1
|
Chi J, Fan B, Li Y, Jiao Q, Li GY. Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases. Neural Regen Res 2025; 20:3370-3387. [PMID: 39851134 PMCID: PMC11974652 DOI: 10.4103/nrr.nrr-d-24-00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/26/2025] Open
Abstract
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment.
Collapse
Affiliation(s)
- Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yulin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Cherry AD. Mitochondrial Dysfunction in Cardiac Surgery. Anesthesiol Clin 2025; 43:357-375. [PMID: 40348547 DOI: 10.1016/j.anclin.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Mitochondria are key to the cellular response to energetic demands, but are also vital to reactive oxygen species signaling, calcium hemostasis, and regulation of cell death. Cardiac surgical patients with diabetes, heart failure, advanced age, or cardiomyopathies may have underlying mitochondrial dysfunction or be more sensitive to perioperative mitochondrial injury. Mitochondrial dysfunction, due to ischemia/reperfusion injury and an increased systemic inflammatory response due to exposure to cardiopulmonary bypass and surgical tissue trauma, impacts myocardial contractility and predisposes to arrhythmias. Strategies for perioperative mitochondrial protection and recovery include both well-established cardio-protective protocols and targeted therapies that remain under investigation.
Collapse
Affiliation(s)
- Anne D Cherry
- Department of Anesthesiology, Duke University School of Medicine, Duke University Medical Center, Box 3094, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Pan D, Chen P, Zhang H, Zhao Q, Fang W, Ji S, Chen T. Mitochondrial quality control: A promising target of traditional Chinese medicine in the treatment of cardiovascular disease. Pharmacol Res 2025; 215:107712. [PMID: 40154932 DOI: 10.1016/j.phrs.2025.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular disease remains the leading cause of death globally, and drugs for new targets are urgently needed. Mitochondria are the primary sources of cellular energy, play crucial roles in regulating cellular homeostasis, and are tightly associated with pathological processes in cardiovascular disease. In response to physiological signals and external stimuli in cardiovascular disease, mitochondrial quality control, which mainly includes mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, is initiated to meet cellular requirements and maintain cellular homeostasis. Traditional Chinese Medicine (TCM) has been shown to have pharmacological effects on alleviating cardiac injury in various cardiovascular diseases, including myocardial ischemia/reperfusion, myocardial infarction, and heart failure, by regulating mitochondrial quality control. Recently, several molecular mechanisms of TCM in the treatment of cardiovascular disease have been elucidated. However, mitochondrial quality control by TCM for treating cardiovascular disease has not been investigated. In this review, we aim to decipher the pharmacological effects and molecular mechanisms of TCM in regulating mitochondrial quality in various cardiovascular diseases. We also present our perspectives regarding future research in this field.
Collapse
Affiliation(s)
- Deng Pan
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wei Fang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Siyan Ji
- Stomatology Department of Qiqihar Medical College School, Heilongjiang, China
| | - Tielong Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
4
|
Han B, Tian J, Li J, Chen Y, Liu N, Ma Y, Wang C, Guo X, Liu Y, Zhang Z. Cardioprotective effects of Dendrobium officinale polysaccharides on thiacloprid-induced cardiac injury via modulating mitochondrial dynamics. Int J Biol Macromol 2025; 309:142497. [PMID: 40164262 DOI: 10.1016/j.ijbiomac.2025.142497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/28/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Thiacloprid (THI), a widely used neonicotinoid pesticide, has been shown to induce cardiac injury, though the underlying mechanisms remain poorly understood. Dendrobium officinale polysaccharides (DOP), a bioactive compound with potent antioxidant properties, may offer protection against such toxicity. This study investigated the cardioprotective effects of DOP in THI-induced cardiac injury in quails, with a particular focus on the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Network pharmacology analysis identified key targets of DOP, linking them to oxidative stress, mitochondrial dysfunction, and inflammatory pathways. Experimental results demonstrated that DOP significantly reversed THI-induced hematological and biochemical abnormalities, including the restoration of cardiac biomarkers and mitigation of myocardial structural damage. DOP treatment notably activated the Nrf2 pathway, leading to the upregulation of antioxidant enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which countered THI-induced oxidative stress. Additionally, DOP restored mitochondrial dynamics by balancing mitochondrial fission and fusion proteins. These findings highlight the central role of Nrf2 activation in the cardioprotective effects of DOP, suggesting that DOP may serve as a promising therapeutic agent for mitigating pesticide-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Jiawen Tian
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Yuyang Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China
| | - Yitong Ma
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China
| | - Caihan Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China
| | - Xinyu Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China
| | - Yunfeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, 150030 Harbin, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
5
|
James R. Relationship troubles at the mitochondrial level and what it might mean for human disease. Open Biol 2025; 15:240331. [PMID: 40393506 DOI: 10.1098/rsob.240331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025] Open
Abstract
Understanding and treating disease depend upon our knowledge of how the body works. The biomedical approach to disease describes health purely in terms of biological factors, with a focus on the genome as the molecular basis for cellular function and dysfunction in disease. However, the eukaryotic cell has evolved as a partnership between prokaryotic cells with mitochondria being crucial to this relationship. Aside from their role as bioenergetic and biosynthetic hubs, mitochondria are also involved in cell signalling and cell fate pathways, playing a multifaceted role in cell function and health. Crucially, mitochondria are implicated in most diseases. Perhaps then, visualizing biomedical function on the backdrop of endosymbiosis may provide another viewpoint for explaining and treating disease.
Collapse
|
6
|
Lian K, Zhang X, Shi C, Yang W, Xu X. Association between depressive symptoms and premature death: An exploratory mediation analysis via mitochondrial function. J Affect Disord 2025; 375:373-379. [PMID: 39892752 DOI: 10.1016/j.jad.2025.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Depression is a common mental health issue that can lead to various physical and psychological diseases. However, the relationship between depressive symptoms and premature death remains unclear. METHODS In this study, we used data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 to assess the relationship between depressive symptoms and premature mortality and the potential influence of mitochondrial function on this relationship. The Patient Health Questionnaire-9 (PHQ-9) was used to assess the severity of depressive symptoms. Mortality data were obtained from the National Death Index (NDI). Mitochondrial function was assessed by measuring methylmalonic acid (MMA) levels. Multivariate logistic regression was used to assess the association between depressive symptoms and premature mortality, controlling for demographic, lifestyle, and disease-related factors. Restricted cubic splines were plotted, and propensity score matching (PSM) was used to create balanced groups. Finally, mediation analysis was performed to investigate the mediating role of MMA in the association between depressive symptoms and premature mortality. RESULTS This study included a total of 6599 participants. The results showed a substantial positive association (odds ratio [OR] = 1.452; 95 % confidence interval [CI], 1.038-2.031; p < 0.05) between depressive symptoms and premature mortality. The significance of this relationship was maintained after PSM analysis (OR = 2.370; 95 % CI, 1.749-3.212; p < 0.01). Mediation analysis showed that MMA partially mediated this relationship, with a mediation proportion of 4.1 %. CONCLUSION This study indicates that depressive symptoms significantly increases the risk of premature death and mitochondrial dysfunction partially mediates this positive relationship. Additional prospective and experimental studies are warranted to verify these findings.
Collapse
Affiliation(s)
- Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xi Zhang
- Department of Psychiatry, Yuxi Hospital of Traditional Chinese Medicine, Yuxi 653100, Yunnan, China
| | - Chenglong Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wei Yang
- Department of Psychiatry, The Second People's Hospital of Yuxi, Yuxi 653100, Yunnan, China.
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China; Yunnan Clinical Research Center for Mental Disorders, Kunming 650000, Yunnan, China.
| |
Collapse
|
7
|
Follprecht D, Vavricka J, Johankova V, Broz P, Krouzecky A. Mitochondria in focus: From structure and function to their role in human diseases. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40237329 DOI: 10.5507/bp.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mitochondria, double-membraned organelles within all eukaryotic cells, are essential for the proper functioning of the human organism. The frequently used phrase "powerhouses of the cell" fails to adequately capture their multifaceted roles. In addition to producing energy in the form of adenosine triphosphate through oxidative phosphorylation, mitochondria are also involved in apoptosis (programmed cell death), calcium regulation, and signaling through reactive oxygen species. Recent research suggests that they can communicate with one another and influence cellular processes. Impaired mitochondrial function on the one hand, can have widespread and profound effects on cellular and organismal health, contributing to various diseases and age-related conditions. Regular exercise on the other hand, promotes mitochondrial health by enhancing their volume, density, and functionality. Although research has made significant progress in the last few decades, mainly through the use of modern technologies, there is still a need to intensify research efforts in this field. Exploring new approaches to enhance mitochondrial health could potentially impact longevity. In this review, we focus on mitochondrial research and discoveries, examine the structure and diverse roles of mitochondria in the human body, explore their influence on energy metabolism and cellular signaling and emphasize their importance in maintaining overall health.
Collapse
Affiliation(s)
- Daniel Follprecht
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakub Vavricka
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktorie Johankova
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Broz
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Clinical Biochemistry and Hematology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ales Krouzecky
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
8
|
Pinheiro CV, Ribeiro RT, Roginski AC, Brondani M, Zemniaçak ÂB, Hoffmann CIH, Vizuete AFK, Gonçalves CA, Amaral AU, Wajner M, Baldo G, Leipnitz G. Disturbances in mitochondrial quality control and mitochondria-lysosome contact underlie the cerebral cortex and heart damage of mucopolysaccharidosis type II mice. Metab Brain Dis 2025; 40:177. [PMID: 40220021 DOI: 10.1007/s11011-025-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Mucopolysaccharidosis type II (or Hunter syndrome) is a lysosomal disease caused by mutations in the IDS gene, which encodes the enzyme iduronate 2-sulfatase. MPS II patients present with systemic clinical manifestations and, in the most severe cases, with severe central nervous system abnormalities. Cardiac alterations are also commonly observed. In this study, we evaluated the communication between mitochondria and lysosomes, as well as mitochondrial dynamics and bioenergetics, mitophagy/autophagy, and redox homeostasis in the cerebral cortex and heart of 6-month-old MPS II mice. Our findings showed a reduction in the content of protein TBC1D15 in the cerebral cortex and heart of MPS II mice and an increase in Rab7 in the heart of these animals, suggesting disturbances in the communication between mitochondria and lysosomes. Furthermore, decreased Drp1 levels, indicative of reduced fission, and increased VDAC1 and COX IV, suggesting an increase in mitochondrial mass, were seen in both tissues. Tom20 was also augmented in the cortex. Changes in parkin levels were also verified, indicating disrupted mitophagy. In the field of bioenergetics, we observed reduced activities of citrate synthase and malate dehydrogenase in the cortex, as well as decreased activities of isocitrate dehydrogenase, creatine kinase, and pyruvate kinase, along with diminished mitochondrial respiration in the cardiac tissue of deficient mice. However, a mild increase in lipid peroxidation was seen only in the heart. Our findings suggest that mitochondria-lysosome crosstalk disruption and bioenergetic failure contribute to the pathophysiology of brain and heart alterations in MPS II.
Collapse
Affiliation(s)
- Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ana Cristina Roginski
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Morgana Brondani
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ângela Beatris Zemniaçak
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Adriana Fernanda K Vizuete
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Postgraduation Program in Integral Health Care, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, 99709-910, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilherme Baldo
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Células, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil.
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Wang Y, Zheng Y, Liang X, Chang Y, Liu Y, Cheng X, Zhang M, Gao W, Li T. α-Lipoic acid alleviate myocardial infarction by suppressing age-independent macrophage senescence. Sci Rep 2025; 15:11996. [PMID: 40199978 PMCID: PMC11978910 DOI: 10.1038/s41598-025-92328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Myocardial infarction (MI) has high morbidity and mortality, and the macrophage senescence-associated secretory phenotype (SASP) plays a central role in M1 healing. α-Lipoic acid (ALA) alleviates MI by regulating the function of macrophages, although the relationship between ALA and macrophage senescence remains unclear. To investigate macrophage SASP in MI, we performed single-cell RNA sequencing (scRNA-seq) on the GEO GSE163465 dataset, along with qPCR and western blot analyses to assess SASP expression in macrophages subjected to hypoxia and ALA treatment. Immunofluorescence was used to detect SASP distribution. Coculture and animal experiments were performed to assess the therapeutic effects of ALA on macrophage senescence and cardiomyocyte ischemic injury. scRNA-seq revealed an age-independent senescent propensity of macrophages in MI. Increased expression of H2A.X, CCL7, IL1β, and CDKN1A, along with decreased SOD2 expression, confirmed that macrophage SASP occurred after hypoxia, with oxidative stress and energy metabolism involved in the process. ALA inhibited the degradation of SIRT1 and promoted the Nrf2 nuclear translocation, alleviating macrophage senescence and myocardial ischemic injury. Age-independent macrophage SASP occurred during MI. Macrophage SASP was induced by ROS and mitochondrial dysfunction. ALA alleviated SASP by decreasing ROS generation and autophagy flux while increasing SIRT1 levels, and Nrf2 nuclear translocation. ALA ameliorated MI injury.
Collapse
Affiliation(s)
- Yuchao Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yue Zheng
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaoyu Liang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yun Chang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yanwu Liu
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xian Cheng
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Meng Zhang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China.
- Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China.
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, 300170, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Tianjin ECMO Treatment and Training Base, Tianjin, 300170, China.
- Artificial Cell Engineering Technology Research Center, Tianjin, China.
| |
Collapse
|
10
|
Li Q, Liu Q, Lin Z, Lin W, Lin Z, Huang F, Zhu P. Comparison Between the Effect of Mid-Late-Life High-Intensity Interval Training and Continuous Moderate-Intensity Training in Old Mouse Hearts. J Gerontol A Biol Sci Med Sci 2025; 80:glaf025. [PMID: 39928548 PMCID: PMC11973967 DOI: 10.1093/gerona/glaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 02/12/2025] Open
Abstract
The impact of mid-late-life exercise on the aging heart remains unclear, particularly the effects of high-intensity interval training (HIIT) and continuous moderate-intensity training (CMIT). This study was the first to examine cardiac function, tissue characteristics, electrical remodeling, mitochondrial morphology, and homeostasis in old mice subjected to CMIT or HIIT, compared to untrained controls. Our results showed that 8-week HIIT significantly improved the survival rate of old mice. HIIT presented advantages on cardiac function, deposition of collagen fibers, neovascularization, aging biomarkers, and mitochondrial homeostasis. Only CMIT alleviated age-related cardiac hypertrophy. However, CMIT potentially exacerbated adverse cardiac electrical remodeling. Those findings suggested HIIT as a particularly appealing option for clinical application for aging populations.
Collapse
Affiliation(s)
- Qiaowei Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Qin Liu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhong Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenwen Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Zhonghua Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Feng Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Pengli Zhu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Gabillard-Lefort C, Thibault T, Lenaers G, Wiesner RJ, Mialet-Perez J, Baris OR. Heart of the matter: Mitochondrial dynamics and genome alterations in cardiac aging. Mech Ageing Dev 2025; 224:112044. [PMID: 40023199 DOI: 10.1016/j.mad.2025.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Cardiac pathological aging is a serious health issue, with cardiovascular diseases still being a leading cause of deaths worldwide. Therefore, there is an urgent need to identify culprit factors involved in this process. In the last decades, mitochondria, which are crucial for cardiac function, have emerged as major contributors. Mitochondria are organelles involved in a plethora of metabolic pathways and cell processes ranging from ATP production to calcium homeostasis or regulation of apoptotic pathways. This review provides a general overview of the pathomechanisms involving mitochondria during cardiac aging, with a focus on the role of mitochondrial dynamics and mitochondrial DNA (mtDNA). These mechanisms involve imbalanced mitochondrial fusion and fission, loss of mtDNA integrity leading to tissue mosaic of mitochondrial deficiency, as well as mtDNA release in the cytoplasm, promoting inflammation via the NLRP3, cGAS/STING and TLR9 pathways. Potential links between mtDNA, mitochondrial damage and the accumulation of senescent cells in the heart are also discussed. A better understanding of how these factors impact on heart function and accelerate its pathological aging should lead to the development of new therapies to promote healthy aging and restore age-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Claudie Gabillard-Lefort
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Théophile Thibault
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France; Department of Neurology, University Hospital of Angers, Angers, France
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Systems Physiology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jeanne Mialet-Perez
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Olivier R Baris
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| |
Collapse
|
12
|
Gu T, Liu J, Zeng T, Chen L, Tian Y, Xu W, Lu L. New insights into ovarian regression-related mitochondrial dysfunction in the late-laying period. Poult Sci 2025; 104:104938. [PMID: 40014974 PMCID: PMC11910091 DOI: 10.1016/j.psj.2025.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Duck egg production sharply decreases during the late-laying period, which likely stems from an ovarian mechanism. However, the molecular mechanisms underlying ovarian regression during the late-laying period remain unclear. In this study, egg-laying (LLP) and ceased-laying (CLP) ducks at 72 weeks of age were selected to explore the potential mechanism of ovarian regression. Proteomic analysis demonstrated the importance of mitochondrial function in ovarian regression. Notably, metabolomic analysis showed that CLP ducks disturbed TCA cycle, as exhibited by the lower fumarate content. The ovarian expression of protein markers for mitochondrial biogenesis (PGC-1α and TFAM) and function (SIRT1 and SIRT3) were suppressed in CLP ducks. CLP ducks had significantly increased MDA levels and reduced SOD, CAT, GSH-Px, and T-AOC activities, inducing excessive oxidative stress. Interestingly, ACSL4, a key regulator of ferroptosis, was associated with the mitochondrial envelope and membrane function during ovarian regression. CLP ducks showed significantly reduced GSH levels and increased Fe2+ content, as well as decreased the expression of ferroptosis-related proteins (GPX4 and SLC7A11) and antioxidant-related proteins (COX2, CAT, SOD1, and SOD2). Collectively, our findings suggest that ovarian regression-mediated mitochondrial dysfunction contributes to oxidative stress-induced ferroptosis in ducks that have ceased laying.
Collapse
Affiliation(s)
- Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinyu Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
13
|
Pawlowska E, Szczepanska J, Derwich M, Sobczuk P, Düzgüneş N, Blasiak J. DNA Methylation in Periodontal Disease: A Focus on Folate, Folic Acid, Mitochondria, and Dietary Intervention. Int J Mol Sci 2025; 26:3225. [PMID: 40244046 PMCID: PMC11990040 DOI: 10.3390/ijms26073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Although periodontal disease (PD) is reported to be associated with changes in various genes and proteins in both invading bacteria and the host, its molecular mechanism of pathogenesis remains unclear. Changes in immune and inflammatory genes play a significant role in PD pathogenesis. Some reports relate alterations in cellular epigenetic patterns to PD characteristics, while several high-throughput analyses indicate thousands of differentially methylated genes in both PD patients and controls. Furthermore, changes in DNA methylation patterns in inflammation-related genes have been linked to the efficacy of periodontal therapy, as demonstrated by findings related to the cytochrome C oxidase II gene. Distinct DNA methylation patterns in mesenchymal stem cells from PD patients and controls persisted despite the reversal of phenotypic PD. Methyl groups for DNA methylation are supplied by S-adenosylmethionine, which is synthesized with the involvement of folate, an essential nutrient known to play a role in maintaining mitochondrial homeostasis, reported to be compromised in PD. Folate may benefit PD through its antioxidant action against reactive oxygen and nitrogen species that are overproduced by dysfunctional mitochondria. As such, DNA methylation, dietary folate, and mitochondrial quality control may interact in PD pathogenesis. In this narrative/hypothesis review, we demonstrate how PD is associated with changes in mitochondrial homeostasis, which may, in turn, be improved by folate, potentially altering the epigenetic patterns of immune and inflammatory genes in both the nucleus and mitochondria. Therefore, a folate-based dietary intervention is recommended for PD prevention and as an adjunct therapy. At the same time, further research is needed on the involvement of epigenetic mechanisms in the beneficial effects of folate on PD studies.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (E.P.); (J.S.); (M.D.)
| | - Joanna Szczepanska
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (E.P.); (J.S.); (M.D.)
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland;
- Department of Orthopaedics and Traumatology, Polish Mothers’ Memorial Hospital—Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, University of the Pacific—San Francisco Campus, San Francisco, CA 94103, USA;
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, The Mazovian University in Plock, 04-920 Plock, Poland
| |
Collapse
|
14
|
Huang P, Fu J, Hu J, Lei Y, Wu T, Liu J. Identification of aberrantly expressed genes during aging in the mouse heart via integrated bioinformatics analysis. Medicine (Baltimore) 2025; 104:e41972. [PMID: 40153770 PMCID: PMC11957657 DOI: 10.1097/md.0000000000041972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/07/2025] [Indexed: 03/30/2025] Open
Abstract
Cardiovascular disease (CVD) represents a global problem and is associated with high levels of morbidity/mortality in the elderly (>65 years old). The present study aimed to identify the key candidate genes and pathways in cardiac aging via integrated bioinformatics analysis. The GSE43556 and GSE8146 gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs), defined as P < .05 and |log fold-change (FC)| >0.5, were identified. Functional enrichment and protein-protein interaction network construction were subsequently performed. First, 142 DEGs shared between the two GEO datasets were identified. Second, biological functional enrichment analysis illustrated that these DEGs mainly participate in "inflammatory response" and "monocarboxylic acid metabolic process." Moreover, Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were mainly enriched in the PI3K-Akt signaling pathway. Subsequently, the association between the expression of DEGs in the aged heart was evaluated using the Search Tool for the Retrieval of Interacting Genes database and Cytoscape software. The present study elucidated the key genes and signaling pathways associated with cardiac aging, thus improving the understanding of the molecular mechanisms underlying cardiac aging. These identified genes may be used as molecular biomarkers for the diagnosis and treatment of cardiac aging.
Collapse
Affiliation(s)
- Pianpian Huang
- Departments of Geriatrics, Wuhan No. 1 Hospital, Wuhan, China
| | - Jun Fu
- Departments of Radiology, Wuhan No. 1 Hospital, Wuhan, China
| | - Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinghong Lei
- Departments of Geriatrics, Wuhan No. 1 Hospital, Wuhan, China
| | - Tingyu Wu
- Departments of Geriatrics, Wuhan No. 1 Hospital, Wuhan, China
| | - Ju Liu
- Departments of Geriatrics, Wuhan No. 1 Hospital, Wuhan, China
| |
Collapse
|
15
|
Asanov MA, Poddubnyak AO, Sinitskaya AV, Khutornaya MV, Khryachkova OV, Sinitsky MY. Telomere Length of Cardiomyocytes in Wistar Rat Treated with Doxorubicin: In Vivo Experimental Study. Bull Exp Biol Med 2025; 178:597-600. [PMID: 40299122 DOI: 10.1007/s10517-025-06381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 04/30/2025]
Abstract
The effect of doxorubicin on the relative telomere length of cardiomyocytes in Wistar rats was studied. Doxorubicin (2 mg/kg body weight) was injected into the caudal vein once a week for 4 weeks, the control group was injected with 0.9% NaCl solution in an equivalent volume. The serum concentrations of proinflammatory cytokines (MCP-1 and TNFα), oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), and telomerase reverse transcriptase (TERT) were measured. In rats treated with doxorubicin, the relative length of cardiomyocyte telomeres and serum levels of 8-OHdG were higher than the in control. Thus, molecular effects of subchronic low-dose doxorubicin exposure in rats were revealed: telomeric regions of cardiomyocyte DNA were lengthened, and the level of oxidative stress marker increased.
Collapse
Affiliation(s)
- M A Asanov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia.
| | - A O Poddubnyak
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A V Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M V Khutornaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - O V Khryachkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M Yu Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
16
|
Heimerl M, Erschow S, Müller-Olling M, Manstein DJ, Decher N, Kauferstein S, Jenewein T, Pich A, Ricke-Hoch M, Hilfiker-Kleiner D. Cardiac dysfunction related to cardiac mRNA and protein traffic impairment due to reduced unconventional motor protein myosin-5b expression. Eur Heart J 2025:ehaf047. [PMID: 39969162 DOI: 10.1093/eurheartj/ehaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND AIMS The present study analysed the expression patterns of class-5 myosin motor proteins (MYO5a, b, and c) in the heart with a specific focus on the role of MYO5b. METHODS RNA-sequencing, quantitative real-time polymerase chain reaction, immunohistochemistry, Western blot, immunoprecipitation, and proteomics were performed in mice and human tissues. Functional analyses were performed in mice with a cardiac-specific knockout (KO) of MYO5b (αMHC-Cretg/-; MYO5bflox/flox), wild-type (WT) (MYO5bflox/flox), and αMHC-Cretg/- mice and in isolated adult cardiomyocytes. Next-generation sequencing screened for MYO5B gene variants in a cohort of sudden cardiac death in the young/sudden infant death syndrome patients. RESULTS The expression of MYO5b, but not MYO5a or c, increased during postnatal cardiomyocyte maturation. Myosin-5b was reduced in end-stage failing human hearts and infarcted murine hearts. Heterozygous rare and likely pathogenic missense MYO5B gene variants (n = 6) were identified in three patients of a cohort of young patients (n = 95) who died of sudden cardiac death in the young/sudden infant death syndrome. MYO5b-KO mice revealed impaired electric conductance and metabolism, developed sarcomeric disarrangement, heart failure and death with altered mRNA levels for genes involved in sarcomere organization, fatty acid and glucose metabolism, ion channel sub-units, and Ca2+-homeostasis prior to heart failure. In cardiomyocytes, myosin-5b is associated with mitochondrial and ribosomal proteins. Myosin-5b-associated ribonucleoprotein particles (RNPs) contained mRNAs of sarcomeric, metabolic, cytoskeletal, and ion channel proteins. CONCLUSIONS MYO5b is the major MYO5 gene expressed in postnatal cardiomyocytes where it transports vesicles, proteins, and multi-protein complexes. Among these are mRNA/RNP complexes affecting electric conductance, sarcomere homeostasis, cell metabolism, and cytoskeletal organization. Impairment in MYO5b expression and function promotes cardiac dysfunction, heart failure, and death.
Collapse
Affiliation(s)
- Maren Heimerl
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Sergej Erschow
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Mirco Müller-Olling
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Niels Decher
- Department of Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Medical Faculty, Philipps University Marburg, Deutschausstrasse 1-2, Marburg 35037, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, Goethe University Frankfurt, University Hospital, Kennedyallee 104, Frankfurt am Main 60598, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK, German Centre for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt am Main 60598, Germany
| | - Tina Jenewein
- Institute of Legal Medicine, Goethe University Frankfurt, University Hospital, Kennedyallee 104, Frankfurt am Main 60598, Germany
| | - Andreas Pich
- Core Facility Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Phillipps University Marburg, Baldingerstraße, Marburg 35032, Germany
| |
Collapse
|
17
|
Zhang Z, Yu X, Li J, Shen X, Fu W, Liu Y, Dong X, Wang Z. Irisin Mitigates Doxorubicin-Induced Cardiotoxicity by Reducing Oxidative Stress and Inflammation via Modulation of the PERK-eIF2α-ATF4 Pathway. Drug Des Devel Ther 2025; 19:1067-1081. [PMID: 39974610 PMCID: PMC11837746 DOI: 10.2147/dddt.s492691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Purpose Doxorubicin (DOX), an anthracycline antibiotic, has limited clinical use due to its pronounced cardiotoxicity. Irisin, a myokine known for its metabolic regulation, has shown therapeutic effects on cardiovascular disease. This study investigates the potential cardioprotective function of irisin in reducing the cardiac injury induced by DOX. Methods In vitro, H9c2 cells were pretreated with irisin (20 nM) for 24 hours before exposure to DOX (1 μM). In vivo, C57BL/6 mice were administered DOX (5 mg/kg/week, i.p.) for 4 weeks, reaching a cumulative dose of 20 mg/kg. Irisin (1 mg/kg/ 3 days, i.p.) was administered to the mice both 7 days prior to and during DOX injection.Cardiac function was evaluated by echocardiography, and cardiac histology was assessed using HE, WGA, and Masson staining. Myocardial injury markers were quantified using ELISA, and apoptosis was analyzed via TUNEL staining. Oxidative stress was determined by measuring antioxidase activity, MDA and GSH levels, and DHE staining, while mitochondrial superoxide production was assessed using MitoSOX Red. Mitochondrial morphology and function evaluated using transmission electron microscopy and Seahorse analysis, respectively Inflammatory cytokines were quantified in serum and cell supernatants. The role of the PERK-eIF2α-ATF4 pathway mediated by irisin was investigated by Western blot. Using adeno-associated virus serotype-9 carrying mouse FNDC5 shRNA (AAV9-shFNDC5) further validated the protective role of irisin in DOX-induced myocardial injury. Results Irisin reduced DOX-induced cardiac dysfunction and fibrosis. Moreover, irisin mitigated oxidative stress and inflammation through inhibiting the PERK-eIF2α-ATF4 pathway activated by DOX, thus preserving mitochondrial function. While cardiac FNDC5 knockdown exacerbated DOX-induced heart injury and PERK-eIF2α-ATF4 activation, which was partially reversed by irisin. Conclusion Irisin mitigates oxidative stress and inflammation by modulating the PERK-eIF2α-ATF4 pathway, highlighting its potential as a prospective approach for combating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zilong Zhang
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Xiaolin Yu
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Jie Li
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Xin Shen
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Wenbo Fu
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Yongguo Liu
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Xiangyu Dong
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| | - Zhao Wang
- Department of Cardiology, Cardiac and Pan - Vascular Medicine Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, People’s Republic of China
| |
Collapse
|
18
|
Li W, Li Y, Xiao L, Xie Z, Peng J, Huang W, Li X, Meng Y. Micheliolide attenuates sepsis-induced acute lung injury by suppressing mitochondrial oxidative stress and PFKFB3-driven glycolysis. J Transl Med 2025; 23:181. [PMID: 39953547 PMCID: PMC11829335 DOI: 10.1186/s12967-024-05906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Sepsis is a potentially fatal condition with a significant risk of death. Acute lung injury (ALI) is a life-threatening complication of sepsis, and the inflammatory response plays a critical role in sepsis-induced ALI. The protective effects of micheliolide (MCL) against renal fibrosis and leukemia have been demonstrated, but the precise underlying mechanisms remain unclear. METHODS In vitro, lipopolysaccharides (LPS) and interferon-gamma (IFN-γ) were used to stimulate RAW264.7 cells and bone marrow-derived macrophages (BMDMs) to investigate the protective effect of MCL on sepsis-induced ALI. Cecal ligation and puncture (CLP) models were constructed in mice to induce ALI in vivo. The expression of inflammatory factors, macrophage polarization markers, and the glycolysis-related enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) were measured in vivo. Mitochondrial function, oxidative stress, and mitochondrial-related proteins were evaluated in vitro. RESULTS MCL inhibited CLP-induced ALI, as evidenced by improvements in proinflammatory factor levels, lung wet/dry ratios, and histopathological findings. In vitro, MCL treatment significantly suppressed LPS + IFN-γ-induced M1-type polarization of RAW264.7 cells and BMDMs, as well as the production of inflammatory factors and oxidative stress. Mechanistic experiments revealed that MCL suppresses PFKFB3-driven glycolysis to reduce inflammation and activates the mitochondrial unfolded protein response (UPRmt) to alleviate mitochondrial stress. However, the therapeutic effect of MCL was diminished when PFKFB3 was overexpressed in cells. CONCLUSION This study is the first to demonstrate that MCL attenuates sepsis-induced ALI by reducing M1-type macrophage polarization. Its therapeutic effect is closely related to the suppression of oxidative stress and PFKFB3-driven glycolysis.
Collapse
Affiliation(s)
- Wenhan Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yuhan Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Linjie Xiao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Zhanzhan Xie
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jun Peng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
19
|
He C, Lu S, Yu H, Sun Y, Zhang X. Global, regional, and national disease burden attributable to high systolic blood pressure in youth and young adults: 2021 Global Burden of Disease Study analysis. BMC Med 2025; 23:74. [PMID: 39915840 PMCID: PMC11804021 DOI: 10.1186/s12916-025-03918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND High systolic blood pressure (HSBP) can cause adverse cardiovascular events and is therefore associated with a heavy global disease burden. However, this disease burden is poorly understood in youth and young adults. We aimed to explore this population to better understand the evolving trends in HSBP-related disease burden, which is crucial for effectively controlling and mitigating harmful effects. METHODS This systematic analysis used data from the 2021 Global Burden of Disease Study, spanning 1990-2021. Participants were aged 15-39 years from 204 countries/territories. We analysed HSBP-related disease burden by region, sex, age, and temporal trends. The primary outcomes were disability-adjusted life years (DALYs), mortality rates, and estimated annual percentage change. RESULTS Globally, the number of HSBP-related deaths among youth and young adults has increased by 36.11% (95% uncertainty interval [95% UI], 20.96-52.37%), whereas the number of DALYs has increased by 37.68% (95% UI, 22.69-53.65%); however, global mortality and DALY rates have remained relatively stable. In 2021, the mortality and DALY rates were 4.29 (95% UI, 3.29-5.28) and 263.37 (95% UI, 201.40-324.46) per 100,000 population, respectively. The overall HSBP-related burden was higher in males than in females, with increasing and decreasing trends for males and females, respectively. Regionally, significant improvements in HSBP-related burden were observed in most high-sociodemographic index (SDI) regions, including high-income Asia Pacific (deaths: percentage change, - 72.65%; DALYs: percentage change, - 69.30%) and Western Europe (deaths: percentage change, - 72.89%; DALYs: percentage change, - 67.48%). In contrast, middle-SDI regions had the highest number of deaths and DALYs in 2021, whereas low-middle-SDI regions had the highest mortality and DALY rates. Furthermore, low-SDI regions experienced the largest increase in the number of deaths and DALYs. The HSBP-related burden increased with age; in addition, the proportion of deaths or DALYs due to ischaemic heart disease and stroke increased with age, reaching > 75% for those > 25 years of age. CONCLUSIONS The increase in global HSBP-related burden among youth and young adults indicates that current preventative efforts are insufficient. Therefore, targeted measures are needed to counter the trends in HSBP-related diseases and reduce disparities across regions and sexes.
Collapse
Affiliation(s)
- Chuan He
- Department of Laboratory Medicine, First Hospital of China Medical University, Shenyang, Liaoning Province, China
- National Clinical Research Center for Laboratory Medicine, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Saien Lu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haijie Yu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning Province, China.
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
20
|
Wang L, Sang W, Jian Y, Han Y, Wang F, Wubulikasimu S, Yang L, Tang B, Li Y. MAPK14/AIFM2 pathway regulates mitophagy-dependent apoptosis to improve atrial fibrillation. J Mol Cell Cardiol 2025; 199:1-11. [PMID: 39657863 DOI: 10.1016/j.yjmcc.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES To investigate the role and mechanism of MAPK14/AIFM2 pathway in Ang II-induced atrial fibrillation in rats. METHODS A rat model of AF was established for in vivo experiments and HL-1 cells were treated with Ang II to develop an in vitro model. In addition, HL1 cells overexpressing AIFM2 (oeAIFM2) were constructed. SB203580 was used to inhibit the expression of MAPK14. The role of MAPK14 in Ang II-AF model was investigated by in vivo electrophysiological examination and molecular biology tests. The role of MAPK14 / AIFM2 pathway on AF induced by Ang II was explored in vitro. RESULTS MAPK14 and AIFM2 were significantly up-regulated in AF induced by Ang II (all P < 0.05). In vivo experiments indicated that inhibition of MAPK14 down-regulated AIFM2, improved atrial electrical conduction, AF inducibility and durations, and alleviated the structural and functional damage of heart and mitochondria (all P < 0.05). Both in vivo and in vitro tests showed that the MAPK14/AIFM2 pathway prevented Ang II-induced AF via regulating mitophagy-dependent apoptosis. CONCLUSIONS Inhibition of the MAPK14/AIFM2 pathway improved Ang II-induced AF by inhibiting mitophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yafan Han
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Medical Science and Technology Innovation Center, Shandong First Medical University, College of Laboratory Animals (Provincial Laboratory Animal Center), Affiliated Provincial Hospital, Jinan 250117, Shandong, China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Subinuer Wubulikasimu
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
21
|
Marzetti E, Di Lorenzo R, Calvani R, Pesce V, Landi F, Coelho-Júnior HJ, Picca A. From Cell Architecture to Mitochondrial Signaling: Role of Intermediate Filaments in Health, Aging, and Disease. Int J Mol Sci 2025; 26:1100. [PMID: 39940869 PMCID: PMC11817570 DOI: 10.3390/ijms26031100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The coordination of cytoskeletal proteins shapes cell architectures and functions. Age-related changes in cellular mechanical properties have been linked to decreased cellular and tissue dysfunction. Studies have also found a relationship between mitochondrial function and the cytoskeleton. Cytoskeleton inhibitors impact mitochondrial quality and function, including motility and morphology, membrane potential, and respiration. The regulatory properties of the cytoskeleton on mitochondrial functions are involved in the pathogenesis of several diseases. Disassembly of the axon's cytoskeleton and the release of neurofilament fragments have been documented during neurodegeneration. However, these changes can also be related to mitochondrial impairments, spanning from reduced mitochondrial quality to altered bioenergetics. Herein, we discuss recent research highlighting some of the pathophysiological roles of cytoskeleton disassembly in aging, neurodegeneration, and neuromuscular diseases, with a focus on studies that explored the relationship between intermediate filaments and mitochondrial signaling as relevant contributors to cellular health and disease.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Rosa Di Lorenzo
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; (R.D.L.); (V.P.)
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (E.M.); (R.C.); (F.L.); (H.J.C.-J.)
- Department of Medicine and Surgery, LUM University, Str. Statale 100, 70010 Casamassima, Italy
| |
Collapse
|
22
|
Yan R, Chen L, Cai Z, Tang J, Zhu Y, Li Y, Wang X, Ruan Y, Han Q. NIPSNAP3A regulates cellular homeostasis by modulating mitochondrial dynamics. Gene 2025; 933:148976. [PMID: 39362349 DOI: 10.1016/j.gene.2024.148976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Mitochondria are essential for cell metabolism and survival as they produce the majority of cellular ATP through oxidative phosphorylation as well as regulate critical processes such as cell proliferation and apoptosis. NIPSNAP family of proteins are predominantly mitochondrial matrix proteins. However, the molecular and cellular functions of the NIPSNAPs, particularly NIPSNAP3A, have remained elusive. Here, we demonstrated that NIPSNAP3A knockdown in HeLa cells inhibited their proliferation and migration and attenuated apoptosis induced by Actinomycin D (Act-D). These findings suggested a complex relationship between cellular processes and mitochondrial functions, mediated by NIPSNAP3A. Further investigations revealed that NIPSNAP3A knockdown not only inhibited mitochondrial fission through reduction of DRP1-S616, but also suppressed cytochrome c release in apoptosis. Collectively, our findings highlight the critical role of NIPSNAP3A in coordinating cellular processes, likely through its influence on mitochondrial dynamics.
Collapse
Affiliation(s)
- Run Yan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liting Chen
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimu Cai
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiyao Tang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanlin Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanping Li
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Xuemin Wang
- Department of Emergency and Critical Disease, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| | - Yu Ruan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qi Han
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
23
|
Hu W, Cui X, Liu H, Li Z, Chen X, Wang Q, Zhang G, Wen E, Lan J, Chen J, Liu J, Kang C, Chen L. CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD +/NADH ratio. J Exp Clin Cancer Res 2025; 44:3. [PMID: 39754188 PMCID: PMC11697892 DOI: 10.1186/s13046-024-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive. METHODS A multi-step process of machine learning algorithms was implemented to construct the glioma stemness-related score (GScore). Further in silico and patient tissue analyses validated the predictive ability of the GScore and identified a potential target, CYP3A5. Loss-of-function or gain-of-function genetic experiments were performed to assess the impact of CYP3A5 on the self-renewal and chemoresistance of GSCs both in vitro and in vivo. Mechanistic studies were conducted using nontargeted metabolomics, RNA-seq, seahorse, transmission electron microscopy, immunofluorescence, flow cytometry, ChIP‒qPCR, RT‒qPCR, western blotting, etc. The efficacy of pharmacological inhibitors of CYP3A5 was assessed in vivo. RESULTS Based on the proposed GScore, we identify a GSC target CYP3A5, which is highly expressed in GSCs and temozolomide (TMZ)-resistant GBM patients. This elevated expression of CYP3A5 is attributed to transcription factor STAT3 activated by EGFR signaling or TMZ treatment. Depletion of CYP3A5 impairs self-renewal and TMZ resistance of GSCs. Mechanistically, CYP3A5 maintains mitochondrial fitness to promote GSC metabolic adaption through the NAD⁺/NADH-SIRT1-PGC1α axis. Additionally, CYP3A5 enhances the activity of NAD-dependent enzyme PARP to augment DNA damage repair. Treatment with CYP3A5 inhibitor alone or together with TMZ effectively suppresses tumor growth in vivo. CONCLUSION Together, this study suggests that GSCs activate STAT3 to upregulate CYP3A5 to fine-tune NAD⁺/NADH for the enhancement of mitochondrial functions and DNA damage repair, thereby fueling tumor stemness and conferring TMZ resistance, respectively. Thus, CYP3A5 represents a promising target for GBM treatment.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hongyu Liu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xu Chen
- China Medical University, Shenyang, Liaoning, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Guolu Zhang
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Er Wen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Lan
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Junyi Chen
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| | - Ling Chen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
24
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
25
|
Song Y, Zhao Y, Zhang X, Cheng C, Yan H, Liu D, Zhang D. Construction of AMPK-related circRNA network in mouse myocardial ischemia-reperfusion injury model. BMC Cardiovasc Disord 2024; 24:759. [PMID: 39736524 DOI: 10.1186/s12872-024-04387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE To screen Myocardial ischemia-reperfusion Injury in mice. adenosine monophate-activatedprotein kinase (AMPK) -related differentially expressed circularRNA (circRNA) in MIRI model, Ampk-related circRNA network was drawn to provide possible ideas for the prevention and treatment of MIRI. METHODS The mouse MIRI model was constructed by ligation of the left anterior descending artery. After the model was successfully established, the related indicators of cardiac function were detected, and high-throughput sequencing was performed on the myocardial tissue of the mice. RESULTS MIRI model was successfully constructed, and two AMPK related differentially expressed loops (novel_circ_043550 and novel_circ_035243) were screened out. A circRNA-miRNA-mRNA network consisting of 2 circRNA, 28 microRNA(miRNA) and 229 messengerRNA (mRNA) was constructed. CONCLUSIONS This study reveals the differential expression of several AMPK-related circRNAs in MIRI in mice, and the AMPK-related circRNA regulatory network is constructed, suggesting that AMPK-related circRNA may have potential clinical application prospects as a potential molecular marker and therapeutic target for MIRI.
Collapse
Affiliation(s)
- Yang Song
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yi Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiaodi Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Cheng Cheng
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Haidong Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
26
|
Kuang W, Huang J, Yang Y, Liao Y, Zhou Z, Liu Q, Wu H. Identification of markers correlating with mitochondrial function in myocardial infarction by bioinformatics. PLoS One 2024; 19:e0316463. [PMID: 39775580 PMCID: PMC11684664 DOI: 10.1371/journal.pone.0316463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI), one of the most serious cardiovascular diseases, is also affected by altered mitochondrial metabolism and immune status, but their crosstalk is poorly understood. In this paper, we use bioinformatics to explore key targets associated with mitochondrial metabolic function in MI. METHODS The datasets (GSE775, GSE183272 and GSE236374) were from National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) in conjunction with mitochondrial gene data that were downloaded from the MitoCarta 3.0 database. Differentially expressed genes (DEGs) in the dataset were screened by ClusterGVis, Weighted Gene Co-Expression Network Analysis (WGCNA) and GEO2R, and functional enrichment was performed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genomes (KEGG). Then mitochondria-associated DEGs (MitoDEGs) were obtained. Protein-protein interaction (PPI) networks were constructed to identify central MitoDEGs that are strongly associated with MI. The Cytoscape and miRWalk databases were then used to predict the transcription factors and target miRNAs of the central MitoDEG, respectively. Finally, the mouse model has been established to demonstrate the expression of MitoDEGs and their association with cardiac function. RESULTS MitoDEGs in MI were mainly involved in mitochondrial function and adenosine triphosphate (ATP) synthesis pathways. The 10 MI-related hub MitoDEGs were then obtained by eight different algorithms. Immunoassays showed a significant increase in monocyte macrophage and T cell infiltration. According to animal experiments, the expression trends of the four hub MitoDEGs (Aco2, Atp5a1, Ndufs3, and Ndufv1) were verified to be consistent with the bioinformatics results. CONCLUSION Our study identified key genes (Aco2, Atp5a1, Ndufs3, and Ndufv1) associated with mitochondrial function in myocardial infarction.
Collapse
Affiliation(s)
- Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Center for Reproductive Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Zhang P, Deng H, Lan X, Shen P, Bai Z, Huangfu C, Wang N, Xiao C, Gao Y, Sun Y, Li J, Guo J, Zhou W, Gao Y. Tetramethylpyrazine Protects Against Chronic Hypobaric Hypoxia-Induced Cardiac Dysfunction by Inhibiting CaMKII Activation in a Mouse Model Study. Int J Mol Sci 2024; 26:54. [PMID: 39795913 PMCID: PMC11720575 DOI: 10.3390/ijms26010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure. By utilizing hypobaric chambers to simulate high-altitude environments, we found that TMP improved cardiac function, alleviated cardiac hypertrophy, and reduced myocardial injury in hypobaric hypoxic mice. RNA sequencing showed that TMP also upregulated heart-contraction-related genes that were suppressed by hypobaric hypoxia exposure. Mechanistically, TMP inhibited hypobaric hypoxia-induced cardiac Ca2+/calmodulin-dependent kinase II (CaMKII) activation and exerted cardioprotective effects by inhibiting CaMKII. Our data suggest that TMP application may be a promising approach for treating high-altitude-induced cardiac dysfunction, and they highlight the crucial role of CaMKII in hypobaric hypoxia-induced cardiac pathophysiology.
Collapse
Affiliation(s)
- Pengfei Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Huifang Deng
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Xiong Lan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Pan Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Zhijie Bai
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Chaoji Huangfu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Ningning Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Chengrong Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Yehui Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Yue Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Jiamiao Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Jie Guo
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Wei Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (P.Z.); (H.D.); (X.L.); (P.S.); (Z.B.); (C.H.); (N.W.); (C.X.); (Y.G.); (Y.S.); (J.L.); (J.G.)
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
28
|
Shen L, Dettmer U. Alpha-Synuclein Effects on Mitochondrial Quality Control in Parkinson's Disease. Biomolecules 2024; 14:1649. [PMID: 39766356 PMCID: PMC11674454 DOI: 10.3390/biom14121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The maintenance of healthy mitochondria is essential for neuronal survival and relies upon mitochondrial quality control pathways involved in mitochondrial biogenesis, mitochondrial dynamics, and mitochondrial autophagy (mitophagy). Mitochondrial dysfunction is critically implicated in Parkinson's disease (PD), a brain disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Consequently, impaired mitochondrial quality control may play a key role in PD pathology. This is affirmed by work indicating that genes such as PRKN and PINK1, which participate in multiple mitochondrial processes, harbor PD-associated mutations. Furthermore, mitochondrial complex-I-inhibiting toxins like MPTP and rotenone are known to cause Parkinson-like symptoms. At the heart of PD is alpha-synuclein (αS), a small synaptic protein that misfolds and aggregates to form the disease's hallmark Lewy bodies. The specific mechanisms through which aggregated αS exerts its neurotoxicity are still unknown; however, given the vital role of both αS and mitochondria to PD, an understanding of how αS influences mitochondrial maintenance may be essential to elucidating PD pathogenesis and discovering future therapeutic targets. Here, the current knowledge of the relationship between αS and mitochondrial quality control pathways in PD is reviewed, highlighting recent findings regarding αS effects on mitochondrial biogenesis, dynamics, and autophagy.
Collapse
Affiliation(s)
- Lydia Shen
- College of Arts & Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
29
|
Qi XM, Zhang WZ, Zuo YQ, Qiao YB, Zhang YL, Ren JH, Li QS. Nrf2/NRF1 signaling activation and crosstalk amplify mitochondrial biogenesis in the treatment of triptolide-induced cardiotoxicity using calycosin. Cell Biol Toxicol 2024; 41:2. [PMID: 39707073 PMCID: PMC11662064 DOI: 10.1007/s10565-024-09969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates both oxidative stress and mitochondrial biogenesis. Our previous study reported the cardioprotection of calycosin against triptolide toxicity through promoting mitochondrial biogenesis by activating nuclear respiratory factor 1 (NRF1), a coregulatory effect contributed by Nrf2 was not fully elucidated. This work aimed at investigating the involvement of Nrf2 in mitochondrial protection and elucidating Nrf2/NRF1 signaling crosstalk on amplifying the detoxification of calycosin. Results indicated that calycosin inhibited cardiomyocytes apoptosis and F-actin depolymerization following triptolide exposure. Cardiac contraction was improved by calycosin through increasing both fractional shortening (FS%) and ejection fraction (EF%). This enhanced contractile capacity of heart was benefited from mitochondrial protection reflected by ultrastructure improvement, augment in mitochondrial mass and ATP production. NRF1 overexpression in cardiomyocytes increased mitochondrial mass and DNA copy number, whereas NRF1 knockdown mitigated calycosin-mediated enhancement in mitochondrial mass. For nuclear Nrf2, it was upregulated by calycosin in a way of disrupting Nrf2-Keap1 (Kelch-like ECH associated protein 1) interaction, followed by inhibiting ubiquitination and degradation. The involvement of Nrf2 in mitochondrial protection was validated by the results that both Nrf2 knockdown and Nrf2 inhibitor blocked the calycosin effects on mitochondrial biogenesis and respiration. In the case of calycosin treatment, its effect on NRF1 and Nrf2 upregulations were respectively blocked by PGCα/Nrf2 and NRF1 knockdown, indicative of the mutual regulation between Nrf2 and NRF1. Accordingly, calycosin activated Nrf2/NRF1 and the signaling crosstalk, leading to mitochondrial biogenesis amplification, which would become a novel mechanism of calycosin against triptolide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiao-Ming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Wei-Zheng Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Yu-Qin Zuo
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Jin-Hong Ren
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| |
Collapse
|
30
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
31
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
32
|
Tian Y, Tang X, Liu Y, Liu SY. Mendelian randomization studies of lifestyle-related risk factors for stroke: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1379516. [PMID: 39558973 PMCID: PMC11570884 DOI: 10.3389/fendo.2024.1379516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Stroke risk factors often exert long-term effects, and Mendelian randomization (MR) offers significant advantages over traditional observational studies in evaluating the causal impact of these factors on stroke. This study aims to consolidate and evaluate the relationships between potential causal factors and stroke risk, drawing upon existing MR research. Methods A comprehensive search for MR studies related to stroke was conducted up to August 2023 using databases such as PubMed, Web of Science, Embase, and Scopus. This meta-analysis examines the relationships between potential causative factors and stroke risk. Both random-effects and fixed-effects models were utilized to compile the dominance ratios of various causative elements linked to stroke. The reliability of the included studies was assessed according to the Strengthening the Reporting of Observational Studies in Epidemiology incorporating Mendelian Randomization (STROBE-MR) guidelines. Results The analysis identified several risk factors for stroke, including obesity, hypertension, low-density lipoprotein cholesterol (LDL-C), chronic kidney disease (CKD), and smoking. Protective factors included high-density lipoprotein cholesterol (HDL-C), estimated glomerular filtration rate (eGFR), and educational attainment. Subgroup analysis revealed that type 2 diabetes mellitus (T2DM), diastolic blood pressure (DBP) are risk factors for ischemic stroke (IS). Conclusion This study confirms that variables such as obesity, hypertension, elevated LDL-C levels, CKD, and smoking are significantly linked to the development of stroke. Our findings provide new insights into genetic susceptibility and potential biological pathways involved in stroke development. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024503049.
Collapse
Affiliation(s)
- Yi Tian
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, United States
| | - Shu Yi Liu
- General Practice, Chengdu Integrated Traditional Chinese Medicine (TCM) & Western Medicine Hospital, Chengdu, China
| |
Collapse
|
33
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
34
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
35
|
Sang W, Yan X, Wang L, Sun H, Jian Y, Wang F, Tang B, Li Y. CALCOCO2 prevents AngII-induced atrial remodeling by regulating the interaction between mitophagy and mitochondrial stress. Int Immunopharmacol 2024; 140:112841. [PMID: 39094358 DOI: 10.1016/j.intimp.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The biological functions of mitochondrial complexes are closely related to the development of atrial fibrillation (AF). Calcium binding and coiled-coil domain 2 (CALCOCO2) is a novel and specific receptor for mitophagy; however, its function in AF remains unknown. Therefore, this study aimed to investigate the role and molecular mechanisms of CALCOCO2 in AF, especially its regulatory mechanism in mitophagy and mitochondrial stress. METHODS Mice and HL-1 cells were treated with AngII to establish in vitro and in vivo AF models. Additionally, we examined the effect of CALCOCO2 or DAP3 Binding Cell Death Enhancer 1 (DELE1) overexpression on mitophagy and mitochondrial stress in AF models. To investigate the role of mitophagy in the regulatory effects of CALCOCO2 in AF, HL-1 cells were treated with chloroquine, a mitophagy inhibitor. Moreover, mitochondrial parameters were examined using specific fluorescent probes, transmission electron microscopy, western blotting, immunohistochemistry, and confocal microscopy. RESULTS AngII severely impaired the normal morphology and function of mitochondria; inhibited mitophagy; promoted atrial mitochondrial stress, fibrosis, and oxidative stress; and accelerated the progression of atrial remodeling in atrial myocytes. However, CALCOCO2 overexpression reversed/ameliorated these AF-induced changes. Additionally, CALCOCO2 overexpression restored mitochondrial homeostasis in atrial muscle by activating mitophagy and ameliorating mitochondrial stress. Mechanistically, DELE1 overexpression increased mitochondrial reactive oxygen species level and the expression of mitochondrial stress proteins (HRI, eIF2α, and ATF4) even in CALCOCO2-expressing in vitro AF models.. CONCLUSIONS CALCOCO2 may serve as a potential target for AF therapy to prevent or reverse the progression of atrial remodeling by regulating mitophagy and DELE1-mediated mitochondrial stress.
Collapse
Affiliation(s)
- Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoji Yan
- Department of Emergency, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huaxin Sun
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
36
|
Lyu X, Fang J, Liu D, Wu Q, Li Y, Qin C, Zheng J, Hu N. Near-infrared-triggered plasmonic regulation and cardiomyocyte-based biosensing system for in vitro bradyarrhythmia treatment. Biosens Bioelectron 2024; 262:116554. [PMID: 38971038 DOI: 10.1016/j.bios.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Bradyarrhythmia, a life-threatening cardiovascular disease, is an increasing burden for the healthcare system. Currently, surgery, implanted device, and drug are introduced to treat the bradyarrhythmia in clinical practice. However, these conventional therapeutic strategies suffer from the invasive surgery, power supply, or drug side effect, respectively, hence developing the alternative therapeutic strategy is necessarily imperative. Here, a convenient and effective strategy to treat the bradyarrhythmia is proposed using near-infrared-triggered Au nanorod (NR) based plasmonic photothermal effect (PPE). Moreover, electrophysiology of cardiomyocytes is dynamically monitored by the integrated biosensing-regulating system during and after the treatment. Cardiomyocyte-based bradyarrhythmia recover rhythmic for a long time by regulating plasmonic photothermal effect. Furthermore, the regulatory mechanism is qualitatively investigated to verify the significant thermal stimulation in the recovery process. This study establishes a reliable platform for long-term recording and evaluation of mild photothermal therapy for bradyarrhythmia in vitro, offering an efficient and non-invasive strategy for the potential clinical applications.
Collapse
Affiliation(s)
- Xuelian Lyu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiaru Fang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Dong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
37
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
38
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
39
|
Du Z, Zhou Y, Li Q, Xie Y, Zhu T, Qiao J, Zhang R, Bao Y, Wang L, Xie Y, Quan J, Lin M, Zhang N, Jin Q, Liang W, Wu L, Yin T, Xie Y. SIRT1 Ameliorates Lamin A/C Deficiency-Induced Cardiac Dysfunction by Promoting Mitochondrial Bioenergetics. JACC Basic Transl Sci 2024; 9:1211-1230. [PMID: 39534638 PMCID: PMC11551877 DOI: 10.1016/j.jacbts.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 11/16/2024]
Abstract
Dilated cardiomyopathy (DCM) is associated with high mortality despite advanced therapies. The LMNA gene encodes lamin A/C and is the second most frequently mutated gene associated with DCM, for which therapeutic options are limited. Here we generated Lmna -/- mice and found they exhibited cardiac dysfunction at the age of 1 month but not at 2 weeks. Proteomics showed down-regulation of mitochondrial function-related pathways in Lmna -/- hearts. Moreover, early injured mitochondria with decreased cristae density and sirtuin 1 (SIRT1) down-regulation were observed in 2-week-old Lmna -/- hearts. Adenoviral overexpression of SIRT1 in lamin A/C knockdown neonatal rat ventricular myocytes improved mitochondrial oxidative respiration capacity. Adeno-associated virus-mediated SIRT1 overexpression alleviated mitochondrial injury, cardiac systolic dysfunction, ventricular dilation, and fibrosis, and prolonged lifespan in Lmna -/- mice. Mechanistically, LMNA maintains mitochondrial bioenergetics through the SIRT1-PARKIN axis. Our results suggest that targeting the SIRT1 signaling pathway is expected to be a novel therapeutic strategy for LMNA mutation-associated DCM.
Collapse
Affiliation(s)
- Zunhui Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xie
- College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri, USA
| | - Tingfang Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Menglu Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liang
- University of Ottawa Heart Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Li A, Qin Y, Gong G. The Changes of Mitochondria during Aging and Regeneration. Adv Biol (Weinh) 2024; 8:e2300445. [PMID: 38979843 DOI: 10.1002/adbi.202300445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Aging and regeneration are opposite cellular processes. Aging refers to progressive dysfunction in most cells and tissues, and regeneration refers to the replacement of damaged or dysfunctional cells or tissues with existing adult or somatic stem cells. Various studies have shown that aging is accompanied by decreased regenerative abilities, indicating a link between them. The performance of any cellular process needs to be supported by the energy that is majorly produced by mitochondria. Thus, mitochondria may be a link between aging and regeneration. It should be interesting to discuss how mitochondria behave during aging and regeneration. The changes of mitochondria in aging and regeneration discussed in this review can provide a timely and necessary study of the causal roles of mitochondrial homeostasis in longevity and health.
Collapse
Affiliation(s)
- Anqi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
41
|
Nishida M, Mi X, Ishii Y, Kato Y, Nishimura A. Cardiac remodeling: novel pathophysiological mechanisms and therapeutic strategies. J Biochem 2024; 176:255-262. [PMID: 38507681 DOI: 10.1093/jb/mvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered as a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and β-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and aetiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulphide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.
Collapse
Key Words
- Abbreviations: CTGF, connective tissue growth factor
- GEF-H1, guanine nucleotide exchange factor
- HFpEF, heart failure with preserved ejection fraction
- MHC, myosin heavy chain
- MMP, matrix metalloproteinase
- MRTF, myocardin-related transcription factor
- NFAT, nuclear factor of activated T cell
- PICP, procollagen type 1 carboxy-terminal peptide
- PIIINP, procollagen type III amino-terminal
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRPC, transient receptor potential canonical
- cardiac remodeling
- mitochondria
- redox/energy metabolism
- supersulphide
- transient receptor potential
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukina Ishii
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
42
|
Li Y, Zhang H, Yu C, Dong X, Yang F, Wang M, Wen Z, Su M, Li B, Yang L. New Insights into Mitochondria in Health and Diseases. Int J Mol Sci 2024; 25:9975. [PMID: 39337461 PMCID: PMC11432609 DOI: 10.3390/ijms25189975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria are a unique type of semi-autonomous organelle within the cell that carry out essential functions crucial for the cell's survival and well-being. They are the location where eukaryotic cells carry out energy metabolism. Aside from producing the majority of ATP through oxidative phosphorylation, which provides essential energy for cellular functions, mitochondria also participate in other metabolic processes within the cell, such as the electron transport chain, citric acid cycle, and β-oxidation of fatty acids. Furthermore, mitochondria regulate the production and elimination of ROS, the synthesis of nucleotides and amino acids, the balance of calcium ions, and the process of cell death. Therefore, it is widely accepted that mitochondrial dysfunction is a factor that causes or contributes to the development and advancement of various diseases. These include common systemic diseases, such as aging, diabetes, Parkinson's disease, and cancer, as well as rare metabolic disorders, like Kearns-Sayre syndrome, Leigh disease, and mitochondrial myopathy. This overview outlines the various mechanisms by which mitochondria are involved in numerous illnesses and cellular physiological activities. Additionally, it provides new discoveries regarding the involvement of mitochondria in both disorders and the maintenance of good health.
Collapse
Affiliation(s)
- Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
43
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
44
|
Zhao M, Li J, Li Z, Yang D, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. SIRT1 Regulates Mitochondrial Damage in N2a Cells Treated with the Prion Protein Fragment 106-126 via PGC-1α-TFAM-Mediated Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:9707. [PMID: 39273653 PMCID: PMC11395710 DOI: 10.3390/ijms25179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial damage is an early and key marker of neuronal damage in prion diseases. As a process involved in mitochondrial quality control, mitochondrial biogenesis regulates mitochondrial homeostasis in neurons and promotes neuron health by increasing the number of effective mitochondria in the cytoplasm. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates neuronal mitochondrial biogenesis and quality control in neurodegenerative diseases via deacetylation of a variety of substrates. In a cellular model of prion diseases, we found that both SIRT1 protein levels and deacetylase activity decreased, and SIRT1 overexpression and activation significantly ameliorated mitochondrial morphological damage and dysfunction caused by the neurotoxic peptide PrP106-126. Moreover, we found that mitochondrial biogenesis was impaired, and SIRT1 overexpression and activation alleviated PrP106-126-induced impairment of mitochondrial biogenesis in N2a cells. Further studies in PrP106-126-treated N2a cells revealed that SIRT1 regulates mitochondrial biogenesis through the PGC-1α-TFAM pathway. Finally, we showed that resveratrol resolved PrP106-126-induced mitochondrial dysfunction and cell apoptosis by promoting mitochondrial biogenesis through activation of the SIRT1-dependent PGC-1α/TFAM signaling pathway in N2a cells. Taken together, our findings further describe SIRT1 regulation of mitochondrial biogenesis and improve our understanding of mitochondria-related pathogenesis in prion diseases. Our findings support further investigation of SIRT1 as a potential target for therapeutic intervention of prion diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.)
| |
Collapse
|
45
|
Li M, Zhang Z, He L, Wang X, Yin J, Wang X, You Y, Qian X, Ge X, Shi Z. SMYD2 induced PGC1α methylation promotes stemness maintenance of glioblastoma stem cells. Neuro Oncol 2024; 26:1587-1601. [PMID: 38721826 PMCID: PMC11376450 DOI: 10.1093/neuonc/noae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS SMYD2-induced PGC1α methylation and followed nuclear export are confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis are validated by oxygen consumption rate, ECAR, and intracranial glioma model. RESULTS PGC1α methylation causes the disabled mitochondrial function to maintain the stemness, thereby enhancing the radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS These findings unveil a novel regulatory pathway involving mitochondria that govern stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.
Collapse
Affiliation(s)
- Mengdie Li
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhixiang Zhang
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Liuguijie He
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Morandini AC, Ramos-Junior ES. Mitochondrial function in oral health and disease. J Immunol Methods 2024; 532:113729. [PMID: 39067635 DOI: 10.1016/j.jim.2024.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring mitochondrial function and mitochondrial quality control in tissues is a crucial aspect of understanding cellular health and dysfunction, which may inform about the pathogenesis of several conditions associated with aging, including chronic inflammatory conditions, neurodegenerative disorders and metabolic diseases. This process involves assessing the functionality, integrity, and abundance of mitochondria within cells. Several lines of evidence have explored techniques and methods for monitoring mitochondrial quality control in tissues. In this review, we summarize and provide our perspective considering the latest evidence in mitochondrial function and mitochondrial quality control in oral health and disease with a particular focus in periodontal inflammation. This research is significant for gaining insights into cellular health and the pathophysiology of periodontal disease, a dysbiosis-related, immune mediated and age-associated chronic condition representing a significant burden to US elderly population. Approaches for assessing mitochondrial health status reviewed here include assessing mitochondrial dynamics, mitophagy, mitochondrial biogenesis, oxidative stress, electron transport chain function and metabolomics. Such assessments help researchers comprehend the role of mitochondrial function in cellular homeostasis and its implications for oral diseases.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA; Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, USA.
| | - Erivan S Ramos-Junior
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
47
|
Chen Z, Rayner D, Morton R, Banfield L, Paré G, Chong M. The role of mitochondrial genes in ischemia-reperfusion injury: A systematic review of experimental studies. Mitochondrion 2024; 78:101908. [PMID: 38848983 DOI: 10.1016/j.mito.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial dysfunction contributes to pathological conditions like ischemia-reperfusion (IR) injury. To address the lack of effective therapeutic interventions for IR injury and potential knowledge gaps in the current literature, we systematically reviewed 3800 experimental studies across 5 databases and identified 20 mitochondrial genes impacting IR injury in various organs. Notably, CyPD, Nrf2, and GPX4 are well-studied genes consistently influencing IR injury outcomes. Emerging genes like ALDH2, BNIP3, and OPA1 are supported by human genetic evidence, thereby warranting further investigation. Findings of this review can inform future research directions and inspire therapeutic advancements.
Collapse
Affiliation(s)
- Zeyu Chen
- David Braley Cardiac Research Institute, Thrombosis & Atherosclerosis Research Institute, Population Health Research Institute, Canada; Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Rayner
- David Braley Cardiac Research Institute, Thrombosis & Atherosclerosis Research Institute, Population Health Research Institute, Canada; Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Laura Banfield
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Guillaume Paré
- David Braley Cardiac Research Institute, Thrombosis & Atherosclerosis Research Institute, Population Health Research Institute, Canada; Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael Chong
- David Braley Cardiac Research Institute, Thrombosis & Atherosclerosis Research Institute, Population Health Research Institute, Canada; Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
48
|
Fernández-Tussy P, Cardelo MP, Zhang H, Sun J, Price NL, Boutagy NE, Goedeke L, Cadena-Sandoval M, Xirouchaki CE, Brown W, Yang X, Pastor-Rojo O, Haeusler RA, Bennett AM, Tiganis T, Suárez Y, Fernández-Hernando C. miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression. JCI Insight 2024; 9:e168476. [PMID: 39190492 PMCID: PMC11466198 DOI: 10.1172/jci.insight.168476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The complexity of the mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction-associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Magdalena P. Cardelo
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Nabil E. Boutagy
- Vascular Biology and Therapeutics Program
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Leigh Goedeke
- Cardiovascular Research Institute and Division of Cardiology, Department of Medicine; and
- Diabetes, Obesity and Metabolism Institute and Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martí Cadena-Sandoval
- Department of Pathology & Cell Biology and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Chrysovalantou E. Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Wendy Brown
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Xiaoyong Yang
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Oscar Pastor-Rojo
- Vascular Biology and Therapeutics Program
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal IRYCIS, Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Rebecca A. Haeusler
- Department of Pathology & Cell Biology and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Anton M. Bennett
- Yale Center for Molecular and System Metabolism, and
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
49
|
Zhang J, Zhao Y, Yan L, Tan M, Jin Y, Yin Y, Han L, Ma X, Li Y, Yang T, Jiang T, Li H. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 2024; 27:110448. [PMID: 39091464 PMCID: PMC11293524 DOI: 10.1016/j.isci.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Despite advances in treatment, myocardial infarction remains the leading cause of heart failure and death worldwide, and the restoration of coronary blood flow can also cause heart damage. In this study, we found that corosolic acid (CA), also known as plant insulin, significantly protects the heart from ischemia-reperfusion (I/R) injury. In addition, CA can inhibit oxidative stress and improve mitochondrial structure and function in cardiomyocytes. Subsequently, our study demonstrated that CA improved the expression of the mitophagy-related proteins Prohibitin 2 (PHB2), PTEN-induced putative kinase protein-1 (PINK1), and Parkin. Meanwhile, through molecular docking, we found an excellent binding between CA and PHB2 protein. Finally, the knockdown of PHB2 eliminated the protective effect of CA on hypoxia-reoxygenation in cardiomyocytes. Taken together, our study reveals that CA increases mitophagy in cardiomyocytes via the PHB2/PINK1/Parkin signaling pathway, inhibits oxidative stress response, and maintains mitochondrial function, thereby improving cardiac function after I/R.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lianhua Han
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yimin Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P.R. China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
50
|
Zhang J, Zhao Y, Yan L, Tan M, Jin Y, Yin Y, Han L, Ma X, Li Y, Yang T, Jiang T, Li H. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 2024; 27:110448. [DOI: pmid: 39091464 doi: 10.1016/j.isci.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2025] Open
|