH functionalized GQDs with light induction ( p K a * = -4.62, stronger than that of H2SO4). Simulations highlight the contributions of edge and phenolic -OH groups to proton dissociation. The light-induced superacidic microenvironment of GQDs benefits functionalization and improves the catalytic performances of GQDs. Importantly, this work advances the understanding of interfacial properties of light-induced sp2-sp3 carbon nanostructure and provides a valuable tool for exploring catalyst interfaces in photocatalysis.
Collapse
Affiliation(s)
- Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Wancheng Bao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Quan Tao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiuyun Jiang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kai Qi
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiaoming Xie
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Yu Z, Smith CS, Caneva S. Site-Specific Integration of Hexagonal Boron Nitride Quantum Emitters on 2D DNA Origami Nanopores. NANO LETTERS 2024; 24:8510-8517. [PMID: 38856705 PMCID: PMC11261624 DOI: 10.1021/acs.nanolett.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.
Collapse
Affiliation(s)
- Yabin Wang
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD, Delft, The Netherlands
- Delft
Center for Systems and Control, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Ze Yu
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD, Delft, The Netherlands
| | - Carlas S. Smith
- Delft
Center for Systems and Control, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Sabina Caneva
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD, Delft, The Netherlands
| |
Collapse
|
6
|
Cong D, Sun J, Pan Y, Fang X, Yang L, Zhou W, Yu T, Li Z, Liu C, Deng WQ. Hydrogen-Bond-Network Breakdown Boosts Selective CO 2 Photoreduction by Suppressing H 2 Evolution. Angew Chem Int Ed Engl 2024; 63:e202316991. [PMID: 38520357 DOI: 10.1002/anie.202316991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Conventional strategies for highly efficient and selective CO2 photoreduction focus on the design of catalysts and cocatalysts. In this study, we discover that hydrogen bond network breakdown in reaction system can suppress H2 evolution, thereby improving CO2 photoreduction performance. Photosensitive poly(ionic liquid)s are designed as photocatalysts owing to their strong hydrogen bonding with solvents. The hydrogen bond strength is tuned by solvent composition, thereby effectively regulating H2 evolution (from 0 to 12.6 mmol g-1 h-1). No H2 is detected after hydrogen bond network breakdown with trichloromethane or tetrachloromethane as additives. CO production rate and selectivity increase to 35.4 mmol g-1 h-1 and 98.9 % with trichloromethane, compared with 0.6 mmol g-1 h-1 and 26.2 %, respectively, without trichloromethane. Raman spectroscopy and theoretical calculations confirm that trichloromethane broke the systemic hydrogen bond network and subsequently suppressed H2 evolution. This hydrogen bond network breakdown strategy may be extended to other catalytic reactions involving H2 evolution.
Collapse
Affiliation(s)
- Die Cong
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Jikai Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Yuwei Pan
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Xu Fang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Li Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Tie Yu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Chengcheng Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| | - Wei-Qiao Deng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Cao Y, Zhou W, Shen C, Qiu H, Guo W. Proton Coulomb Blockade Effect Involving Covalent Oxygen-Hydrogen Bond Switching. PHYSICAL REVIEW LETTERS 2024; 132:188401. [PMID: 38759163 DOI: 10.1103/physrevlett.132.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/13/2024] [Indexed: 05/19/2024]
Abstract
Instead of the canonical Grotthuss mechanism, we show that a knock-on proton transport process is preferred between organic functional groups (e.g., -COOH and -OH) and adjacent water molecules in biological proton channel and synthetic nanopores through comprehensive quantum and classical molecular dynamics simulations. The knock-on process is accomplished by the switching of covalent O─H bonds of the functional group under externally applied electric fields. The proton transport through the synthetic nanopore exhibits nonlinear current-voltage characteristics, suggesting an unprecedented proton Coulomb blockade effect. These findings not only enhance the understanding of proton transport in nanoconfined systems but also pave the way for the design of a variety of proton-based nanofluidic devices.
Collapse
Affiliation(s)
- Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Wanqi Zhou
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chun Shen
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
8
|
Murzakhanov FF, Sadovnikova MA, Gracheva IN, Mamin GV, Baibekov EI, Mokhov EN. Exploring the properties of theVB-defect in hBN: optical spin polarization, Rabi oscillations, and coherent nuclei modulation. NANOTECHNOLOGY 2024; 35:155001. [PMID: 38154127 DOI: 10.1088/1361-6528/ad1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023]
Abstract
Optically active point defects in semiconductors have received great attention in the field of solid-state quantum technologies. Hexagonal boron nitride, with an ultra-wide band gapEg= 6 eV, containing a negatively charged boron vacancy (VB-) with unique spin, optical, and coherent properties presents a new two-dimensional platform for the implementation of quantum technologies. This work establishes the value ofVB-spin polarization under optical pumping withλext= 532 nm laser using high-frequency (νmw= 94 GHz) electron paramagnetic resonance (EPR) spectroscopy. In optimal conditions polarization was found to beP≈ 38.4%. Our study reveals that Rabi oscillations induced on polarized spin states persist for up to 30-40μs, which is nearly two orders of magnitude longer than what was previously reported. Analysis of the coherent electron-nuclear interaction through the observed electron spin echo envelope modulation made it possible to detect signals from remote nitrogen and boron nuclei, and to establish a corresponding quadrupole coupling constantCq= 180 kHz related to nuclear quadrupole moment of14N. These results have fundamental importance for understanding the spin properties of boron vacancy.
Collapse
Affiliation(s)
- Fadis F Murzakhanov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | | | - Irina N Gracheva
- Institute of Physics, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Georgy V Mamin
- Institute of Physics, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Eduard I Baibekov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Evgeniy N Mokhov
- Ioffe Institute, Polytekhnicheskaya, 26, St Petersburg 194021, Russia
| |
Collapse
|
9
|
Chen XY, Cao LH, Bai XT, Cao XJ, Yang D, Gao YD. Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels. PRECISION CHEMISTRY 2023; 1:608-615. [PMID: 39473576 PMCID: PMC11504640 DOI: 10.1021/prechem.3c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/17/2024]
Abstract
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Dan Yang
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Yi-Da Gao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| |
Collapse
|
10
|
Scalfi L, Becker MR, Netz RR, Bocquet ML. Enhanced interfacial water dissociation on a hydrated iron porphyrin single-atom catalyst in graphene. Commun Chem 2023; 6:236. [PMID: 37919471 PMCID: PMC10622426 DOI: 10.1038/s42004-023-01027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Single Atom Catalysis (SAC) is an expanding field of heterogeneous catalysis in which single metallic atoms embedded in different materials catalyze a chemical reaction, but these new catalytic materials still lack fundamental understanding when used in electrochemical environments. Recent characterizations of non-noble metals like Fe deposited on N-doped graphitic materials have evidenced two types of Fe-N4 fourfold coordination, either of pyridine type or of porphyrin type. Here, we study these defects embedded in a graphene sheet and immersed in an explicit aqueous medium at the quantum level. While the Fe-pyridine SAC model is clear cut and widely studied, it is not the case for the Fe-porphyrin SAC that remains ill-defined, because of the necessary embedding of odd-membered rings in graphene. We first propose an atomistic model for the Fe-porphyrin SAC. Using spin-polarized ab initio molecular dynamics, we show that both Fe SACs spontaneously adsorb two interfacial water molecules from the solvent on opposite sides. Interestingly, we unveil a different catalytic reactivity of the two hydrated SAC motives: while the Fe-porphyrin defect eventually dissociates an adsorbed water molecule under a moderate external electric field, the Fe-pyridine defect does not convey water dissociation.
Collapse
Affiliation(s)
- Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian R Becker
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
11
|
Robin P, Lizée M, Yang Q, Emmerich T, Siria A, Bocquet L. Disentangling 1/ f noise from confined ion dynamics. Faraday Discuss 2023; 246:556-575. [PMID: 37449958 DOI: 10.1039/d3fd00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Ion transport through biological and solid-state nanochannels is known to be a highly noisy process. The power spectrum of current fluctuations is empirically known to scale like the inverse of frequency, following the long-standing yet poorly understood Hooge's law. Here, we report measurements of current fluctuations across nanometer-scale two-dimensional channels with different surface properties. The structure of fluctuations is found to depend on the channel's material. While in pristine channels current fluctuations scale like 1/f1+a with a = 0-0.5, the noise power spectrum of activated graphite channels displays different regimes depending on frequency. Based on these observations, we develop a theoretical formalism directly linking ion dynamics and current fluctuations. We predict that the noise power spectrum takes the form 1/f × Schannel(f), where 1/f fluctuations emerge in fluidic reservoirs on both sides of the channel and Schannel describes fluctuations inside it. Deviations to Hooge's law thus allow direct access to the ion transport dynamics of the channel - explaining the entire phenomenology observed in experiments on 2D nanochannels. Our results demonstrate how current fluctuations can be used to characterize nanoscale ion dynamics.
Collapse
Affiliation(s)
- Paul Robin
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, Paris, France.
| | - Mathieu Lizée
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, Paris, France.
| | - Qian Yang
- National Graphene Institute, The University of Manchester, Manchester, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Théo Emmerich
- Laboratory of Nanoscale Biology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alessandro Siria
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, Paris, France.
| | - Lydéric Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, Paris, France.
| |
Collapse
|
12
|
Ronceray N, You Y, Glushkov E, Lihter M, Rehl B, Chen TH, Nam GH, Borza F, Watanabe K, Taniguchi T, Roke S, Keerthi A, Comtet J, Radha B, Radenovic A. Liquid-activated quantum emission from pristine hexagonal boron nitride for nanofluidic sensing. NATURE MATERIALS 2023; 22:1236-1242. [PMID: 37652991 PMCID: PMC10533396 DOI: 10.1038/s41563-023-01658-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches that enable direct imaging at the molecular level. Here we harness fluorescence originating from single-photon emitters at the surface of hexagonal boron nitride for molecular imaging and sensing in nanometrically confined liquids. The emission originates from the chemisorption of organic solvent molecules onto native surface defects, revealing single-molecule dynamics at the interface through the spatially correlated activation of neighbouring defects. Emitter spectra further offer a direct readout of the local dielectric properties, unveiling increasing dielectric order under nanometre-scale confinement. Liquid-activated native hexagonal boron nitride defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.
Collapse
Affiliation(s)
- Nathan Ronceray
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Yi You
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, Zagreb, Croatia
| | - Benjamin Rehl
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tzu-Heng Chen
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gwang-Hyeon Nam
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Fanny Borza
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ashok Keerthi
- National Graphene Institute, The University of Manchester, Manchester, UK
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Jean Comtet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, Paris, France
| | - Boya Radha
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Richter L, Szalai AM, Manzanares-Palenzuela CL, Kamińska I, Tinnefeld P. Exploring the Synergies of Single-Molecule Fluorescence and 2D Materials Coupled by DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303152. [PMID: 37670535 DOI: 10.1002/adma.202303152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Indexed: 09/07/2023]
Abstract
The world of 2D materials is steadily growing, with numerous researchers attempting to discover, elucidate, and exploit their properties. Approaches relying on the detection of single fluorescent molecules offer a set of advantages, for instance, high sensitivity and specificity, that allow the drawing of conclusions with unprecedented precision. Herein, it is argued how the study of 2D materials benefits from fluorescence-based single-molecule modalities, and vice versa. A special focus is placed on DNA, serving as a versatile adaptor when anchoring single dye molecules to 2D materials. The existing literature on the fruitful combination of the two fields is reviewed, and an outlook on the additional synergies that can be created between them provided.
Collapse
Affiliation(s)
- Lars Richter
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| | - Alan M Szalai
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| | - C Lorena Manzanares-Palenzuela
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| | - Izabela Kamińska
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| |
Collapse
|
14
|
Das A, Yadav V, Krishnamurthy CV, Jaiswal M. Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization. NANOSCALE ADVANCES 2023; 5:4901-4910. [PMID: 37705784 PMCID: PMC10496919 DOI: 10.1039/d3na00524k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed.
Collapse
Affiliation(s)
- Anjan Das
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Vikas Yadav
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - C V Krishnamurthy
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Manu Jaiswal
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
15
|
Weichselbaum E, Galimzyanov T, Batishchev OV, Akimov SA, Pohl P. Proton Migration on Top of Charged Membranes. Biomolecules 2023; 13:352. [PMID: 36830721 PMCID: PMC9953355 DOI: 10.3390/biom13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Proton relay between interfacial water molecules allows rapid two-dimensional diffusion. An energy barrier, ΔGr‡, opposes proton-surface-to-bulk release. The ΔGr‡-regulating mechanism thus far has remained unknown. Here, we explored the effect interfacial charges have on ΔGr‡'s enthalpic and entropic constituents, ΔGH‡ and ΔGS‡, respectively. A light flash illuminating a micrometer-sized membrane patch of a free-standing planar lipid bilayer released protons from an adsorbed hydrophobic caged compound. A lipid-anchored pH-sensitive dye reported protons' arrival at a distant membrane patch. Introducing net-negative charges to the bilayer doubled ΔGH‡, while positive net charges decreased ΔGH‡. The accompanying variations in ΔGS‡ compensated for the ΔGH‡ modifications so that ΔGr‡ was nearly constant. The increase in the entropic component of the barrier is most likely due to the lower number and strength of hydrogen bonds known to be formed by positively charged residues as compared to negatively charged moieties. The resulting high ΔGr‡ ensured interfacial proton diffusion for all measured membranes. The observation indicates that the variation in membrane surface charge alone is a poor regulator of proton traffic along the membrane surface.
Collapse
Affiliation(s)
- Ewald Weichselbaum
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Timur Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, Moscow 119991, Russia
| | - Oleg V. Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, Moscow 119991, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria
| |
Collapse
|
16
|
Zhao X, Wang J, Lian L, Zhang G, An P, Zeng K, He H, Yuan T, Huang J, Wang L, Liu YN. Oxygen Vacancy-Reinforced Water-Assisted Proton Hopping for Enhanced Catalytic Hydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaojun Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lizhen Lian
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Guangji Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong 516007, P. R. China
| | - Ping An
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Haichuan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Tiechui Yuan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jianhan Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - You-Nian Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
17
|
Hao H, Adams EM, Funke S, Schwaab G, Havenith M, Head-Gordon T. Highly Altered State of Proton Transport in Acid Pools in Charged Reverse Micelles. J Am Chem Soc 2023; 145:1826-1834. [PMID: 36633459 PMCID: PMC9881006 DOI: 10.1021/jacs.2c11331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 01/13/2023]
Abstract
Transport mechanisms of solvated protons of 1 M HCl acid pools, confined within reverse micelles (RMs) containing the negatively charged surfactant sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) or the positively charged cetyltrimethylammonium bromide (CTABr), are analyzed with reactive force field simulations to interpret dynamical signatures from TeraHertz absorption and dielectric relaxation spectroscopy. We find that the forward proton hopping events for NaAOT are further suppressed compared to a nonionic RM, while the Grotthuss mechanism ceases altogether for CTABr. We attribute the sluggish proton dynamics for both charged RMs as due to headgroup and counterion charges that expel hydronium and chloride ions from the interface and into the bulk interior, thereby increasing the pH of the acid pools relative to the nonionic RM. For charged NaAOT and CTABr RMs, the localization of hydronium near a counterion or conjugate base reduces the Eigen and Zundel configurations that enable forward hopping. Thus, localized oscillatory hopping dominates, an effect that is most extreme for CTABr in which the proton residence time increases dramatically such that even oscillatory hopping is slow.
Collapse
Affiliation(s)
- Hongxia Hao
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Ellen M. Adams
- Cluster
of Excellence Physics of Life, Technische
Universität Dresden, 01307Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource
Ecology, 01328Dresden, Germany
| | - Sarah Funke
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801Bochum, Germany
| | - Martina Havenith
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801Bochum, Germany
| | - Teresa Head-Gordon
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
- Department
of Bioengineering, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| |
Collapse
|
18
|
Robin P, Emmerich T, Ismail A, Niguès A, You Y, Nam GH, Keerthi A, Siria A, Geim AK, Radha B, Bocquet L. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023; 379:161-167. [PMID: 36634187 DOI: 10.1126/science.adc9931] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fine-tuned ion transport across nanoscale pores is key to many biological processes, including neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties inaccessible at larger scales and triggering hopes of reproducing the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels. We unveil two types of nanofluidic memristors depending on channel material and confinement, with memory ranging from minutes to hours. We explain how large time scales could emerge from interfacial processes such as ionic self-assembly or surface adsorption. Such behavior allowed us to implement Hebbian learning with nanofluidic systems. This result lays the foundation for biomimetic computations on aqueous electrolytic chips.
Collapse
Affiliation(s)
- P Robin
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - T Emmerich
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - A Ismail
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - A Niguès
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Y You
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - G-H Nam
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - A Keerthi
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Chemistry, The University of Manchester, Manchester, UK
| | - A Siria
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - A K Geim
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - B Radha
- National Graphene Institute, The University of Manchester, Manchester, UK.,Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - L Bocquet
- Laboratoire de Physique de l'Ecole normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
19
|
Nonahal M, Li C, Tjiptoharsono F, Ding L, Stewart C, Scott J, Toth M, Ha ST, Kianinia M, Aharonovich I. Coupling spin defects in hexagonal boron nitride to titanium dioxide ring resonators. NANOSCALE 2022; 14:14950-14955. [PMID: 36069362 DOI: 10.1039/d2nr02522a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spin-dependent optical transitions are attractive for a plethora of applications in quantum technologies. Here we report on utilization of high quality ring resonators fabricated from TiO2 to enhance the emission from negatively charged boron vacancies (VB-) in hexagonal Boron Nitride. We show that the emission from these defects can efficiently couple into the whispering gallery modes of the ring resonators. Optically coupled VB- showed photoluminescence contrast in optically detected magnetic resonance signals from the hybrid coupled devices. Our results demonstrate a practical method for integration of spin defects in 2D materials with dielectric resonators which is a promising platform for quantum technologies.
Collapse
Affiliation(s)
- Milad Nonahal
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Chi Li
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Febiana Tjiptoharsono
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Kinesis, 138635 Singapore
| | - Lu Ding
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Kinesis, 138635 Singapore
| | - Connor Stewart
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - John Scott
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Milos Toth
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Son Tung Ha
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Kinesis, 138635 Singapore
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
20
|
Xiao Y, Xu W. Single-molecule fluorescence imaging for probing nanocatalytic process. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Yang J, Tu B, Fang M, Li L, Tang Z. Nanoscale Pore-Pore Coupling Effect on Ion Transport through Ordered Porous Monolayers. ACS NANO 2022; 16:13294-13300. [PMID: 35969205 DOI: 10.1021/acsnano.2c05907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinct from the conventional view that nanopores are considered independent channels for mass transport, recent study on the covalent organic framework (COF)-based monolayers characteristic of an ordered nanopore array exhibits a series of interesting properties originating from the strong interactions between adjacent pores. These interactions are determined to be highly dependent on interpore distance and pose a significant influence on the ion transport, accounting for the exceptional membrane performance including both selectivity and conductance. In this Perspective, we discuss the recently discovered nanoscale pore-pore coupling as well as the exciting features of porous nanostructures. We also look at the challenges and future opportunities of ion transport in ordered porous monolayers in the aspects of both fundamental research and practical use.
Collapse
Affiliation(s)
- Jinlei Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Munan Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Zuo K, Zhang X, Huang X, Oliveira EF, Guo H, Zhai T, Wang W, Alvarez PJJ, Elimelech M, Ajayan PM, Lou J, Li Q. Ultrahigh resistance of hexagonal boron nitride to mineral scale formation. Nat Commun 2022; 13:4523. [PMID: 35927249 PMCID: PMC9352771 DOI: 10.1038/s41467-022-32193-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Formation of mineral scale on a material surface has profound impact on a wide range of natural processes as well as industrial applications. However, how specific material surface characteristics affect the mineral-surface interactions and subsequent mineral scale formation is not well understood. Here we report the superior resistance of hexagonal boron nitride (hBN) to mineral scale formation compared to not only common metal and polymer surfaces but also the highly scaling-resistant graphene, making hBN possibly the most scaling resistant material reported to date. Experimental and simulation results reveal that this ultrahigh scaling-resistance is attributed to the combination of hBN’s atomically-smooth surface, in-plane atomic energy corrugation due to the polar boron-nitrogen bond, and the close match between its interatomic spacing and the size of water molecules. The latter two properties lead to strong polar interactions with water and hence the formation of a dense hydration layer, which strongly hinders the approach of mineral ions and crystals, decreasing both surface heterogeneous nucleation and crystal attachment. Scale formation may have detrimental effects on the properties and functions of materials’ surfaces. Here the authors report the high scaling resistance of hexagonal boron nitride and relate it to the atomic level structure and interaction with water molecules.
Collapse
Affiliation(s)
- Kuichang Zuo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environment Sciences and Engineering, Peking University, Beijing, 100871, China.,Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, TX, 77005, USA.,NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA
| | - Xiang Zhang
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA.,Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, TX, 77005, USA.,NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA
| | - Eliezer F Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.,São Paulo State Department of Education, São Paulo, Brazil
| | - Hua Guo
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Tianshu Zhai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weipeng Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, TX, 77005, USA.,NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA
| | - Menachem Elimelech
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA.,Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Pulickel M Ajayan
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA. .,Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Jun Lou
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA. .,Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA. .,Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, TX, 77005, USA. .,NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, TX, 77005, USA. .,Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA. .,Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
23
|
Murzakhanov FF, Mamin GV, Orlinskii SB, Gerstmann U, Schmidt WG, Biktagirov T, Aharonovich I, Gottscholl A, Sperlich A, Dyakonov V, Soltamov VA. Electron-Nuclear Coherent Coupling and Nuclear Spin Readout through Optically Polarized V B- Spin States in hBN. NANO LETTERS 2022; 22:2718-2724. [PMID: 35357842 DOI: 10.1021/acs.nanolett.1c04610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coherent coupling of defect spins with surrounding nuclei along with the endowment to read out the latter are basic requirements for an application in quantum technologies. We show that negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) meet these prerequisites. We demonstrate Hahn-echo coherence of the VB- spin with a characteristic decay time Tcoh = 15 μs, close to the theoretically predicted limit of 18 μs for defects in hBN. Elongation of the coherence time up to 36 μs is demonstrated by means of the Carr-Purcell-Meiboom-Gill decoupling technique. Modulation of the Hahn-echo decay is shown to be induced by coherent coupling of the VB- spin with the three nearest 14N nuclei via a nuclear quadrupole interaction of 2.11 MHz. DFT calculation confirms that the electron-nuclear coupling is confined to the defective layer and stays almost unchanged with a transition from the bulk to the single layer.
Collapse
Affiliation(s)
| | | | | | - Uwe Gerstmann
- Theoretische Materialphysik, Universität Paderborn, 33098 Paderborn, Germany
| | - Wolf Gero Schmidt
- Theoretische Materialphysik, Universität Paderborn, 33098 Paderborn, Germany
| | - Timur Biktagirov
- Theoretische Materialphysik, Universität Paderborn, 33098 Paderborn, Germany
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Andreas Gottscholl
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Andreas Sperlich
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Vladimir Dyakonov
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
24
|
Yang T, Mendelson N, Li C, Gottscholl A, Scott J, Kianinia M, Dyakonov V, Toth M, Aharonovich I. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. NANOSCALE 2022; 14:5239-5244. [PMID: 35315850 DOI: 10.1039/d1nr07919k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional hexagonal boron nitride (hBN) has attracted much attention as a platform for studies of light-matter interactions at the nanoscale, especially in quantum nanophotonics. Recent efforts have focused on spin defects, specifically negatively charged boron vacancy (VB-) centers. Here, we demonstrate a scalable method to enhance the VB- emission using an array of SiO2 nanopillars. We achieve a 4-fold increase in photoluminescence (PL) intensity, and a corresponding 4-fold enhancement in optically detected magnetic resonance (ODMR) contrast. Furthermore, the VB- ensembles provide useful information about the strain fields associated with the strained hBN at the nanopillar sites. Our results provide an accessible way to increase the emission intensity as well as the ODMR contrast of the VB- defects, while simultaneously form a basis for miniaturized quantum sensors in layered heterostructures.
Collapse
Affiliation(s)
- Tieshan Yang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Noah Mendelson
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Chi Li
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Andreas Gottscholl
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - John Scott
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Vladimir Dyakonov
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Milos Toth
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
25
|
Glushkov E, Macha M, Räth E, Navikas V, Ronceray N, Cheon CY, Ahmed A, Avsar A, Watanabe K, Taniguchi T, Shorubalko I, Kis A, Fantner G, Radenovic A. Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water. ACS NANO 2022; 16:3695-3703. [PMID: 35254820 PMCID: PMC8945698 DOI: 10.1021/acsnano.1c07086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hexagonal boron nitride (hBN) has emerged as a promising material platform for nanophotonics and quantum sensing, hosting optically active defects with exceptional properties such as high brightness and large spectral tuning. However, precise control over deterministic spatial positioning of emitters in hBN remained elusive for a long time, limiting their proper correlative characterization and applications in hybrid devices. Recently, focused ion beam (FIB) systems proved to be useful to engineer several types of spatially defined emitters with various structural and photophysical properties. Here we systematically explore the physical processes leading to the creation of optically active defects in hBN using FIB and find that beam-substrate interaction plays a key role in the formation of defects. These findings are confirmed using transmission electron microscopy, which reveals local mechanical deterioration of the hBN layers and local amorphization of ion beam irradiated hBN. Additionally, we show that, upon exposure to water, amorphized hBN undergoes a structural and optical transition between two defect types with distinctive emission properties. Moreover, using super-resolution optical microscopy combined with atomic force microscopy, we pinpoint the exact location of emitters within the defect sites, confirming the role of defected edges as primary sources of fluorescent emission. This lays the foundation for FIB-assisted engineering of optically active defects in hBN with high spatial and spectral control for applications ranging from integrated photonics, to nanoscale sensing, and to nanofluidics.
Collapse
Affiliation(s)
- Evgenii Glushkov
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- E-mail:
| | - Michal Macha
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Esther Räth
- Laboratory
of Nano-Bio Instrumentation, Institute of
Bioengineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Vytautas Navikas
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cheol Yeon Cheon
- Laboratory
of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science,
EPFL, CH-1015 Lausanne, Switzerland
| | - Aqeel Ahmed
- Laboratory
of Quantum Nano-Optics, Institute of Physics,
EPFL, CH-1015 Lausanne, Switzerland
| | - Ahmet Avsar
- Laboratory
of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science,
EPFL, CH-1015 Lausanne, Switzerland
- School of
Mathematics, Statistics and Physics, Newcastle
University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kenji Watanabe
- National
Institute for Materials Science, 305-0044 Tsukuba, Japan
| | | | - Ivan Shorubalko
- Laboratory
for Transport at Nanoscale Interfaces, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Andras Kis
- Laboratory
of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science,
EPFL, CH-1015 Lausanne, Switzerland
| | - Georg Fantner
- Laboratory
of Nano-Bio Instrumentation, Institute of
Bioengineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- E-mail:
| |
Collapse
|
26
|
Döpke MF, Westerbaan van der Meij F, Coasne B, Hartkamp R. Surface Protolysis and Its Kinetics Impact the Electrical Double Layer. PHYSICAL REVIEW LETTERS 2022; 128:056001. [PMID: 35179914 DOI: 10.1103/physrevlett.128.056001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Surface conductivity in the electrical double layer (EDL) is known to be affected by proton hopping and diffusion at solid-liquid interfaces. Yet, the role of surface protolysis and its kinetics on the thermodynamic and transport properties of the EDL are usually ignored as physical models consider static surfaces. Here, using a novel molecular dynamics method mimicking surface protolysis, we unveil the impact of such chemical events on the system's response. Protolysis is found to strongly affect the EDL and electrokinetic aspects with major changes in ζ potential and electro-osmotic flow.
Collapse
Affiliation(s)
- Max F Döpke
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | | | - Benoit Coasne
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Remco Hartkamp
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
27
|
Liu H, Mendelson N, Abidi IH, Li S, Liu Z, Cai Y, Zhang K, You J, Tamtaji M, Wong H, Ding Y, Chen G, Aharonovich I, Luo Z. Rational Control on Quantum Emitter Formation in Carbon-Doped Monolayer Hexagonal Boron Nitride. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3189-3198. [PMID: 34989551 DOI: 10.1021/acsami.1c21781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-photon emitters (SPEs) in hexagonal boron nitride (hBN) are promising candidates for quantum light generation. Despite this, techniques to control the formation of hBN SPEs down to the monolayer limit are yet to be demonstrated. Recent experimental and theoretical investigations have suggested that the visible wavelength single-photon emitters in hBN originate from carbon-related defects. Here, we demonstrate a simple strategy for controlling SPE creation during the chemical vapor deposition growth of monolayer hBN via regulating surface carbon concentration. By increasing the surface carbon concentration during hBN growth, we observe increases in carbon doping levels by 2.4-fold for B-C bonds and 1.6-fold for N-C bonds. For the same samples, we observe an increase in the SPE density from 0.13 to 0.30 emitters/μm2. Our simple method enables the reliable creation of hBN SPEs in monolayer samples for the first time, opening the door to advanced two-dimensional (2D) quantum state engineering.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Noah Mendelson
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Irfan H Abidi
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
- Centre for Advanced 2D Materials, National University of Singapore, 117542 Singapore
| | - Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Yuting Cai
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Mohsen Tamtaji
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Yao Ding
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Guojie Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, P. R. China
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
28
|
Yang J, Lu Y, Jin L, Zhao C, Chen Y, Xu Y, Chen F, Feng J. Dynamic Optical Visualization of Proton Transport Pathways at Water–Solid Interfaces. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinmei Yang
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yuxian Lu
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lei Jin
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Xu
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
29
|
Yang J, Lu Y, Jin L, Zhao C, Chen Y, Xu Y, Chen F, Feng J. Dynamic Optical Visualization of Proton Transport Pathways at Water-Solid Interfaces. Angew Chem Int Ed Engl 2022; 61:e202112150. [PMID: 34751999 DOI: 10.1002/anie.202112150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/07/2022]
Abstract
Probing proton transport is of vital importance for understanding cellular transport, surface catalysis and fuel cells. Conventional proton transport measurements rely on the use of electrochemical conductivity and do not allow for the direct visualization of proton transport pathways. The development of novel experimental techniques to spatiotemporally resolve proton transport is in high demand. Here, building upon the general conversion of aqueous proton flux into spatially resolved fluorescence signals, we optically visualize proton transport through nanopores and along hydrophilic interfaces. We observed that the fluorescence intensity increased at negative voltage due to lateral transport. Thanks to the temporal resolution of optical imaging, our technique further empowers the analysis of proton transport dynamics.
Collapse
Affiliation(s)
- Jinmei Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuxian Lu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lei Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PADS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101589. [PMID: 34561916 DOI: 10.1002/adma.202101589] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Indexed: 05/09/2023]
Abstract
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sandhya Susarla
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Sreehari K Saju
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mai Kim Tran
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lucas M Sassi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Bhuvaneswari Dharmarajan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Nithya Chakingal
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Abhijit Baburaj
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Aparna Adumbumkulath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Alec Ajnsztajn
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Thibeorchews Prasankumar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | | | - Ved Ojha
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ali Zein Khater
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Zhenwei Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pedro Alves da Silva Autreto
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001-Bangú, Santo André - SP, Santo André, 09210-580, Brazil
| | - Eliezer Fernando Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - A Glen Birdwell
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Mahesh R Neupane
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Tony G Ivanov
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Jaime Taha-Tijerina
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza Garcí, Monterrey, Nuevo Leon, 66238, Mexico
- Department of Manufacturing and Industrial Engineering, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Physics, VSSD College, Kanpur, Uttar Pradesh, 208002, India
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
31
|
Zare S, Qomi MJA. Reactive force fields for aqueous and interfacial magnesium carbonate formation. Phys Chem Chem Phys 2021; 23:23106-23123. [PMID: 34617078 DOI: 10.1039/d1cp02627e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We develop Mg/C/O/H ReaxFF parameter sets for two environments: an aqueous force field for magnesium ions in solution and an interfacial force field for minerals and mineral-water interfaces. Since magnesium is highly ionic, we choose to fix the magnesium charge and model its interaction with C/O/H through Coulomb, Lennard-Jones, and Buckingham potentials. We parameterize the forcefields against several crystal structures, including brucite, magnesite, magnesia, magnesium hydride, and magnesium carbide, as well as Mg2+ water binding energies for the aqueous forcefield. Then, we test the forcefield for other magnesium-containing crystals, solvent separated and contact ion-pairs and single-molecule/multilayer water adsorption energies on mineral surfaces. We also apply the forcefield to the forsterite-water and brucite-water interface that contains a bicarbonate ion. We observe that a long-range proton transfer mechanism deprotonates the bicarbonate ion to carbonate at the interface. Free energy calculations show that carbonate can attach to the magnesium surface with an energy barrier of about 0.22 eV, consistent with the free energy required for aqueous Mg-CO3 ion pairing. Also, the diffusion constant of the hydroxide ions in the water layers formed on the forsterite surface are shown to be anisotropic and heterogeneous. These findings can help explain the experimentally observed fast nucleation and growth of magnesite at low temperature at the mineral-water-CO2 interface in water-poor conditions.
Collapse
Affiliation(s)
- Siavash Zare
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA.
| | | |
Collapse
|
32
|
Comtet J, Rayabharam A, Glushkov E, Zhang M, Avsar A, Watanabe K, Taniguchi T, Aluru NR, Radenovic A. Anomalous interfacial dynamics of single proton charges in binary aqueous solutions. SCIENCE ADVANCES 2021; 7:eabg8568. [PMID: 34586851 PMCID: PMC8480921 DOI: 10.1126/sciadv.abg8568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/06/2021] [Indexed: 05/25/2023]
Abstract
Our understanding of the dynamics of charge transfer between solid surfaces and liquid electrolytes has been hampered by the difficulties in obtaining interface, charge, and solvent-specific information at both high spatial and temporal resolution. Here, we measure at the single charge scale the dynamics of protons at the interface between an hBN crystal and binary mixtures of water and organic amphiphilic solvents (alcohols and acetone), evidencing a marked influence of solvation on interfacial dynamics. Applying single-molecule localization microscopy to emissive crystal defects, we observe correlated activation between adjacent ionizable surface defects, mediated by the transport of single excess protons along the solid/liquid interface. Solvent content has a nontrivial effect on interfacial dynamics, leading at intermediate water fraction to an increased surface diffusivity, as well as an increased affinity of the proton charges to the solid surface. Our measurements evidence the notable role of solvation on interfacial proton charge transport.
Collapse
Affiliation(s)
- Jean Comtet
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Soft Matter Science and Engineering, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Archith Rayabharam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Miao Zhang
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmet Avsar
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Narayana R. Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
34
|
Zhang M, Lihter M, Chen TH, Macha M, Rayabharam A, Banjac K, Zhao Y, Wang Z, Zhang J, Comtet J, Aluru NR, Lingenfelder M, Kis A, Radenovic A. Super-resolved Optical Mapping of Reactive Sulfur-Vacancies in Two-Dimensional Transition Metal Dichalcogenides. ACS NANO 2021; 15:7168-7178. [PMID: 33829760 DOI: 10.1021/acsnano.1c00373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition metal dichalcogenides (TMDs) represent a class of semiconducting two-dimensional (2D) materials with exciting properties. In particular, defects in 2D-TMDs and their molecular interactions with the environment can crucially affect their physical and chemical properties. However, mapping the spatial distribution and chemical reactivity of defects in liquid remains a challenge. Here, we demonstrate large area mapping of reactive sulfur-deficient defects in 2D-TMDs in aqueous solutions by coupling single-molecule localization microscopy with fluorescence labeling using thiol chemistry. Our method, reminiscent of PAINT strategies, relies on the specific binding of fluorescent probes hosting a thiol group to sulfur vacancies, allowing localization of the defects with an uncertainty down to 15 nm. Tuning the distance between the fluorophore and the docking thiol site allows us to control Föster resonance energy transfer (FRET) process and reveal grain boundaries and line defects due to the local irregular lattice structure. We further characterize the binding kinetics over a large range of pH conditions, evidencing the reversible adsorption of the thiol probes to the defects with a subsequent transitioning to irreversible binding in basic conditions. Our methodology provides a simple and fast alternative for large-scale mapping of nonradiative defects in 2D materials and can be used for in situ and spatially resolved monitoring of the interaction between chemical agents and defects in 2D materials that has general implications for defect engineering in aqueous condition.
Collapse
Affiliation(s)
- Miao Zhang
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Department of Applied Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tzu-Heng Chen
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michal Macha
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Archith Rayabharam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801 Illinois United States
| | - Karla Banjac
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Institut de Physique, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yanfei Zhao
- Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Zhenyu Wang
- Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jing Zhang
- Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jean Comtet
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801 Illinois United States
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Institut de Physique, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andras Kis
- Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Bradac C, Xu ZQ, Aharonovich I. Quantum Energy and Charge Transfer at Two-Dimensional Interfaces. NANO LETTERS 2021; 21:1193-1204. [PMID: 33492957 DOI: 10.1021/acs.nanolett.0c04152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Energy and charge transfer processes in interacting donor-acceptor systems are the bedrock of many fundamental studies and technological applications ranging from biosensing to energy storage and quantum optoelectronics. Central to the understanding and utilization of these transfer processes is having full control over the donor-acceptor distance. With their atomic thickness and ease of integrability, two-dimensional materials are naturally emerging as an ideal platform for the task. Here, we review how van der Waals semiconductors are shaping the field. We present a selection of some of the most significant demonstrations involving transfer processes in layered materials that deepen our understanding of transfer dynamics and are leading to intriguing practical realizations. Alongside current achievements, we discuss outstanding challenges and future opportunities.
Collapse
Affiliation(s)
- Carlo Bradac
- Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 0G2, Canada
| | - Zai-Quan Xu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
36
|
Mejri A, Herlem G, Picaud F. From Behavior of Water on Hydrophobic Graphene Surfaces to Ultra-Confinement of Water in Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:306. [PMID: 33504024 PMCID: PMC7911377 DOI: 10.3390/nano11020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
In recent years and with the achievement of nanotechnologies, the development of experiments based on carbon nanotubes has allowed to increase the ionic permeability and/or selectivity in nanodevices. However, this new technology opens the way to many questionable observations, to which theoretical work can answer using several approximations. One of them concerns the appearance of a negative charge on the carbon surface, when the latter is apparently neutral. Using first-principles density functional theory combined with molecular dynamics, we develop here several simulations on different systems in order to understand the reactivity of the carbon surface in low or ultra-high confinement. According to our calculations, there is high affinity of the carbon atom to the hydrogen ion in every situation, and to a lesser extent for the hydroxyl ion. The latter can only occur when the first hydrogen attack has been achieved. As a consequence, the functionalization of the carbon surface in the presence of an aqueous medium is activated by its protonation, then allowing the reactivity of the anion.
Collapse
Affiliation(s)
| | | | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA4662, UFR Sciences et Techniques, Centre Hospitalier Universitaire et Université de Bourgogne Franche Comté, 16 Route de Gray, 25030 Besançon, France; (A.M.); (G.H.)
| |
Collapse
|