1
|
Samdin TD, Wang X, Fichman G, Schneider JP. Exploring the temperature dependence of β-hairpin peptide self-assembly. Faraday Discuss 2025. [PMID: 40365680 DOI: 10.1039/d5fd00018a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein, we study the role that hydrophobicity plays in the temperature-dependent self-assembly of a family of β-hairpin peptide amphiphiles through the lens of thermally folding a protein from its cold-denatured state. This was facilitated by the development of new computational tools to measure solvent-accessible charge (SAC) and solvent-accessible hydrophobicity (SAH) at the resolution of atomic groups. Peptides in their disordered states are characterized by large SAH values that shift their thermal assembly transitions to observable temperatures, which is not possible for most native proteins, allowing comparisons amongst peptides to be made. We find that peptides with large SAH values assemble into β-sheet-rich fibers at lower temperatures and at faster rates than peptides having smaller SAH values. This is consistent with peptide assembly being driven by the hydrophobic effect, which involves the release of ordered water from hydrophobic moieties during assembly. We also find that peptide SAH values correlate linearly with Tg, the midpoint of the transition defining monomeric peptide transitioning to fibrils, for peptides of similar charge. Interestingly, the data also suggest that although entropy drives assembly, the exact temperature at which the assembly transition takes place is likely influenced by additional thermodynamic considerations.
Collapse
Affiliation(s)
- Tuan D Samdin
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Xiaoyi Wang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Galit Fichman
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
2
|
Peng M, Peng Q, Li W, Chen X, Yan Q, Wu X, Wu M, Yuan D, Song H, Shi J. Atomic Insights Into Self-Assembly of Zingibroside R1 and its Therapeutic Action Against Fungal Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503283. [PMID: 40326238 DOI: 10.1002/adma.202503283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Natural products are a crucial resource for drug discovery, but poor understanding of the molecular-scale mechanisms of their self-assembly into soluble, bioavailable hydrogels limits their applications and therapeutic potential. It is demonstrated that Zingibroside R1 (ZR1), derived from Panax notoginseng, undergoes spontaneous self-assemble into a hydrogel comprising helical nanofibrils with potent antifungal activity lacking in its monomeric state. Cryogenic electron microscopy (cryo-EM) revealed an intricate hydrogen-bonding network that facilitates ZR1 nanofibril formation, characterized by a hydrophobic core and hydrophilic exterior architecture, which underpin its binding activity with cell wall in the vulvovaginal candidiasis (VVC) pathogen, C. albicans. The hydrogen-bonding interface between ZR1 gel and glucan compromises membrane integrity, inhibiting C. albicans proliferation in vitro and in VVC model mice in vivo. ZR1 gel could also deliver probiotic Lactobacillus, synergistically inhibiting VVC and restoring the vaginal microenvironment. This study advances the mechanistic understanding of ZR1's structure-function relationships, offering valuable insights into the rational design and therapeutic optimization of natural product-based hydrogels.
Collapse
Affiliation(s)
- Mengyun Peng
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Qiwei Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Wei Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaochun Chen
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Qipeng Yan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xia Wu
- Department of Cardiology, The Central Hospitalof Xiangtan, Affiliated Hospital of Hunan University, Xiangtan, Hunan, 411100, China
| | - Mingxing Wu
- Department of Cardiology, The Central Hospitalof Xiangtan, Affiliated Hospital of Hunan University, Xiangtan, Hunan, 411100, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - He Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong, 518000, P. R. China
| |
Collapse
|
3
|
Lopez-Silva T, Anderson CF, Schneider JP. Modulating Neutrophil Extracellular Trap Formation In Vivo with Locoregional Precision Using Differently Charged Self-Assembled Hydrogels. ACS CENTRAL SCIENCE 2025; 11:465-478. [PMID: 40161959 PMCID: PMC11950866 DOI: 10.1021/acscentsci.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Neutrophil extracellular traps (NETs) are DNA networks released by neutrophils, first described as a defense response against pathogens but have since been associated with numerous inflammatory diseases. Diverse physical material properties have been shown to promote NET formation. Herein, we report the discovery that the charge of self-assembled peptide hydrogels predictably modulates the formation of NETs in vivo within the implanted material. Positively charged gels induce rapid NET release, whereas negatively charged gels do not. This differential immune response to our self-assembled peptide gels enabled the development of a material platform that allows rheostat-like modulation over the degree of NET formation with anatomical and locoregional control.
Collapse
Affiliation(s)
- Tania
L. Lopez-Silva
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Caleb F. Anderson
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Fang Y, Shi J, Liang J, Ma D, Wang H. Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel. Nat Commun 2025; 16:1058. [PMID: 39865087 PMCID: PMC11770121 DOI: 10.1038/s41467-025-56415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water. LCH can be used to construct stable solid threads with a length of over 1 meter by applying an external force on 2 µL of gel solution followed by water-regulated crystallization. These solid threads can support 250 times their weight. Cryogenic electron microscopy (Cryo-EM) analysis unravels the three-dimensional structure of the liquid-crystal fiber (elongated helix with C2 symmetry) at an atomic resolution. The multiscale mechanics of this material depend on the specificity of the molecular structure, and the water-controlled hierarchical and sophisticated self-assembly.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Junhui Shi
- Key Laboratory of Structure Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Juan Liang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Dan Ma
- Key Laboratory of Structure Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Zhu B, Cai Y, Zhou L, Zhao L, Chen J, Shan X, Sun X, You Q, Gong X, Zhang W, Zhu HH, Zhang P, Li Y. Injectable supramolecular hydrogel co-loading abemaciclib/NLG919 for neoadjuvant immunotherapy of triple-negative breast cancer. Nat Commun 2025; 16:687. [PMID: 39814714 PMCID: PMC11735626 DOI: 10.1038/s41467-025-55904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
The efficacy of cancer immunotherapy relies on a sufficient amount of functional immune cells. Triple-negative breast cancer lacks enough immune cell infiltration, and adjuvant therapy is necessary to prime anti-tumor immunity. However, the improvement in efficacy is unsatisfactory with concern about inducing systemic immunotoxicity. Herein, we create an abemaciclib-loaded supramolecular peptide hydrogel formed by peptide-drug amphiphiles for neoadjuvant immunotherapy of triple-negative breast cancer, where the amphiphile is a conjugate of a β-sheet-forming peptide with 1-cyclohexyl-2-(5H-imidazo[5,1-a]isoindol-5-yl)ethanol (NLG919), an inhibitor of indoleamine 2,3-dioxygenase 1. The hydrogel can be injected into the tumor site and retained for at least one week for the sustained release of both abemaciclib and NLG919. The abemaciclib is able to induce immunogenic cell death of cancer cells and increase interleukin-2 secretion by cytotoxic T lymphocytes. Abemaciclib adversely upregulates indoleamine 2,3-dioxygenase 1, whose kynurenine production activity is inhibited by NLG919. The neoadjuvant immunotherapy reduces tumor recurrence and pulmonary metastasis and prolongs the survival of animals. This hydrogel provides a potential platform for neoadjuvant immunotherapy of triple-negative breast cancer with reduced toxicity compared with free abemaciclib.
Collapse
Affiliation(s)
- Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, China
| | - Lingli Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Jiameng Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Qian You
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Shandong, China.
| |
Collapse
|
6
|
Tan T, Zhou Y, Dou R, Sun CQ, Wang B. Hydrogen Bonding Polarization Strengthening the Peptide-Based Hydrogels. J Phys Chem B 2025; 129:546-553. [PMID: 39729545 DOI: 10.1021/acs.jpcb.4c06942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels. Increasing the peptide concentrations improvethe solidity of these hydrogels, as evidenced by their higher storage modulus (G') values determined by a frequency sweep. Raman and FTIR spectroscopies probed a blue shift in the O-D stretching vibration in both ECF-5 and GFF-5 hydrogels, indicating the D-O bond contraction and stiffness gain. This finding provides valuable insight and offers an efficient means of modulating the mechanism of mechanical properties.
Collapse
Affiliation(s)
- Tingyuan Tan
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yong Zhou
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ruqiang Dou
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chang Qing Sun
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Biao Wang
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Guangdong Provincial Key Laboratory for Extreme Conditions, Dongguan 523808, China
- School of Physics, Sun Yet-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Gupta K, Parlea L, Viard M, Smith K, Puri A, Bergman JT, Kim T, Shapiro BA. Co-incubation of Short Amphiphilic Peptides with Dicer Substrate RNAs Results in β-Sheet Fibrils for Enhanced Gene Silencing in Cancer Cells. RNA NANOMED 2024; 1:61-78. [PMID: 40255273 PMCID: PMC12007892 DOI: 10.59566/isrnn.2024.0101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
RNA can interact with positively charged, amphiphilic peptides to cooperatively assemble into fibrils that enable RNA transport across cancer cellular membranes. RNA decreases the folding energy barrier imposed by the electrostatic repulsion between these charged peptides, thus partaking in RNA-peptide self-assembly along particular pathways in the energy landscape. Specific amphiphilic peptides capable of protecting and transporting RNA across a membrane have Type II' β-turn hairpin forming motifs in their structures, which aids self-assembly into β-sheet fibrils. We employed a set of such cationic, amphiphilic peptides that have random coiled structures in the absence of folding stimuli, to characterize the (peptides):(RNA) assembly. We subjected these complexes to extensive biophysical characterization in vitro and in cell culture. We show that short RNAs (such as Dicer substrate RNAs) can lead these peptides to self-assemble into β-sheet fibrils that have RNA transport capabilities and can act as non-viral delivery vectors for RNA. Modulation in the peptide sequence implicitly alters the way they bind RNA and influence the peptides' ability to transport nucleic acids across membranes.
Collapse
Affiliation(s)
- Kshitij Gupta
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Present address: Genes N Life Healthcare Pvt. Ltd., Hyderabad, Telangana,500082, India
| | - Lorena Parlea
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mathias Viard
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Basic Science Program, Leidos Biomedical, Research Inc., Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Katelyn Smith
- Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Inc, Kenilworth New Jersey, USA
| | - Anu Puri
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Joseph T. Bergman
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Taejin Kim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Department of Physical Sciences, West Virginia University Institute of Technology, Beckley 25801, West Virginia, USA
| | - Bruce A. Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
8
|
De S, Rai V, Ahmed F, Basak M, Bose S. Deciphering the Nanometabolomics Paradigm: Understanding the Role of Pathophysiology and Biomarkers in Predicting Oral Cancer. J Maxillofac Oral Surg 2024. [DOI: 10.1007/s12663-024-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
|
9
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
10
|
Guo J, Zia A, Qiu Q, Norton M, Qiu K, Usuba J, Liu Z, Yi M, Rich-New ST, Hagan M, Fraden S, Han GD, Diao J, Wang F, Xu B. Cell-Free Nonequilibrium Assembly for Hierarchical Protein/Peptide Nanopillars. J Am Chem Soc 2024; 146:26102-26112. [PMID: 39255453 PMCID: PMC11669155 DOI: 10.1021/jacs.4c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly. Our approach utilizes enzyme-responsive phosphopeptides that assemble into nanotubes. Enzyme action triggers shape changes in peptide assemblies, driving the vertical growth of protein nanopillars into bundles. These bundles, with peptide nanotubes serving as a template to remodel fibronectin, can then recruit collagen, which forms aggregates or bundles depending on their types. Nanopillar formation relies on enzyme-catalyzed nonequilibrium self-assembly and is governed by the concentrations of enzyme, protein, peptide, the structure of the peptide, and peptide assembly morphologies. Cryo-EM reveals unexpected nanotube thinning and packing after dephosphorylation, indicating a complex sculpting process during assembly. Our study demonstrates a cell-free method for constructing intricate, multiprotein nanostructures with directionality and composition.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Ayisha Zia
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Michael Norton
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, Center for Chemical Imaging in Biomedicine, Advanced Cell Analysis Service Center, University of Cincinnati College of Medicine, Cincinnati OH, 45267, USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Shane T. Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Hagan
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Grace D. Han
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| | - Jiajie Diao
- Department of Cancer Biology, Center for Chemical Imaging in Biomedicine, Advanced Cell Analysis Service Center, University of Cincinnati College of Medicine, Cincinnati OH, 45267, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- O’Neal Comprehensive Cancer Center University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA, 02453, USA
| |
Collapse
|
11
|
Delgado JF, Owen JW, Pritchard WF, Varble NA, Lopez-Silva TL, Mikhail AS, Arrichiello A, Ray T, Morhard R, Borde T, Saccenti L, Xu S, Rivera J, Schneider JP, Karanian JW, Wood BJ. Ultrasound and x-ray imageable poloxamer-based hydrogel for loco-regional therapy delivery in the liver. Sci Rep 2024; 14:20455. [PMID: 39227382 PMCID: PMC11372101 DOI: 10.1038/s41598-024-70992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Intratumoral injections have the potential for enhanced cancer treatment efficacy while reducing costs and systemic exposure. However, intratumoral drug injections can result in substantial off-target leakage and are invisible under standard imaging modalities like ultrasound (US) and x-ray. A thermosensitive poloxamer-based gel for drug delivery was developed that is visible using x-ray imaging (computed tomography (CT), cone beam CT, fluoroscopy), as well as using US by means of integrating perfluorobutane-filled microbubbles (MBs). MBs content was optimized using tissue mimicking phantoms and ex vivo bovine livers. Gel formulations less than 1% MBs provided gel depositions that were clearly identifiable on US and distinguishable from tissue background and with minimal acoustic artifacts. The cross-sectional areas of gel depositions obtained with US and CT imaging were similar in studies using ex vivo bovine liver and postmortem in situ swine liver. The gel formulation enhanced multimodal image-guided navigation, enabling fusion of ultrasound and x-ray/CT imaging, which may enhance targeting, definition of spatial delivery, and overlap of tumor and gel. Although speculative, such a paradigm for intratumoral drug delivery might streamline clinical workflows, reduce radiation exposure by reliance on US, and boost the precision and accuracy of drug delivery targeting during procedures. Imageable gels may also provide enhanced temporal and spatial control of intratumoral conformal drug delivery.
Collapse
Affiliation(s)
- Jose F Delgado
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park. Maryland, USA.
| | - Joshua W Owen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| | - Nicole A Varble
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Philips Healthcare, Cambridge, MA, USA
| | - Tania L Lopez-Silva
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Antonio Arrichiello
- Department of Diagnostic and Interventional Radiology, UOS of Interventional Radiology, Ospedale Maggiore Di Lodi, Largo Donatori del Sangue, Lodi, Italy
| | - Trisha Ray
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Robert Morhard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tabea Borde
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Laetitia Saccenti
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sheng Xu
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jocelyne Rivera
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Institute of Biomedical Engineering, St. Catherine's College, University of Oxford, Oxford, UK
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park. Maryland, USA.
| |
Collapse
|
12
|
Tian F, Guo RC, Wu C, Liu X, Zhang Z, Wang Y, Wang H, Li G, Yu Z. Assembly of Glycopeptides in Living Cells Resembling Viral Infection for Cargo Delivery. Angew Chem Int Ed Engl 2024; 63:e202404703. [PMID: 38655625 DOI: 10.1002/anie.202404703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a β-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via β-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing β-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunxia Wu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yamei Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, China
| |
Collapse
|
13
|
Yosefi G, Kass I, Rapaport H, Bitton R. Decoupling Charge and Side Chain Effects in Hierarchical Organization of Cationic PFX Peptide and Alginate. Biomacromolecules 2024; 25:4168-4176. [PMID: 38902961 DOI: 10.1021/acs.biomac.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We have successfully created self-assembled membranes by combining positively charged (Pro-X-(Phe-X)5-Pro) PFX peptides with negatively charged alginate. These PFX/alginate membranes were formed by three different peptides that contain either X = Arginine (R), Histidine (H), or Ornithine (O) as their charged amino acid. The assemblies were compared to membranes that were previously reported by us composed of X = lysine (K). This study enabled us to elucidate the impact of amino acids' specific interactions on membrane formation. SEM, SAXS, and cryo-TEM measurements show that although K, R, H, and O may have a similar net charge, the specific traits of the charged amino acid is an essential factor in determining the hierarchical structure of alginate/PFX self-assembled membranes.
Collapse
Affiliation(s)
- Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Itamar Kass
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
14
|
Guo J, Chang A, Xu B. Autocleaving Bonds for Better Drugs. ChemMedChem 2024; 19:e202400130. [PMID: 38553420 PMCID: PMC11219257 DOI: 10.1002/cmdc.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Indexed: 04/30/2024]
Abstract
While bond formation has historically been the mainstay of medicinal chemistry, the phenomenon of bond cleavage has received less focus. However, the success of numerous oral medications demonstrates the importance of controlled cleavage in prodrugs to achieve desired therapeutic outcomes. Nevertheless, effective strategies to control this cleavage remain limited. This concept article introduces a novel approach: employing peptides as conjugates to drugs to modulate the hydrolysis of these conjugates and enhance drug efficacy. The article begins by briefly outlining common prodrug strategies, followed by a few representative examples of how peptides can be leveraged to control the autohydrolysis of peptide-conjugated prodrugs for bacterial and cancer cell inhibition. Finally, it provides a brief outlook on the future potential of this promising new research direction in molecular medicine.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Annabelle Chang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
15
|
Ren X, Wei J, Luo X, Liu Y, Li K, Zhang Q, Gao X, Yan S, Wu X, Jiang X, Liu M, Cao D, Wei L, Zeng X, Shi J. HydrogelFinder: A Foundation Model for Efficient Self-Assembling Peptide Discovery Guided by Non-Peptidal Small Molecules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400829. [PMID: 38704695 PMCID: PMC11234452 DOI: 10.1002/advs.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2024] [Indexed: 05/07/2024]
Abstract
Self-assembling peptides have numerous applications in medicine, food chemistry, and nanotechnology. However, their discovery has traditionally been serendipitous rather than driven by rational design. Here, HydrogelFinder, a foundation model is developed for the rational design of self-assembling peptides from scratch. This model explores the self-assembly properties by molecular structure, leveraging 1,377 self-assembling non-peptidal small molecules to navigate chemical space and improve structural diversity. Utilizing HydrogelFinder, 111 peptide candidates are generated and synthesized 17 peptides, subsequently experimentally validating the self-assembly and biophysical characteristics of nine peptides ranging from 1-10 amino acids-all achieved within a 19-day workflow. Notably, the two de novo-designed self-assembling peptides demonstrated low cytotoxicity and biocompatibility, as confirmed by live/dead assays. This work highlights the capacity of HydrogelFinder to diversify the design of self-assembling peptides through non-peptidal small molecules, offering a powerful toolkit and paradigm for future peptide discovery endeavors.
Collapse
Affiliation(s)
- Xuanbai Ren
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Jiaying Wei
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xiaoli Luo
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Yuansheng Liu
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Kenli Li
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Qiang Zhang
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310013China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Sizhe Yan
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xingyue Jiang
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Mingquan Liu
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410003China
| | - Leyi Wei
- School of SoftwareShandong UniversityJinan250100China
- Joint SDU‐NTU Centre for Artificial Intelligence Research (C‐FAIR)Shandong UniversityJinan250100China
| | - Xiangxiang Zeng
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| |
Collapse
|
16
|
Fu X, Shi Y, Gu Z, Zang H, Li L, Wang Q, Wang Y, Zhao X, Wu H, Qiu S, Zhang Y, Zhou J, Chen X, Shen H, Lin G. Immunotherapeutic hydrogel for co-delivery of STAT3 siRNA liposomes and lidocaine hydrochloride for postoperative comprehensive management of NSCLC in a single application. Asian J Pharm Sci 2024; 19:100925. [PMID: 38966285 PMCID: PMC11222805 DOI: 10.1016/j.ajps.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite standard treatment for non-small cell lung cancer (NSCLC) being surgical resection, cancer recurrence and complications, such as induction of malignant pleural effusion (MPE) and significant postoperative pain, usually result in treatment failure. In this study, an alginate-based hybrid hydrogel (SOG) is developed that can be injected into the resection surface of the lungs during surgery. Briefly, endoplasmic reticulum-modified liposomes (MSLs) pre-loaded with the signal transducer and activator of transcription 3 (STAT3) small interfering RNA and lidocaine hydrochloride are encapsulated in SOG. Once applied, MSLs strongly downregulated STAT3 expression in the tumor microenvironment, resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype. Meanwhile, the release of lidocaine hydrochloride (LID) was beneficial for pain relief and natural killer cell activation. Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life, including reduced MPE volume and pain relief in orthotopic NSCLC mouse models, even with a single administration. MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC, and may alter the treatment paradigms for other cancers.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingjie Wang
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250063, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hang Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shengnan Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yankun Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiamin Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiangqin Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hua Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guimei Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
17
|
Wu X, Yan M, Shen J, Xiang Y, Jian K, Pan X, Yuan D, Shi J. Enhancing calvarial defects repair with PDGF-BB mimetic peptide hydrogels. J Control Release 2024; 370:277-286. [PMID: 38679161 DOI: 10.1016/j.jconrel.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Addressing bone defects represents a significant challenge to public health. Localized delivery of growth factor has emerged as promising approach for bone regeneration. However, the clinical application of Platelet-Derived Growth Factor (PDGF) is hindered by its high cost and short half-life. In this work, we introduce the application of PDGF-mimicking peptide (PMP1) hydrogels for calvarial defect restoration, showcasing their remarkable effectiveness. Through osteogenic differentiation assays and q-PCR analyses, we demonstrate PMP1's substantial capacity to enhance osteogenic differentiation of bone marrow mesenchymal stem cell (BMSC), leading to increased expression of crucial osteogenic genes. Further molecular mechanistic investigations reveal PMP1's activation of the PI3K-AKT-mTOR signaling pathway, a key element of its osteogenic effect. In vivo experiments utilizing a rat calvaria critical-sized defect model underscore the hydrogels' exceptional ability to accelerate new bone formation, thereby significantly advancing the restoration of calvaria defects. This research provides a promising bioactive material for bone tissue regeneration.
Collapse
Affiliation(s)
- Xia Wu
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, Guangdong 518116, China
| | - Mingming Yan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410082, China
| | - Jun Shen
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Yatong Xiang
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Ke Jian
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Dan Yuan
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China.
| | - Junfeng Shi
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
18
|
Anderson CF, Singh A, Stephens T, Hoang CD, Schneider JP. Kinetically Controlled Polyelectrolyte Complex Assembly of microRNA-Peptide Nanoparticles toward Treating Mesothelioma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314367. [PMID: 38532642 PMCID: PMC11176031 DOI: 10.1002/adma.202314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Broad size distributions and poor long-term colloidal stability of microRNA-carrying nanoparticles, especially those formed by polyelectrolyte complexation, represent major hurdles in realizing their clinical translation. Herein, peptide design is used alongside optimized flash nanocomplexation (FNC) to produce uniform peptide-based miRNA particles of exceptional stability that display anticancer activity against mesothelioma in vitro and in vivo. Modulating the content and display of lysine-based charge from small intrinsically disordered peptides used to complex miRNA proves essential in achieving stable colloids. FNC facilitates kinetic isolation of the mechanistic steps involved in particle formation to allow the preparation of particles of discrete size in a highly reproducible, scalable, and continuous manner, facilitating pre-clinical studies. To the best of the authors knowledge, this work represents the first example of employing FNC to prepare polyelectrolyte complexes of miRNA and peptide. Encapsulation of these particles into an injectable hydrogel matrix allows for their localized in vivo delivery by syringe. A one-time injection of a gel containing particles composed of miRNA-215-5p and the peptide PKM1 limits tumor progression in a xenograft model of mesothelioma.
Collapse
Affiliation(s)
- Caleb F. Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| |
Collapse
|
19
|
Pogostin BH, Wu SX, Swierczynski MJ, Pennington C, Li SY, Vohidova D, Seeley EH, Agrawal A, Tang C, Cabler J, Dey A, Veiseh O, Nuermberger EL, Ball ZT, Hartgerink JD, McHugh KJ. Enhanced dynamic covalent chemistry for the controlled release of small molecules and biologics from a nanofibrous peptide hydrogel platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595134. [PMID: 38826442 PMCID: PMC11142141 DOI: 10.1101/2024.05.21.595134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Maintaining safe and potent pharmaceutical drug levels is often challenging. Multidomain peptides (MDPs) assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery, yet their ability to extend release is typically limited by rapid drug diffusion. To overcome this challenge, we developed self-assembling boronate ester release (SABER) MDPs capable of engaging in dynamic covalent bonding with payloads containing boronic acids (BAs). As examples, we demonstrate that SABER hydrogels can prolong the release of five BA-containing small-molecule drugs as well as BA-modified insulin and antibodies. Pharmacokinetic studies revealed that SABER hydrogels extended the therapeutic effect of ganfeborole from days to weeks, preventing Mycobacterium tuberculosis growth better than repeated oral administration in an infection model. Similarly, SABER hydrogels extended insulin activity, maintaining normoglycemia for six days in diabetic mice after a single injection. These results suggest that SABER hydrogels present broad potential for clinical translation.
Collapse
|
20
|
Asokan-Sheeja H, Awad K, Xu J, Le M, Nguyen JN, Nguyen N, Nguyen TP, Nguyen KT, Hong Y, Varanasi VG, Liu X, Dong H. In Situ Synthesis and Self-Assembly of Peptide-PEG Conjugates: A Facile Method for the Construction of Fibrous Hydrogels. Biomacromolecules 2024; 25:2814-2822. [PMID: 38598701 PMCID: PMC11867594 DOI: 10.1021/acs.biomac.3c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a β-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.
Collapse
Affiliation(s)
- Haritha Asokan-Sheeja
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kamal Awad
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Myan Le
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jenny N. Nguyen
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Na Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Tam P. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kytai T. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Venu G. Varanasi
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiaohua Liu
- Department of Chemical and Biomedical Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - He Dong
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
21
|
Zhang ZJ, Zhou Y, Tong H, Sun XC, Lv ZC, Yong JK, Wu YC, Xiang XL, Ding F, Zuo XL, Li F, Xia Q, Feng H, Fan CH. Programmable DNA Hydrogel Assisting Microcrystal Formulations for Sustained Locoregional Drug Delivery in Surgical Residual Tumor Lesions and Lymph Node Metastasis. Adv Healthc Mater 2024; 13:e2303762. [PMID: 38047767 DOI: 10.1002/adhm.202303762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 12/05/2023]
Abstract
Surgical residual tumor lesions (R1 resection of surgical procedures (e.g., liver cancer infiltrating the diaphragm, surgical residual breast cancer, postoperative residual ovarian cancer) or boundary residual after ablation) and lymph node metastasis that cannot be surgically resected (retroperitoneal lymph nodes) significantly affect postoperative survival of tumor patients. This clinical conundrum poses three challenges for local drug delivery systems: stable and continuous delivery, good biocompatibility, and the ability to package new targeted drugs that can synergize with other treatments. Here, a drug-laden hydrogel generated from pure DNA strands and highly programmable in adjusting its mesh size is reported. Meanwhile, the DNA hydrogel can assist the microcrystallization of novel radiosensitizing drugs, ataxia telangiectasia and rad3-related protein (ATR) inhibitor (Elimusertib), further facilitating its long-term release. When applied to the tumor site, the hydrogel system demonstrates significant antitumor activity, minimized systemic toxicity, and has a modulatory effect on the tumor-immune cell interface. This drug-loaded DNA-hydrogel platform represents a novel modality for adjuvant therapy in patients with surgical residual tumor lesions and lymph node metastasis.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Yi Zhou
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Huan Tong
- Shanghai First Maternity and Infant Hospital, Shanghai, 200127, China
| | - Xi-Cheng Sun
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Zi-Cheng Lv
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - June-Kong Yong
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Yi-Chi Wu
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xue-Lin Xiang
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Fei Ding
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Li
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Chun-Hai Fan
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| |
Collapse
|
22
|
Zeng X, Tao H, Dong Y, Zhang Y, Yang J, Xuan F, Zhou J, Jia W, Liu J, Dai C, Hu H, Xiang N, Zeng N, Zhou W, Lau W, Yang J, Fang C. Impact of three-dimensional reconstruction visualization technology on short-term and long-term outcomes after hepatectomy in patients with hepatocellular carcinoma: a propensity-score-matched and inverse probability of treatment-weighted multicenter study. Int J Surg 2024; 110:1663-1676. [PMID: 38241321 PMCID: PMC10942183 DOI: 10.1097/js9.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Three-dimensional reconstruction visualization technology (3D-RVT) is an important tool in the preoperative assessment of patients undergoing liver resection. However, it is not clear whether this technique can improve short-term and long-term outcomes in patients with hepatocellular carcinoma (HCC) compared with two-dimensional (2D) imaging. METHOD A total of 3402 patients from five centers were consecutively enrolled from January 2016 to December 2020, and grouped based on the use of 3D-RVT or 2D imaging for preoperative assessment. Baseline characteristics were balanced using propensity score matching (PSM, 1:1) and stabilized inverse probability of treatment-weighting (IPTW) to reduce potential selection bias. The perioperative outcomes, long-term overall survival (OS), and recurrence-free survival (RFS) were compared between the two groups. Cox-regression analysis was used to identify the risk factors associated with RFS. RESULTS A total of 1681 patients underwent 3D-RVT assessment before hepatectomy (3D group), while 1721 patients used 2D assessment (2D group). The PSM cohort included 892 patient pairs. In the IPTW cohort, there were 1608.3 patients in the 3D group and 1777.9 patients in the 2D group. In both cohorts, the 3D group had shorter operation times, lower morbidity and liver failure rates, as well as shorter postoperative hospital stays. The 3D group had more margins ≥10 mm and better RFS than the 2D group. The presence of tumors with a diameter ≥5 cm, intraoperative blood transfusion and multiple tumors were identified as independent risk factors for RFS, while 3D assessment and anatomical resection were independent protective factors. CONCLUSION In this multicenter study, perioperative outcomes and RFS of HCC patients following 3D-RVT assessment were significantly different from those following 2D imaging assessment. Thus, 3D-RVT may be a feasible alternative assessment method before hepatectomy for these patients.
Collapse
Affiliation(s)
- Xiaojun Zeng
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Yanchen Dong
- School of Traditional Chinese Medicine, Southern Medical University
| | - Yuwei Zhang
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Junying Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Feichao Xuan
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Jian Zhou
- Department of Liver Surgery, Zhongshan Hospital, Fudan University
| | - Weidong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei
| | - Jingfeng Liu
- Liver Department, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou
| | - Chaoliu Dai
- Department of the Second General Surgery, Shengjing Hospital of China Medical University, Shenyang
| | - Haoyu Hu
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Nan Xiang
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Ning Zeng
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai
| | - Wanyee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jian Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou
| |
Collapse
|
23
|
Qiao Y, Wu G, Liu Z, He H, Tan W, Xu B. Assessment of the Enzymatic Dephosphorylation Kinetics in the Assemblies of a Phosphopentapeptide that Forms Intranuclear Nanoribbons. Biomacromolecules 2024; 25:1310-1318. [PMID: 38265878 PMCID: PMC11071069 DOI: 10.1021/acs.biomac.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Although the formation of peptide assemblies catalyzed by alkaline phosphatase (ALP) has received increasing attention in inhibiting cancer cells, the detailed enzyme kinetics of the dephosphorylation of the corresponding phosphopeptide assemblies have yet to be determined. We recently discovered that assemblies from a phosphopentapeptide can form intracellular nanoribbons that kill induced pluripotent stem cells or osteosarcoma cells, but the kinetics of enzymatic dephosphorylation remain unknown. Thus, we chose to examine the enzyme kinetics of the dephosphorylation of the phosphopentapeptide [NBD-LLLLpY (1)] from concentrations below to above its critical micelle concentration (CMC). Our results show that the phosphopeptide exhibits a CMC of 75 μM in phosphate saline buffer, and the apparent Vmax and Km values of alkaline phosphatase catalyzed dephosphorylation are approximately 0.24 μM/s and 5.67 mM, respectively. Despite dephosphorylation remaining incomplete at 60 min in all the concentrations tested, dephosphorylation of the phosphopeptide at concentrations of 200 μM or above mainly results in nanoribbons, dephosphorylation at concentrations of CMC largely produces nanofibers, and dephosphorylation below the CMC largely generates nanoparticles. Moreover, the formation of nanoribbons correlates with the intranuclear accumulation of the pentapeptide. By providing the first examination of the enzymatic kinetics of phosphopeptide assemblies, this work further supports the notion that the assemblies of phosphopentapeptides can act as a new functional entity for controlling cell fates.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Grace Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
24
|
Sakar S, Anderson CF, Schneider JP. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self-Assembled Peptide Gels. Angew Chem Int Ed Engl 2024; 63:e202313507. [PMID: 38057633 PMCID: PMC10872331 DOI: 10.1002/anie.202313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Herein, peptide nucleic acids (PNAs) are employed in the design of a participatory duplex PNA-peptide crosslinking agent. Biophysical and mechanical studies show that crosslinkers present during peptide assembly leading to hydrogelation participate in the formation of fibrils while simultaneously installing crosslinks into the higher-order network that constitutes the peptide gel. The addition of 2 mol % crosslinker into the assembling system results in a ~100 % increase in mechanical stiffness without affecting the rate of peptide assembly or the local morphology of fibrils within the gel network. Stiffness enhancement is realized by only affecting change in the elastic component of the viscoelastic gel. A synthesis of the PNA-peptide duplex crosslinkers is provided that allows facile variation in peptide composition and addresses the notorious hydrophobic content of PNAs. This crosslinking system represents a new tool for modulating the mechanical properties of peptide-based hydrogels.
Collapse
Affiliation(s)
- Srijani Sakar
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Caleb F Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
25
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
26
|
Man HSJ, Moosa VA, Singh A, Wu L, Granton JT, Juvet SC, Hoang CD, de Perrot M. Unlocking the potential of RNA-based therapeutics in the lung: current status and future directions. Front Genet 2023; 14:1281538. [PMID: 38075698 PMCID: PMC10703483 DOI: 10.3389/fgene.2023.1281538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Awareness of RNA-based therapies has increased after the widespread adoption of mRNA vaccines against SARS-CoV-2 during the COVID-19 pandemic. These mRNA vaccines had a significant impact on reducing lung disease and mortality. They highlighted the potential for rapid development of RNA-based therapies and advances in nanoparticle delivery systems. Along with the rapid advancement in RNA biology, including the description of noncoding RNAs as major products of the genome, this success presents an opportunity to highlight the potential of RNA as a therapeutic modality. Here, we review the expanding compendium of RNA-based therapies, their mechanisms of action and examples of application in the lung. The airways provide a convenient conduit for drug delivery to the lungs with decreased systemic exposure. This review will also describe other delivery methods, including local delivery to the pleura and delivery vehicles that can target the lung after systemic administration, each providing access options that are advantageous for a specific application. We present clinical trials of RNA-based therapy in lung disease and potential areas for future directions. This review aims to provide an overview that will bring together researchers and clinicians to advance this burgeoning field.
Collapse
Affiliation(s)
- H. S. Jeffrey Man
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vaneeza A. Moosa
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Licun Wu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - John T. Granton
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Stephen C. Juvet
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marc de Perrot
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
27
|
Singh A, Pruett N, Dixit S, Gara SK, Wang H, Pahwa R, Schrump DS, Hoang CD. Targeting FAcilitates Chromatin Transcription complex inhibits pleural mesothelioma and enhances immunotherapy. J Exp Clin Cancer Res 2023; 42:304. [PMID: 37974213 PMCID: PMC10652639 DOI: 10.1186/s13046-023-02889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Diffuse pleural mesothelioma (DPM) is an aggressive therapy-resistant cancer with unique molecular features. Numerous agents have been tested, but clinically effective ones remain elusive. Herein, we propose to use a small molecule CBL0137 (curaxin) that simultaneously suppresses nuclear factor-κB (NF-κB) and activates tumor suppressor p53 via targeting FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone critical for DNA repair. METHODS We used DPM cell lines, murine models (xeno- and allo-grafts), plus DPM patient samples to characterize anti-tumor effects of CBL0137 and to delineate specific molecular mechanisms. RESULTS We verified that CBL0137 induced cell cycle arrest and apoptosis. We also discovered that DPM is a FACT-dependent cancer with overexpression of both subunits structure-specific recognition protein 1 (SSRP1), a poor prognosis indicator, and suppressor of Ty 16 (SUPT16H). We defined several novel uses of CBL0137 in DPM therapy. In combination with cisplatin, CBL0137 exhibited additive anti-tumor activity compared to monotherapy. Similarly, CBL0137 (systemic) could be combined with other novel agents like microRNA-215 (intrapleural) as a more effective regimen. Importantly, we established that CBL0137 induces immunogenic cell death that contributes to activating immune response pathways in DPM. Therefore, when CBL0137 is combined with dual immune checkpoint inhibitors DPM tumor growth is significantly suppressed. CONCLUSIONS We identified an unrecognized molecular vulnerability of DPM based on FACT dependency. CBL0137 alone and in several combinations with different therapeutics showed promising efficacy, including that of improved anti-tumor immunity. Overall, these preclinical findings suggest that CBL0137 could be ideally suited for use in DPM clinical trials.
Collapse
Affiliation(s)
- Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shivani Dixit
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudheer K Gara
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haitao Wang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roma Pahwa
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Abstract
Higher-order or supramolecular protein assemblies, usually regulated by enzymatic reactions, are ubiquitous and essential for cellular functions. This evolutionary fact has provided a rigorous scientific foundation, as well as an inspiring blueprint, for exploring supramolecular assemblies of man-made molecules that are responsive to biological cues as a novel class of therapeutics for biomedicine. Among the emerging man-made supramolecular structures, peptide assemblies, formed by enzyme reactions or other stimuli, have received most of the research attention and advanced most rapidly.In this Account, we will review works that apply enzyme-instructed self-assembly (EISA) to generate intracellular peptide assemblies for developing a new kind of biomedicine, especially in the field of novel cancer nanomedicines and modulating cell morphogenesis. As a versatile and cell-compatible approach, EISA can generate nondiffusive peptide assemblies locally; thus, it provides a unique approach to target subcellular organelles with exceptional cell selectivity. We have arranged this Account in the following way: after introducing the concept, simplicity, and uniqueness of EISA, we discuss the EISA-formed intracellular peptide assemblies, including artificial filaments, in the cell cytosol. Then, we describe the representative examples targeting subcellular organelles, such as mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and the nucleus, by enzyme-instructed intracellular peptide assemblies for potential cancer therapeutics. After that, we highlight the recent exploration of the transcytosis of peptide assemblies for controlling cell morphogenesis. Finally, we provide a brief outlook of enzyme-instructed intracellular peptide assemblies. This Account aims to illustrate the promise of EISA-generated intracellular peptide assemblies in understanding diseases, controlling cell behaviors, and developing new therapeutics from a class of less explored molecular entities, which are substrates of enzymes and become building blocks of self-assembly after the enzymatic reactions.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
29
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Wang H, Su H, Xu T, Cui H. Utilizing the Hofmeister Effect to Induce Hydrogelation of Nonionic Supramolecular Polymers into a Therapeutic Depot. Angew Chem Int Ed Engl 2023; 62:e202306652. [PMID: 37669026 DOI: 10.1002/anie.202306652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Nonionic hydrogels are of particular interest for long-term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt-triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self-assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN-38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self-assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our 1 H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water-ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN-38 hydrogelator that acted potently against cancer cells.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tian Xu
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Wang H, Monroe M, Wang F, Sun M, Flexner C, Cui H. Constructing Antiretroviral Supramolecular Polymers as Long-Acting Injectables through Rational Design of Drug Amphiphiles with Alternating Antiretroviral-Based and Hydrophobic Residues. J Am Chem Soc 2023; 145:21293-21302. [PMID: 37747991 PMCID: PMC11044016 DOI: 10.1021/jacs.3c05645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
One of the main challenges in the development of long-acting injectables for HIV treatment is the limited duration of drug release, which results in the need for frequent dosing and reduced patient adherence. In this context, we leverage the intrinsic reversible features of supramolecular polymers and their unique ability to form a three-dimensional network under physiological conditions to design a class of self-assembling drug amphiphiles (DAs) based upon lamivudine, a water-soluble antiretroviral (ARV) agent and nucleoside reverse transcriptase inhibitor. The designed ARV DAs contain three pairs of alternating hydrophobic valine (V) and hydrophilic lamivudine-modified lysine (K3TC) residues with a varying number of glutamic acids (E) placed on the C-terminus. Upon dissolution in deionized water, all three ARV DAs were found to spontaneously associate into supramolecular filaments of several micrometers in length, with varying levels of lateral stacking. Addition of 1× PBS triggered immediate gelation of the two ARV DAs with 2 or 3 E residues, and upon dilution in an in vitro setting, the dissociation from the supramolecular state to the monomeric state enabled a long-acting linear release of the ARV DAs. In vivo studies further confirmed their injectability, rapid in situ hydrogel formation, enhanced local retention, and long-acting therapeutic release over a month. Importantly, our pharmacokinetic studies suggest that the injected ARV supramolecular polymeric hydrogel was able to maintain a plasma concentration of lamivudine above its IC50 value for more than 40 days in mice and showed minimal systemic immunogenicity. We believe that these results shed important light on the rational design of long-acting injectables using the drug-based molecular assembly strategy, and the reported ARV supramolecular hydrogels hold great promise for improving HIV treatment outcomes.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Charles Flexner
- Division of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
32
|
Guo J, Tan W, He H, Xu B. Autohydrolysis of Diglycine-Activated Succinic Esters Boosts Cellular Uptake. Angew Chem Int Ed Engl 2023; 62:e202308022. [PMID: 37468437 PMCID: PMC10529148 DOI: 10.1002/anie.202308022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Rapid cellular uptake of synthetic molecules remains a challenge, and the motif frequently employed to generate prodrugs, succinic ester, unfortunately lowers the efficacy of the desired drugs due to their slow ester hydrolysis and low cell entry. Here we show that succinic ester-containing diglycine drastically boosts the cellular uptake of supramolecular assemblies or prodrugs. Specifically, autohydrolysis of the diglycine-activated succinic esters turns the nanofibers of the conjugates of succinic ester and self-assembling motif into nanoparticles for fast cellular uptake. The autohydrolysis of diglycine-activated succinic esters and drug conjugates also restores the efficacy of the drugs. 2D nuclear magnetic resonance (NMR) suggests that a "U-turn" of diglycine favors intramolecular hydrolysis of diglycine-activated succinic esters to promote autohydrolysis. As an example of rapid autohydrolysis of diglycine-activated succinic esters for instant cellular uptake, this work illustrates a nonenzymatic bond cleavage approach to develop effective therapeutics for intracellular targeting.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University 415, Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University 415, Waltham, MA 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University 415, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University 415, Waltham, MA 02454, USA
| |
Collapse
|
33
|
Qiao Y, Xu B. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023; 18:e202300258. [PMID: 37380607 PMCID: PMC10613339 DOI: 10.1002/cmdc.202300258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular assemblies made by the self-assembly of peptides are finding an increasing number of applications in various fields. While the early exploration of peptide assemblies centered on tissue engineering or regenerative medicine, the recent development has shown that peptide assemblies can act as supramolecular medicine for cancer therapy. This review covers the progress of applying peptide assemblies for cancer therapy, with the emphasis on the works appeared over the last five years. We start with the introduction of a few seminal works on peptide assemblies, then discuss the combination of peptide assemblies with anticancer drugs. Next, we highlight the use of enzyme-controlled transformation or shapeshifting of peptide assemblies for inhibiting cancer cells and tumors. After that, we provide the outlook for this exciting field that promises new kind of therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
34
|
Qin X, Su M, Guo H, Peng B, Luo R, Ye J, Wang H. Functional biomaterials for the diagnosis and treatment of peritoneal surface malignancies. SMART MEDICINE 2023; 2:e20230013. [PMID: 39188342 PMCID: PMC11235712 DOI: 10.1002/smmd.20230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/03/2023] [Indexed: 08/28/2024]
Abstract
Peritoneal surface malignancies (PSM) can originate from tumors in many organs and are highly malignant, and difficult to diagnose and cure, posing a serious threat to the survival of patients. Although the diagnosis and treatment of PSM have made significant progress in the past two decades, numerous challenges remain. Recently, functionalized biomaterials have shown promise for PSM diagnosis and treatment. Hence, we review the progress of functionalized biomaterials for the diagnosis and treatment of PSM. We first introduce the classification and pathogenesis of PSM. We then discuss the applications of functionalized biomaterials for the diagnosis and treatment of PSM. In particular, we focus on functionalized biomaterials as drug carriers for the treatment of PSM, including chemotherapy, immunotherapy, targeted therapy, combination therapy, and other therapies. Finally, we summarized the current challenges and provided a perspective on the diagnosis and treatment of PSM.
Collapse
Affiliation(s)
- Xiusen Qin
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Mingli Su
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Endoscopic SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huili Guo
- Department of Infectious DiseasesThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binying Peng
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Rui Luo
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Junwen Ye
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Hui Wang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
35
|
Hu Y, Fan Y, Chen B, Li H, Zhang G, Su J. Stimulus-responsive peptide hydrogels: a safe and least invasive administration approach for tumor treatment. J Drug Target 2023:1-17. [PMID: 37469142 DOI: 10.1080/1061186x.2023.2236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumours, with increasing mortality around the world, have bothered human beings for decades. Enhancing the targeting of antitumor drugs to tumour tissues is the key to enhancing their antitumor effects. The tumour microenvironment is characterised by a relatively low pH, overexpression of certain enzymes, redox imbalance, etc. Therefore, smart drug delivery systems that respond to the tumour microenvironment have been proposed to selectively release antitumor drugs. Among them, peptide hydrogels as a local drug delivery system have received much attention due to advantages such as high biocompatibility, degradability and high water-absorbing capacity. The combination of peptide segments with different physiological functions allows for tumour targeting, self-aggregation, responsiveness, etc. Morphological and microstructural changes in peptide hydrogels can occur when utilising the inherent pathological microenvironment of tumours to trigger drug release, which endows such systems with limited adverse effects and improved therapeutic efficiency. Herein, this review outlined the driving forces, impact factors, and sequence design in peptide hydrogels. We also discussed the triggers to induce the transformation of peptide-based hydrogels in the tumour microenvironment and described the advancements of peptide-based hydrogels for local drug delivery in tumour treatment. Finally, we gave a brief perspective on the prospects and challenges in this field.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Gang Zhang
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
36
|
Xu T, Wang J, Zhao S, Chen D, Zhang H, Fang Y, Kong N, Zhou Z, Li W, Wang H. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat Commun 2023; 14:3880. [PMID: 37391398 PMCID: PMC10313671 DOI: 10.1038/s41467-023-39648-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The amino acid sequences of peptides determine their self-assembling properties. Accurate prediction of peptidic hydrogel formation, however, remains a challenging task. This work describes an interactive approach involving the mutual information exchange between experiment and machine learning for robust prediction and design of (tetra)peptide hydrogels. We chemically synthesize more than 160 natural tetrapeptides and evaluate their hydrogel-forming ability, and then employ machine learning-experiment iterative loops to improve the accuracy of the gelation prediction. We construct a score function coupling the aggregation propensity, hydrophobicity, and gelation corrector Cg, and generate an 8,000-sequence library, within which the success rate of predicting hydrogel formation reaches 87.1%. Notably, the de novo-designed peptide hydrogel selected from this work boosts the immune response of the receptor binding domain of SARS-CoV-2 in the mice model. Our approach taps into the potential of machine learning for predicting peptide hydrogelator and significantly expands the scope of natural peptide hydrogels.
Collapse
Affiliation(s)
- Tengyan Xu
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaqi Wang
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Shuang Zhao
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Dinghao Chen
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yu Fang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nan Kong
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ziao Zhou
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wenbin Li
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China.
| |
Collapse
|
37
|
Zhu C, Li T, Wang Z, Li Z, Wei J, Han H, Yuan D, Cai M, Shi J. MC1R Peptide Agonist Self-Assembles into a Hydrogel That Promotes Skin Pigmentation for Treating Vitiligo. ACS NANO 2023; 17:8723-8733. [PMID: 37115703 DOI: 10.1021/acsnano.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vitiligo, a common skin disease that seriously affects 0.5-2.0% of the worldwide population, lacks approved therapeutics due to a wide range of adverse side effects. As a key regulator of skin pigmentation, MC1R may be an effective therapeutic target for vitiligo. Herein, we report an MC1R peptide agonist that directly self-assembles into nanofibrils that form a hydrogel matrix under normal physiological conditions. This hydrogel exhibits higher stability than free peptides, sustained release, rapid recovery from shear-thinning, and resistance to enzymatic proteolysis. Furthermore, this peptidal MC1R agonist upregulates tyrosinase, tyrosinase-related protein-1 (TYRP-1), and tyrosinase-related protein-2 (TYRP-2) to stimulate melanin synthesis. More importantly, MC1R agonist hydrogel promotes skin pigmentation in mice more potently than free MC1R agonist. This study supports the development of this MC1R agonist hydrogel as a promising pharmacological intervention for vitiligo.
Collapse
Affiliation(s)
- Ci Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Tingting Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhuole Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jiaying Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hong Han
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
| |
Collapse
|
38
|
Chen S, Li Z, Zhang C, Wu X, Wang W, Huang Q, Chen W, Shi J, Yuan D. Cation-π Interaction Trigger Supramolecular Hydrogelation of Peptide Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301063. [PMID: 36932893 DOI: 10.1002/smll.202301063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As an important noncovalent interaction, cation-π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation-π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation-π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation-π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation-π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation-π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Chunhui Zhang
- College of Biology, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
- Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Qingjun Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Weiyu Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
39
|
Zhao M, Xu R, Yang Y, Tong L, Liang J, Jiang Q, Fan Y, Zhang X, Sun Y. Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence. J Control Release 2023; 356:219-231. [PMID: 36889462 DOI: 10.1016/j.jconrel.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
The residual and scattered small tumor tissue or cells after surgery are the main reason for tumor recurrence. Chemotherapy has a powerful ability to eradicate tumors but always accompanied by serious side effects. In this work, tissue-affinity mercapto gelatin (GelS) and dopamine-modified hyaluronic acid (HAD) were employed to fabricate a hybridized cross-linked hydrogel scaffold (HG) by multiple chemical reactions, which could integrate the doxorubicin (DOX) loaded reduction-responsive nano-micelle (PP/DOX) into this scaffold via click reaction to obtain the bioabsorbable nano-micelle hybridized hydrogel scaffold (HGMP). With the degradation of HGMP, PP/DOX was slowly released and formed targeted PP/DOX with degraded gelatin fragments as target molecules, which increased the intracellular accumulation, and inhibited the aggregation of B16F10 cells in vitro. In mouse models, HGMP absorbed the scattered B16F10 cells and released targeted PP/DOX to suppress tumorigenesis. For another, implantation of HGMP at the surgical site reduced the recurrence rate of postoperative melanoma and inhibited the growth of recurrent tumors. Meanwhile, HGMP significantly relieved the damage of free DOX to hair follicle tissue. This bioabsorbable nano-micelle hybridized hydrogel scaffold provided a valuable strategy for adjuvant therapy after tumor surgery.
Collapse
Affiliation(s)
- Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; Sichuan Testing Centre for Biomaterials and Medical Devices, No.29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| |
Collapse
|
40
|
Qian Q, Song J, Chen C, Pu Q, Liu X, Wang H. Recent advances in hydrogels for preventing tumor recurrence. Biomater Sci 2023; 11:2678-2692. [PMID: 36877511 DOI: 10.1039/d3bm00003f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Malignant tumors remain a high-risk disease with high mortality all over the world. Among all the cancer treatments, surgery is the primary approach in the clinical treatment of tumors. However, tumor invasion and metastasis pose challenges for complete tumor resection, accompanied by high recurrence rates and reduced quality of life. Hence, there is an urgent need to explore effective adjuvant therapies to prevent postoperative tumor recurrence and relieve the pain of the patients. Nowadays, the booming local drug delivery systems which can be applied as postoperative adjuvant therapies have aroused people's attention, along with the rapid development in the pharmaceutical and biological materials fields. Hydrogels are a kind of unique carrier with prominent biocompatibility among a variety of biomaterials. Due to their high similarity to human tissues, hydrogels which load drugs/growth factors can prevent rejection reactions and promote wound healing. In addition, hydrogels are able to cover the postoperative site and maintain sustained drug release for the prevention of tumor recurrence. In this review, we survey controlled drug delivery hydrogels such as implantable, injectable and sprayable formulations and summarize the properties required for hydrogels used as postoperative adjuvant therapies. The opportunities and challenges in the design and clinical application of these hydrogels are also elaborated.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xingcheng Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
41
|
Farsheed AC, Thomas AJ, Pogostin BH, Hartgerink JD. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210378. [PMID: 36604310 PMCID: PMC10023392 DOI: 10.1002/adma.202210378] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Indexed: 05/25/2023]
Abstract
3D printing has become one of the primary fabrication strategies used in biomedical research. Recent efforts have focused on the 3D printing of hydrogels to create structures that better replicate the mechanical properties of biological tissues. These pose a unique challenge, as soft materials are difficult to pattern in three dimensions with high fidelity. Currently, a small number of biologically derived polymers that form hydrogels are frequently reused for 3D printing applications. Thus, there exists a need for novel hydrogels with desirable biological properties that can be used as 3D printable inks. In this work, the printability of multidomain peptides (MDPs), a class of self-assembling peptides that form a nanofibrous hydrogel at low concentrations, is established. MDPs with different charge functionalities are optimized as distinct inks and are used to create complex 3D structures, including multi-MDP prints. Additionally, printed MDP constructs are used to demonstrate charge-dependent differences in cellular behavior in vitro. This work presents the first time that self-assembling peptides have been used to print layered structures with overhangs and internal porosity. Overall, MDPs are a promising new class of 3D printable inks that are uniquely peptide-based and rely solely on supramolecular mechanisms for assembly.
Collapse
Affiliation(s)
- Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Adam J Thomas
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
42
|
Yan YQ, Wang JQ, Zhang L, Yang PP, Ye XW, Liu C, Hou DY, Lai WJ, Wang J, Zeng XZ, Xu W, Wang L. Localized Instillation Enables In Vivo Screening of Targeting Peptides Using One-Bead One-Compound Technology. ACS NANO 2023; 17:1381-1392. [PMID: 36596220 DOI: 10.1021/acsnano.2c09894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The One-Bead One-Compound (OBOC) library screening is an efficient technique for identifying targeting peptides. However, due to the relatively large bead size, it is challenging for the OBOC method to be applied for in vivo screening. Herein, we report an in vivo Localized Instillation Beads library (LIB) screening method to discover targeting peptides with the OBOC technique. Inspired by localized instillation, we constructed a cavity inside of a transplanted tumor of a mouse. Then, the OBOC heptapeptide library was injected and incubated inside the tumor cavity. After an efficient elution process, the retained beads were gathered, from which three MDA-MB-231 tumor-targeting heptapeptides were discovered. It was verified that the best peptide had 1.9-fold higher tumor accumulation than the commonly used targeting peptide RGD in vivo. Finally, two targeting proteins were discovered as potential targets of our targeting peptide to the MDA-MB-231 tumor. The in vivo LIB screening method expands the scope of OBOC peptide screening applications to discover targeting peptides in vivo feasibly and reliably.
Collapse
Affiliation(s)
- Ya-Qiong Yan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jia-Qi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Harbin, Heilongjiang Province150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lingze Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Xin-Wei Ye
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Cong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Harbin, Heilongjiang Province150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Wen-Jia Lai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiang-Zhong Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Harbin, Heilongjiang Province150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
43
|
Wang Z, Hao D, Wang Y, Zhao J, Zhang J, Rong X, Zhang J, Min J, Qi W, Su R, He M. Peptidyl Virus-Like Nanovesicles as Reconfigurable "Trojan Horse" for Targeted siRNA Delivery and Synergistic Inhibition of Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204959. [PMID: 36372545 DOI: 10.1002/smll.202204959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of peptidyl virus-like nanovesicles (pVLNs) composed of highly ordered peptide bilayer membranes that encapsulate the small interfering RNA (siRNA) is reported. The targeting and enzyme-responsive sequences on the bilayer's surface allow the pVLNs to enter cancer cells with high efficiency and control the release of genetic drugs in response to the subcellular environment. By transforming its structure in response to the highly expressed enzyme matrix metalloproteinase 7 (MMP-7) in cancer cells, it helps the siRNA escape from the lysosomes, resulting in a final silencing efficiency of 92%. Moreover, the pVLNs can serve as reconfigurable "Trojan horse" by transforming into membranes triggered by the MMP-7 and disrupting the cytoplasmic structure, thereby achieving synergistic anticancer effects and 96% cancer cell mortality with little damage to normal cells. The pVLNs benefit from their biocompatibility, targeting, and enzyme responsiveness, making them a promising platform for gene therapy and anticancer therapy.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongzhao Hao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jinwu Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaojiao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
44
|
Li X, Xu X, Xu M, Geng Z, Ji P, Liu Y. Hydrogel systems for targeted cancer therapy. Front Bioeng Biotechnol 2023; 11:1140436. [PMID: 36873346 PMCID: PMC9977812 DOI: 10.3389/fbioe.2023.1140436] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
When hydrogel materials with excellent biocompatibility and biodegradability are used as excellent new drug carriers in the treatment of cancer, they confer the following three advantages. First, hydrogel materials can be used as a precise and controlled drug release systems, which can continuously and sequentially release chemotherapeutic drugs, radionuclides, immunosuppressants, hyperthermia agents, phototherapy agents and other substances and are widely used in the treatment of cancer through radiotherapy, chemotherapy, immunotherapy, hyperthermia, photodynamic therapy and photothermal therapy. Second, hydrogel materials have multiple sizes and multiple delivery routes, which can be targeted to different locations and types of cancer. This greatly improves the targeting of drugs, thereby reducing the dose of drugs and improving treatment effectiveness. Finally, hydrogel can intelligently respond to environmental changes according to internal and external environmental stimuli so that anti-cancer active substances can be remotely controlled and released on demand. Combining the abovementioned advantages, hydrogel materials have transformed into a hit in the field of cancer treatment, bringing hope to further increase the survival rate and quality of life of patients with cancer.
Collapse
Affiliation(s)
- Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Mengfei Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ping Ji
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| |
Collapse
|
45
|
Liu S, Zhang Q, He H, Yi M, Tan W, Guo J, Xu B. Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells. Angew Chem Int Ed Engl 2022; 61:e202210568. [PMID: 36102872 PMCID: PMC9869109 DOI: 10.1002/anie.202210568] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L- or D-phosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.
Collapse
Affiliation(s)
- Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
46
|
Chen D, Kong N, Wang H. Leading‐Edge Pulmonary Gene Therapy Approached by Barrier‐Permeable Delivery System: A Concise Review on Peptide System. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dinghao Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Department of Chemistry Westlake University 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Nan Kong
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Department of Chemistry Westlake University 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Department of Chemistry Westlake University 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| |
Collapse
|
47
|
Katopodi T, Petanidis S, Tsavlis D, Anestakis D, Charalampidis C, Chatziprodromidou I, Eskitzis P, Zarogoulidis P, Kosmidis C, Matthaios D, Porpodis K. Engineered multifunctional nanocarriers for controlled drug delivery in tumor immunotherapy. Front Oncol 2022; 12:1042125. [PMID: 36338748 PMCID: PMC9634039 DOI: 10.3389/fonc.2022.1042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
The appearance of chemoresistance in cancer is a major issue. The main barriers to conventional tumor chemotherapy are undesirable toxic effects and multidrug resistance. Cancer nanotherapeutics were developed to get around the drawbacks of conventional chemotherapy. Through clinical evaluation of thoughtfully developed nano delivery systems, cancer nanotherapeutics have recently offered unmatched potential to comprehend and combat drug resistance and toxicity. In different design approaches, including passive targeting, active targeting, nanomedicine, and multimodal nanomedicine combination therapy, were successful in treating cancer in this situation. Even though cancer nanotherapy has achieved considerable technological development, tumor biology complexity and heterogeneity and a lack of full knowledge of nano-bio interactions remain important hurdles to future clinical translation and commercialization. The recent developments and advancements in cancer nanotherapeutics utilizing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are covered in this article. Additionally, an evaluation of different nanotherapeutics-based approaches to cancer treatment, such as tumor microenvironment targeted techniques, sophisticated delivery methods for the precise targeting of cancer stem cells, as well as an update on clinical studies are discussed. Lastly, the potential for cancer nanotherapeutics to overcome tumor relapse and the therapeutic effects and targeted efficacies of modern nanosystems are analyzed.
Collapse
Affiliation(s)
- Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Doxakis Anestakis
- Department of Histology, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | | | | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA“ University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
48
|
Yang Y, Wang P, Cheng H, Cheng Y, Zhao Z, Xu Y, Shen Y, Zhu M. A multi-responsive Au NCs@PMLE/Ca 2+ antitumor hydrogel formed in situ on the interior/surface of tumors for PT imaging-guided synergistic PTT/O 2-enhanced PDT effects. NANOSCALE 2022; 14:7372-7386. [PMID: 35535969 DOI: 10.1039/d2nr00953f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
At present, although phototherapy and related imaging have proven to be promising cancer diagnosis and treatment strategies, the free diffusion of photosensitizers into normal tissues can cause side effects, and the efficiency of photodynamic therapy (PDT) can also be limited by the tumor hypoxic microenvironment. Herein, we designed and prepared a new cancer nanoplatform containing Au nanoclusters (NCs)@Premna microphylla leaf extract (PMLE) with both responsiveness to near-infrared (NIR) laser irradiation and tumor microenvironment (TME) by facile redox and coordination reactions. Then, the Au NCs@PMLE/Ca2+ hydrogel was constructed in situ inside and on the surface of tumors for locoregional antitumor activity under 808 nm laser irradiation. The Au NCs@PMLE nanoplatform showed distinguished performance in killing cancer cells and alleviating tumor hypoxia by enhancing the temperature of the tumor sites and producing reactive oxygen species (ROS) under NIR irradiation as well as catalyzing hydrogen peroxide (H2O2) decomposition in TME for oxygen (O2) generation via catalase in PMLE. The ultra-small size of about 3 nm of the Au NCs in this nanoplatform was obtained using the biological molecules present in PMLE as reductants and coordination agents simultaneously, which also demonstrated the outstanding capability of photothermal (PT) imaging and photothermal therapy (PTT) towards tumors. Furthermore, the Au NCs@PMLE/Ca2+ hydrogel formed in situ through natural PMLE and intrinsic Ca2+ in TME could not only improve the biocompatibility of the nanoplatform and stability of Au NCs but was also highly concentrated around the tumor thus enhancing the therapeutic efficiency and inhibiting its migration to normal tissues, decreasing the side effects. The results of the experiments confirmed that the Au NCs@PMLE/Ca2+ hydrogel possessed PT imaging-guided NIR laser/TME-responsive synergetic cancer PTT/O2-enhanced PDT and remarkable locoregional antitumor effect for cancer therapy. This work may open a new versatile route for multi-responsive localized cancer therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Yongmei Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, P. R. China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei Anhui 230032, P. R. China
| | - Hanlong Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yinkai Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Zhou Zhao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yahan Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yuhua Shen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
49
|
Choi AY, Singh A, Wang D, Pittala K, Hoang CD. Current State of Pleural-Directed Adjuncts Against Malignant Pleural Mesothelioma. Front Oncol 2022; 12:886430. [PMID: 35586499 PMCID: PMC9108281 DOI: 10.3389/fonc.2022.886430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodality therapy including surgical resection is the current paradigm in treating malignant pleural mesothelioma (MPM), a thoracic surface cancer without cure. The main limitation of all surgical approaches is the lack of long-term durability because macroscopic complete resection (R1 resection) commonly predisposes to locoregional relapse. Over the years, there have been many studies that describe various intrapleural strategies that aim to extend the effect of surgical resection. The majority of these approaches are intraoperative adjuvants. Broadly, there are three therapeutic classes that employ diverse agents. The most common, widely used group of adjuvants are comprised of direct therapeutics such as intracavitary chemotherapy (± hyperthermia). By comparison, the least commonly employed intrathoracic adjuvant is the class comprised of drug-device combinations like photodynamic therapy (PDT). But the most rapidly evolving (new) class with much potential for improved efficacy are therapeutics delivered by specialized drug vehicles such as a fibrin gel containing cisplatin. This review provides an updated perspective on pleural-directed adjuncts in the management of MPM as well as highlighting the most promising near-term technology breakthroughs.
Collapse
|
50
|
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer 2022; 8:494-505. [PMID: 35300951 DOI: 10.1016/j.trecan.2022.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK; Department of Physics, King's College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK; Convergence Science Centre, Imperial College London, London, UK; Division of Cancer, Imperial College London, London, UK.
| |
Collapse
|