1
|
Monteiro LM, Gouveia PJ, Vasques-Nóvoa F, Rosa S, Bardi I, Gomes RN, Correia-Santos S, Ricotti L, Vannozzi L, Guarnera D, Costa L, Leite-Moreira AM, Mendes-Ferreira P, Leite-Moreira AF, Perbellini F, Terracciano CM, Pinto-do-Ó P, Ferreira L, Nascimento DS. Nanoscale piezoelectric patches preserve electrical integrity of infarcted hearts. Mater Today Bio 2025; 32:101742. [PMID: 40290879 PMCID: PMC12033997 DOI: 10.1016/j.mtbio.2025.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide. Several approaches have been explored to restore cardiac function, however few investigated new strategies to improve electrical functional recovery. Herein, we have investigated the impact of piezoelectric patches (Piezo patches), capable of generating electric charges upon mechanical deformation, on rat cardiac slices, healthy and ischemic hearts (ex vivo), on infarcted mice (in vivo) and on healthy and infarcted pigs (in vivo). Piezo patches did not preclude cardiac slice contractility, while compared with electrically inert control patches. In addition, Piezo patches showed an adequate safety profile in a working heart model as no electrophysiologic alterations were detected in healthy hearts. Epicardial implantation of Piezo patches in acutely infarcted mice hearts significantly improved myocardial electrical integrity without disturbing systolic function. Moreover, Piezo patches partially prevented ischemia-related adverse cardiac remodeling, reducing left ventricular chamber dilatation and compensatory hypertrophy. Coherently, Piezo patch-implanted hearts revealed downregulation of genes associated with extracellular matrix remodeling. Importantly, in vivo implantation of Piezo patches in porcine hearts revealed to be electrically safe as no major effects in its electrophysiology were detected. Overall, the results presented here endorse Piezo patches as a promising therapeutic strategy to improve post-myocardial infarction structural and electrical remodeling.
Collapse
Affiliation(s)
- Luís M. Monteiro
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro J. Gouveia
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
| | - Francisco Vasques-Nóvoa
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana Rosa
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
| | - Ifigeneia Bardi
- Imperial College London, National Heart & Lung Institute, London, United Kingdom
| | - Rita N. Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Simão Correia-Santos
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Liliana Costa
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - André M. Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino F. Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Filippo Perbellini
- Imperial College London, National Heart & Lung Institute, London, United Kingdom
| | | | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana S. Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Marcoux E, Mackasey M, Sosnowski D, Naud P, Villeneuve L, Sirois MG, Tardif JC, Quinn AT, Nattel S. Mechanisms Underlying Sinus Node Dysfunction in a Rat Model of Genetic Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2025:e013180. [PMID: 40421533 DOI: 10.1161/circep.124.013180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Sinoatrial node (SAN) dysfunction is commonly associated with atrial dysrhythmia (tachy-brady syndrome) and is a particularly important feature of inherited atrial cardiomyopathies leading to artificial pacemaker implantation. Essential MYL4 (myosin light chain-4) is an atrial-selective protein that associates with the myosin light chain and participates importantly in cardiacmuscle contraction. MYL4 gene variants encoding dysfunctional versions of MYL4 cause familial atrial cardiomyopathy with a high incidence of early SAN dysfunction (SND) and pacemaker requirement. In this study, we used a rat line, genetically modified to express an E11K gene mutation responsible for familial atrial cardiomyopathy, to address the mechanisms underlying SND. METHODS Cardiac structure and function were assessed by echocardiography and in vivo telemetry recording. SAN function was studied in vivo with intracardiac electrophysiology and ex vivo with optical mapping. Mechanisms underlying SND were interrogated in vitro with the use of voltage and current clamp with tight-seal patch-clamp and Ca2+ imaging of isolated SAN cardiomyocytes. Gene expression was assessed by quantitative polymerase chain reaction, and fibrosis was determined with Masson's trichrome stain. RESULTS Mutant Myl4-p.E11K+/+ rats exhibited worse SAN function compared with wild-type controls. In vivo, SND was demonstrated by ≈63% increase in sinus node recovery time compared with wild type. In vitro, SAN conduction velocity was reduced by ≈ 50% for Myl4-p.E11K+/+ compared with wild type. Isolated SAN cells showed ≈50% reduction in funny current and L-type Ca2+-current densities. Dysregulation of Ca2+ homeostasis was observed in Myl4-p.E11K+/+, with ≈30% slower time to peak and Ca2+ decay. Masson's trichrome staining showed ≈45% increase in SAN region collagen deposition in Myl4-p.E11K+/+. CONCLUSIONS Myl4-p.E11K+/+ mutation causes progressive SND with aging, as a result of extensive abnormalities in the underlying determinants of SAN function, including ion-channel properties, Ca2+-homeostasis, and SAN structure. These observations provide new insights into the mechanisms of SAN abnormality in atrial cardiomyopathy.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
- Faculty of Pharmacy, Université de Montréal, Canada. (E.M.)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (M.M., D.S., S.N.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (M.M., D.S., S.N.)
| | - Patrice Naud
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
- Department of Pharmacology and Physiology, Faculty of Medicine (M.G.S., J.-C.T., S.N.)
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
- Department of Pharmacology and Physiology, Faculty of Medicine (M.G.S., J.-C.T., S.N.)
| | - Alexander T Quinn
- Physiology and Biophysics, Dalhousie University, Halifax, Canada (A.T.Q.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Canada. (E.M., M.M., D.S., P.N., L.V., M.G.S., J.-C.T., S.N.)
- Department of Pharmacology and Physiology, Faculty of Medicine (M.G.S., J.-C.T., S.N.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (M.M., D.S., S.N.)
- Institute of Pharmacology, West German Heart and Vascular Center. University Duisburg-Essen (S.N.)
| |
Collapse
|
3
|
Shi K, Hu L, Cai D, Liu X, Zheng J, Xu D, Yuan Q, Xiong Q, Gong H, Zhu X, Hu N, Qin C. Three-Dimensional-Printed Flexible Nanosilver Electrode Array for Parallel and Robust Intracellular Electrophysiological Recording. ACS NANO 2025; 19:19198-19212. [PMID: 40365958 DOI: 10.1021/acsnano.5c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cardiac electrophysiology, particularly intracellular action potential (iAP) recordings, is vital for advancing the understanding and treatment of cardiovascular diseases. In this work, we present a 3D-printed flexible nanosilver electrode array (FlexNEA) that enables simple and efficient circuit fabrication within several minutes using a multimaterial electric-field-driven (EFD) micro-jet 3D printing strategy and achieves over 99% success rates in intracellular access through electroporation. The NEA with flexible property creates an enhanced cell-electrode coupling, with the cardiomyocyte membrane wrapping tightly around the nanosilver electrode, leading to superior signal quality in contrast to the conventional planar electrodes. The 3D-printed FlexNEA enables stable, high-fidelity intracellular recordings by multiple consecutive biosafe electroporations over a short or long period of time. Moreover, the platform exhibits a powerful drug screening function by accurately detecting drug-induced iAP alterations, providing a precise and quantitative assessment of ion-channel drug effects. In summary, the 3D-printed FlexNEA device and integrated biosensing-regulating platform present a significant advance in the high-fidelity intracellular recording technology of cardiac electrophysiology. The platform advances the development of low-cost, biocompatible NEA systems for preclinical research in the cardiology and pharmacology fields.
Collapse
Affiliation(s)
- Keda Shi
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Duote Cai
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xing Liu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Jilin Zheng
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Dongxin Xu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Qunchen Yuan
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Qianwen Xiong
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Haoran Gong
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| | - Ning Hu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, School of Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
4
|
Bains S, Giudicessi JR, Odening KE, Ackerman MJ. Gene therapy for cardiac arrhythmias. Nat Rev Cardiol 2025:10.1038/s41569-025-01168-5. [PMID: 40410593 DOI: 10.1038/s41569-025-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/25/2025]
Abstract
Cardiovascular diseases are the leading cause of death globally, with cardiac arrhythmias contributing substantially to this burden. Gene therapy, which directly targets the underlying disease pathobiology, offers an appealing treatment strategy for cardiac arrhythmias owing to its potential as a one-time, curative solution. Over the past two decades, substantial efforts have been made to develop new gene therapy approaches that overcome the limitations of conventional treatments. In this Review, we describe the rationale for gene therapy to treat cardiac arrhythmias; discuss advantages and disadvantages of gene silencing, gene replacement, gene suppression-and-replacement and gene editing technologies; summarize vector modalities and delivery approaches used in the field; present examples of gene therapy strategies used for atrial and ventricular arrhythmias; and highlight the current challenges and limitations in the gene therapy field.
Collapse
Affiliation(s)
- Sahej Bains
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
- Department of Paediatric and Adolescent Medicine, Division of Paediatric Cardiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Murninkas M, Levi O, Elyagon S, Komissar A, Marom N, Naumchik A, Dalal N, Gradwohl G, Etzion Y. Differential effects of anesthetics and sex on supraventricular electrophysiology and atrial fibrillation substrate in rats. Lab Anim (NY) 2025; 54:80-91. [PMID: 40140635 PMCID: PMC11957991 DOI: 10.1038/s41684-025-01532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Rodents are increasingly used in atrial electrophysiology research, yet such studies are often performed under anesthesia owing to technical challenges. Here we developed an implantable device for comprehensive atrial studies in ambulatory rats and investigated the effects of commonly used anesthetics on supraventricular electrophysiology and arrhythmic substrate, comparing them with the unanesthetized state (UAS). Adult rats were evaluated 4 weeks after implantation. Studies were conducted in the UAS under 2% isoflurane (ISO) and under 40 mg/kg pentobarbital (PEN). Pacing protocols determined various parameters, including sinoatrial node recovery time, atrioventricular node effective refractory period and atrial effective refractory period. Arrhythmic substrate was assessed after 20 triggering bursts per condition, and arrhythmic tendency was analyzed manually and through the complexity ratio, an unbiased measure recently developed by our group. PEN mildly increased heart rate in both sexes, while ISO did not affect heart rate but prolonged the corrected sinus node recovery time in males. PEN increased atrioventricular node effective refractory period in both sexes, while ISO affected males only. Both ISO and PEN prolonged atrial effective refractory period compared with UAS in both sexes. Arrhythmic measures were higher in males and were attenuated by ISO and, to a lesser extent, by PEN in males only. The dominant frequency of arrhythmic events was reduced by both anesthetics in both sexes. These findings demonstrate a significant impact of commonly used anesthetics on rat supraventricular electrophysiology, with sex-based differences, highlighting the importance of methodologies that enable cardiac electrophysiology studies in unanesthetized rodents.
Collapse
Affiliation(s)
- Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aviv Komissar
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Marom
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Naumchik
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Dalal
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gideon Gradwohl
- Medical Engineering Unit, The Jerusalem College of Technology, Jerusalem, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
6
|
Shepherd J. Biomimetic Approaches in the Development of Optimised 3D Culture Environments for Drug Discovery in Cardiac Disease. Biomimetics (Basel) 2025; 10:204. [PMID: 40277603 PMCID: PMC12024959 DOI: 10.3390/biomimetics10040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide, yet despite massive investment in drug discovery, the progress of cardiovascular drugs from lab to clinic remains slow. It is a complex, costly pathway from drug discovery to the clinic and failure becomes more expensive as a drug progresses along this pathway. The focus has begun to shift to optimisation of in vitro culture methodologies, not only because these must be undertaken are earlier on in the drug discovery pathway, but also because the principles of the 3Rs have become embedded in national and international legislation and regulation. Numerous studies have shown myocyte cell behaviour to be much more physiologically relevant in 3D culture compared to 2D culture, highlighting the advantages of using 3D-based models, whether microfluidic or otherwise, for preclinical drug screening. This review aims to provide an overview of the challenges in cardiovascular drug discovery, the limitations of traditional routes, and the successes in the field of preclinical models for cardiovascular drug discovery. It focuses on the particular role biomimicry can play, but also the challenges around implementation within commercial drug discovery.
Collapse
Affiliation(s)
- Jenny Shepherd
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
7
|
Marion-Knudsen R, Lindberg LA, Jespersen T, Saljic A. Quantitative histologic assessment of atrial fibrillation-associated fibrosis in animal models: A systematic review. Heart Rhythm 2025:S1547-5271(25)02102-2. [PMID: 40058516 DOI: 10.1016/j.hrthm.2025.03.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, and cardiac fibrosis is a major component in driving its progressive nature. Quantitative histologic assessment of fibrosis in animal models is crucial for understanding AF, but current published studies present various methodologies that limit comparison. This systematic review examines 195 AF studies across multiple animal models (mice, rats, goats, dogs, pigs, and horses) to summarize (1) quantified fibrosis results and (2) methodologies for histologic fibrosis assessment; and (3) evaluate antifibrotic therapies used in these studies. The fibrosis quantified across the studies ranged from 0.34%-60.2% depending on the animal, intervention model, and quantification method. The findings underscore the need for a standardized fibrosis quantification protocol in AF research, enabling comparison across studies and offering greater insight into potential pharmacologic interventions.
Collapse
Affiliation(s)
- Rikke Marion-Knudsen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Alexander Lindberg
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Ellermann C, Mengel C, Wolfes J, Wegner FK, Rath B, Reinke F, Eckardt L, Frommeyer G. Divergent Electrophysiologic Effects of Sacubitril in Digitalis- and Pinacidil-Related Shortened Repolarization: Experimental Evidence for Harmful Effects of Digitalis Glycosides. Pharmaceutics 2025; 17:338. [PMID: 40143002 PMCID: PMC11944348 DOI: 10.3390/pharmaceutics17030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Recent studies reported an abbreviation of cardiac repolarization induced by sacubitril. Thus, the purpose of this study was to evaluate the electrophysiologic effects of sacubitril in the presence of drugs that shorten the QT interval. Methods and Results: 25 rabbit hearts were retrogradely perfused. After generating baseline data, hearts were allocated to two groups. In the first group (n = 12), the IK,ATP opener pinacidil (1 µM) significantly reduced action potential duration at 90% of repolarization (APD90), QT intervals and effective refractory periods (ERP). Additional administration of sacubitril (5 µM) slightly reduced APD90. The digitalis glycoside ouabain (0.2 µM) significantly shortened repolarization duration and refractory periods. Additional infusion of sacubitril abbreviated repolarization duration and ERP. Ventricular vulnerability was assessed by delivering premature extra stimuli and burst stimulation. Significantly more ventricular arrhythmias occurred with pinacidil (26 episodes vs. 5 episodes under baseline conditions, p < 0.05). Additional sacubitril treatment had no significant proarrhythmic effect (24 episodes). Ouabain alone did not provoke ventricular arrhythmias (6 episodes vs. 3 under baseline conditions, p = ns) whereas additional sacubitril treatment significantly increased the occurrence of VT episodes (29 episodes, p < 0.01). Conclusions: Sacubitril abbreviates cardiac repolarization in ouabain-pretreated hearts. While sacubitril had no proarrhythmic effect in the presence of pinacidil, the combination of sacubitril and ouabain amplified the arrhythmic risk. The underlying mechanism is a further abbreviation of refractory periods and cardiac repolarization that facilitate ventricular arrhythmias. These findings add further evidence to the proarrhythmic capacity of digitalis glycosides in the presence of other drugs that influence cardiac repolarization.
Collapse
Affiliation(s)
- Christian Ellermann
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang B, Lv A, Wu H, Guo B, Lu Y, Chang Z, Wu Y, Li X, Yang Q, Nie J, Wei J, Ren Q, Ji D, Zhang Y, Rotenberg MY, Fang Y. Antifreezing Ultrathin Bioionic Gel-Based Wearable System for Artificial Intelligence-Assisted Arrhythmia Diagnosis in Hypothermia. ACS NANO 2025; 19:8176-8188. [PMID: 39960656 DOI: 10.1021/acsnano.4c17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiovascular disease (CAD) is a major global public health issue, with mortality rates being significantly impacted by cold temperatures. Stable and reliable electrocardiogram (ECG) monitoring in cold environments is crucial for early detection and treatment of CAD. However, existing skin sensor struggle to balance freeze resistance, breathability, flexibility, conductivity and adhesion at cold temperatures. Here, we introduce a solvent cross-linking strategy and an in situ transfer method to prepare ultrathin bioionic gels, featuring a freezing point below -80 °C and a thickness of only 12.6 μm. The strong and abundant interactions between the ionic liquid solvent and the zwitterionic polymer effectively suppress low-temperature crystallization, forming a toughened and highly adhesive network structure. This network enables the in situ formation of an ultrathin morphology, which can be seamlessly transferred onto various substrates. Furthermore, the solvent-cross-linked network maintains a large interpolymer chain spacing, facilitating rapid ion transport pathways. Even at subzero temperatures, the gel maintains its multifunctionality, demonstrating tissue-like softness (34.6 kPa), high ionic conductivity (10.06 mS cm-1), excellent stretchability (360%), high transparency, robust adhesive strength (175.3 kPa) and interfacial toughness (1146 J m-2). Integrated into a flexible wearable device, the ultrathin gel ensures excellent skin conformity, user comfort, and high signal-to-noise ECG signal acquisition. Leveraging an artificial neural network, the system analyzes bradycardia ECG signals and achieves 96.88% accuracy in arrhythmia detection under cold conditions. This bioionic gel-based system presents a promising solution for early CAD diagnosis and prediction in extreme environments.
Collapse
Affiliation(s)
- Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ailin Lv
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Haofan Wu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201210, China
| | - Bihan Guo
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuhan Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuqing Wu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201210, China
| | - Xiang Li
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiuyu Yang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Daizong Ji
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ya Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201210, China
| |
Collapse
|
10
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
11
|
Ferreira M, Geraldes V, Felix AC, Oliveira M, Laranjo S, Rocha I. Advancing Atrial Fibrillation Research: The Role of Animal Models, Emerging Technologies and Translational Challenges. Biomedicines 2025; 13:307. [PMID: 40002720 PMCID: PMC11853233 DOI: 10.3390/biomedicines13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, presenting a significant global healthcare challenge due to its rising incidence, association with increased morbidity and mortality, and economic burden. This arrhythmia is driven by a complex interplay of electrical, structural, and autonomic remodelling, compounded by genetic predisposition, systemic inflammation, and oxidative stress. Despite advances in understanding its pathophysiology, AF management remains suboptimal, with ongoing debates surrounding rhythm control, rate control, and anticoagulation strategies. Animal models have been instrumental in elucidating AF mechanisms, facilitating preclinical research, and advancing therapeutic development. This review critically evaluates the role of animal models in studying AF, emphasizing their utility in exploring electrical, structural, and autonomic remodelling. It highlights the strengths and limitations of various models, from rodents to large animals, in replicating human AF pathophysiology and advancing translational research. Emerging approaches, including optogenetics, advanced imaging, computational modelling, and tissue engineering, are reshaping AF research, bridging the gap between preclinical and clinical applications. We also briefly discuss ethical considerations, the translational challenges of animal studies and future directions, including integrative multi-species approaches, omics technologies and personalized computational models. By addressing these challenges and addressing emerging methodologies, this review underscores the importance of refining experimental models and integrating innovative technologies to improve AF management and outcomes.
Collapse
Affiliation(s)
- Monica Ferreira
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Vera Geraldes
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Ana Clara Felix
- Pediatric Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal; (A.C.F.); (S.L.)
| | - Mario Oliveira
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
- Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal
| | - Sergio Laranjo
- Pediatric Cardiology Department, Hospital de Santa Marta, Unidade Local de Saúde de S. José, 1150-199 Lisbon, Portugal; (A.C.F.); (S.L.)
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.); (M.O.)
- Centro Cardiovascular da Universidade de Lisboa-CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
12
|
Gray RA. A probabilistic modeling framework for the prediction of spontaneous premature beats and reentry initiation. Heart Rhythm 2025:S1547-5271(25)00004-9. [PMID: 39788177 DOI: 10.1016/j.hrthm.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Spontaneously occurring life-threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiologic models, a quantitative framework for the evolution from normal to abnormal behavior that occurs by disease is lacking. OBJECTIVE The purpose of this study was to develop a probabilistic modeling framework representing the complex interplay of cell function and tissue structure in health and disease that predicts the emergence of premature beats and the initiation of reentry. METHODS An action potential model of the rabbit was developed with data-driven uncertainty characterization as done previously. A novel tissue model using the discrete-cell monodomain equations was developed by implementing cellular uncertainty as a random spatial field. RESULTS Cellular action potentials exhibited a wide range of duration and even a variety of behaviors, with 67% exhibiting normal repolarization, 27% displaying early afterdepolarizations, and 6% showing repolarization failure. Nevertheless, simulations in tissue resulted in localized synchronized repolarization. Thus, cellular variability provided "tissue-level robustness," and premature beats and reentry induction were never observed even with abnormalities in cell function (IKr block) or tissue structure (increased tissue resistance). Alterations of both cell function and tissue structure were necessary for the generation of premature beats and arrhythmia initiation. CONCLUSION Once extended to whole hearts and validated for a specific context, this modeling framework provides a means to predict the probability of the initiation of life-threatening arrhythmias.
Collapse
Affiliation(s)
- Richard A Gray
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland.
| |
Collapse
|
13
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
14
|
Bravo-San Pedro JM, Aranda F, Buqué A, Galluzzi L. Animal models of disease: Achievements and challenges. Methods Cell Biol 2025; 192:xv-xxi. [PMID: 39863396 DOI: 10.1016/s0091-679x(25)00026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Aitziber Buqué
- Fox Chase Cancer Center, Philadelphia, PA, United States.
| | | |
Collapse
|
15
|
Grisorio L, Bongianino R, Gianeselli M, Priori SG. Gene therapy for cardiac diseases: methods, challenges, and future directions. Cardiovasc Res 2024; 120:1664-1682. [PMID: 39302117 DOI: 10.1093/cvr/cvae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy is advancing at an unprecedented pace, and the recent success of clinical trials reinforces optimism and trust among the scientific community. Recently, the cardiac gene therapy pipeline, which had progressed more slowly than in other fields, has begun to advance, overcoming biological and technical challenges, particularly in treating genetic heart pathologies. The primary rationale behind the focus on monogenic cardiac diseases is the well-defined molecular mechanisms driving their phenotypes, directly linked to the pathogenicity of single genetic mutations. This aspect makes these conditions a remarkable example of 'genetically druggable' diseases. Unfortunately, current treatments for these life-threatening disorders are few and often poorly effective, underscoring the need to develop therapies to modulate or correct their molecular substrates. In this review we examine the latest advancements in cardiac gene therapy, discussing the pros and cons of different molecular approaches and delivery vectors, with a focus on their therapeutic application in cardiac inherited diseases. Additionally, we highlight the key factors that may enhance clinical translation, drawing insights from previous trials and the current prospects of cardiac gene therapy.
Collapse
Affiliation(s)
- Luca Grisorio
- Department of Internal Medicine, University of Pavia, Via Golgi 19, Pavia, 27100, Italy
| | - Rossana Bongianino
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Via Maugeri 10, Pavia, 27100, Italy
| | - Matteo Gianeselli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Silvia Giuliana Priori
- Department of Internal Medicine, University of Pavia, Via Golgi 19, Pavia, 27100, Italy
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Via Maugeri 10, Pavia, 27100, Italy
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/ Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| |
Collapse
|
16
|
Namekata I, Seki M, Saito T, Odaka R, Hamaguchi S, Tanaka H. Automaticity of the Pulmonary Vein Myocardium and the Effect of Class I Antiarrhythmic Drugs. Int J Mol Sci 2024; 25:12367. [PMID: 39596432 PMCID: PMC11595185 DOI: 10.3390/ijms252212367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The pulmonary vein wall contains a myocardial layer whose ectopic automaticity is the major cause of atrial fibrillation. This review summarizes the results obtained in isolated pulmonary vein myocardium from small experimental animals, focusing on the studies with the guinea pig. The diversity in the action potential waveform reflects the difference in the repolarizing potassium channel currents involved. The diastolic depolarization, the trigger of automatic action potentials, is caused by multiple membrane currents, including the Na+-Ca2+ exchanger current and late INa. The action potential waveform and automaticity are affected differentially by α- and β-adrenoceptor stimulation. Class I antiarrhythmic drugs block the propagation of ectopic electrical activity of the pulmonary vein myocardium through blockade of the peak INa. Some of the class I antiarrhythmic drugs block the late INa and inhibit pulmonary vein automaticity. The negative inotropic and chronotropic effects of class I antiarrhythmic drugs could be largely attributed to their blocking effect on the Ca2+ channel rather than the Na+ channel. Such a comprehensive understanding of pulmonary vein automaticity and class I antiarrhythmic drugs would lead to an improvement in pharmacotherapy and the development of novel therapeutic agents for atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (I.N.); (M.S.); (T.S.); (R.O.); (S.H.)
| |
Collapse
|
17
|
Lubberding AF, Veedfald S, Achter JS, Nissen SD, Soattin L, Sorrentino A, Vega ET, Linz B, Eggertsen CHE, Mulvey J, Toräng S, Larsen SA, Nissen A, Petersen LG, Bilir SE, Bentzen BH, Rosenkilde MM, Hartmann B, Lilleør TNB, Qazi S, Møller CH, Tfelt-Hansen J, Sattler SM, Jespersen T, Holst JJ, Lundby A. Glucagon-like peptide-1 increases heart rate by a direct action on the sinus node. Cardiovasc Res 2024; 120:1427-1441. [PMID: 38832935 PMCID: PMC11472427 DOI: 10.1093/cvr/cvae120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS We employed a large animal model, the female landrace pig, and used multiple in vivo and ex vivo approaches including pharmacological challenges, electrophysiology, and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta, or combined alpha-beta blockade), ganglionic blockade (hexamethonium), nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened the action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signalling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pacemaking. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in people treated with GLP-1 RAs.
Collapse
Affiliation(s)
- Anniek Frederike Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sarah Dalgas Nissen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Luca Soattin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Benedikt Linz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Caroline Harriet Eggert Eggertsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - John Mulvey
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Signe Toräng
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Agnete Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nissen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lonnie Grove Petersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Secil Erbil Bilir
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Saddiq Qazi
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Jacob Tfelt-Hansen
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Michael Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Department of Cardiology, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
Wolfes J, Sörgel R, Ellermann C, Frommeyer G, Eckardt L. Mechanisms underlying the spontaneous termination of torsades de pointes in an experimental model of long QT syndrome. Heart Rhythm 2024:S1547-5271(24)03423-4. [PMID: 39389521 DOI: 10.1016/j.hrthm.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Torsades de pointes (TdP) represent a complex polymorphic ventricular tachycardia. While the triggering mechanisms of early afterdepolarization and increased dispersion of repolarization are well investigated, the sudden self-limiting termination remains poorly understood. OBJECTIVE The purpose of this study was to perform analysis of TdP to investigate factors causing spontaneous termination. METHODS We used a large data set from Langendorff experiments in isolated rabbit hearts in which drug-induced QT prolongation, bradycardia, and hypokalemia provoke TdP. We included 427 episodes with typical TdP characteristics of polymorphic self-terminating beats and twisting QRS complexes occurring in the presence of abnormal QT prolongation due to various different QT-prolonging drugs. The use of 8 monophasic action potential catheters allowed the characterization of action potential duration, configuration, and dispersion of repolarization beyond the capabilities of the surface electrocardiogram. To identify possible mechanisms of arrhythmia termination, the initial, midpoint, and terminal 3 ventricular complexes were analyzed for each episode. RESULTS An abrupt decrease in spatial dispersion over the course of a TdP episode was identified as a precursor for termination of TdP. Within the last 3 beats, a sudden significant decrease in the dispersion of repolarization was observed as a predictor of termination. In parallel, there was a decrease in action potential duration (action potential duration at 90% repolarization) before termination. Also, a change in action potential configuration (action potential duration at 90% repolarization/action potential duration at 50% repolarization ratio) in terms of the loss of action potential dome with a restitution of action potential triangulation was observed. CONCLUSION In >400 TdP episodes, homogenization of myocardial repolarization with the recovery of an action potential configuration determines the termination of TdP episodes.
Collapse
Affiliation(s)
- Julian Wolfes
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany.
| | - Rebekka Sörgel
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| | - Christian Ellermann
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| | - Gerrit Frommeyer
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| | - Lars Eckardt
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| |
Collapse
|
19
|
Zhao L, Chang Z, Guo B, Lu Y, Lu X, Ren Q, Lv A, Nie J, Ji D, Rotenberg MY, Wang B, Zhang Y, Fang Y. Robust, stretchable bioelectronic interfaces for cardiac pacing enabled by interfacial transfer of laser-induced graphene via water-response, nonswellable PVA gels. Biosens Bioelectron 2024; 261:116453. [PMID: 38850739 DOI: 10.1016/j.bios.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Implantable cardiac pacemakers are crucial therapeutic tools for managing various cardiac conditions. For effective pacing, electrodes should exhibit flexibility, deformability, biocompatibility, and high conductivity/capacitance. Laser-induced graphene (LIG) shows promise due to its exceptional electrical and electrochemical properties. However, the fragility of LIG and the non-stretchability of polyimide substrates pose challenges when interfacing with the beating heart. Here, we present a simple method for fabricating robust, flexible, and stretchable bioelectronic interfaces by transferring LIG via water-responsive, nonswellable polyvinyl alcohol (PVA) gels. PVA solution penetrates the porous structure of LIG and solidifies into PVA xerogel as the solvent evaporates. The robust PVA xerogel enables the smooth transfer of LIG and prevents stretching of the LIG network during this process, which helps maintain its conductivity. When hydrated, the xerogel becomes a stable, nonswellable hydrogel. This gives the LIG-PVA hydrogel (LIG-PVA-H) composites with excellent conductivity (119.7 ± 4.3Ω sq-1), high stretchability (up to 420%), reliability (cyclic stretch under 15% strain, with ∼ 1-time resistance increase), and good stability in phosphate buffered saline. The LIG-PVA-H composites were used as biointerfaces for electrocardiogram signal recording and electrical pacing on rat hearts ex vivo and in vivo, using commercial setups and a custom-built implantable wireless device. This work expands the application of LIG in bioelectronic interfaces and facilitates the development of electrotherapy for cardiac diseases.
Collapse
Affiliation(s)
- Lei Zhao
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Bihan Guo
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuhan Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Xinxin Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ailin Lv
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Daizong Ji
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ya Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
20
|
Bommer T, Knierim M, Unsöld J, Riedl D, Stengel L, Paulus M, Körtl T, Liaw N, Maier LS, Streckfuss-Bömeke K, Sossalla S, Pabel S. Simulation of cardiac arrhythmias in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2024; 19:e0310463. [PMID: 39331676 PMCID: PMC11432883 DOI: 10.1371/journal.pone.0310463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The effects and mechanisms of cardiac arrhythmias are still incompletely understood and an important subject of cardiovascular research. A major difficulty for investigating arrhythmias is the lack of appropriate human models. Here, we present a protocol for a translational simulation of different types of arrhythmias using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and electric cell culture pacing. The protocol comprises the handling of ventricular and atrial hiPSC-CM before and during in vitro arrhythmia simulation and possible arrhythmia simulation protocols mimicking clinical arrhythmias like atrial fibrillation. Isolated or confluent hiPSC-CM can be used for the simulation. In vitro arrhythmia simulation did not impair cell viability of hiPSC-CM and could reproduce arrhythmia associated phenotypes of patients. The use of hiPSC-CM enables patient-specific studies of arrhythmias, genetic interventions, or drug-screening. Thus, the in vitro arrhythmia simulation protocol may offer a versatile tool for translational studies on the mechanisms and treatment options of cardiac arrhythmias.
Collapse
Affiliation(s)
- Thea Bommer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria Knierim
- Department of Cardiothoracic and Vascular Surgery, University Medical Centre Göttingen, Göttingen, Germany
| | - Julia Unsöld
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Dominic Riedl
- Justus-Liebig-University Gießen Medical Clinic I and Campus Kerckhoff Bad Nauheim, Gießen and Bad Nauheim, Germany
| | - Laura Stengel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Paulus
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Körtl
- Justus-Liebig-University Gießen Medical Clinic I and Campus Kerckhoff Bad Nauheim, Gießen and Bad Nauheim, Germany
| | - Norman Liaw
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Göttingen, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Justus-Liebig-University Gießen Medical Clinic I and Campus Kerckhoff Bad Nauheim, Gießen and Bad Nauheim, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
21
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Sleiman Y, Reisqs JB, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. Int J Mol Sci 2024; 25:9155. [PMID: 39273104 PMCID: PMC11394733 DOI: 10.3390/ijms25179155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Collapse
Affiliation(s)
- Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Zeng M, Huang L, Zheng X, Weng L, Weng CF. Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations. Life (Basel) 2024; 14:1047. [PMID: 39202788 PMCID: PMC11355614 DOI: 10.3390/life14081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
AIM Cardiac arrhythmias are among the most important pathologies that cause sudden death. The exploration of new therapeutic options against arrhythmias with low undesirable effects is of paramount importance. METHODS However, the convenient and typical animal model for screening the potential lead compound becomes a very critical modality, particularly in anti-arrhythmia. In this study, mice were intraperitoneally (i.p.) injected with BaCl2, CaCl2, and adrenaline to induce arrhythmia, and simultaneously compared with BaCl2-induced rats. RESULTS Electrocardiogram (ECG) showed that the majority of mice repeatedly developed ventricular bigeminy, ventricular tachycardia (VT), and ventricular fibrillation (VF) after BaCl2-injection as seen in rats. The ECG of mice developed ventricular bigeminy and VT after CaCl2 and AT after adrenaline i.p. injection. Additionally, acute cardiac arrhythmia after BaCl2 i.p. injection could be reverted by drugs (lidocaine and amiodarone) administration. Additionally, the different routes of administration for various chemical-induced arrhythmia in both mice and rats were also retrieved from PubMed and summarized. Comparing this approach with previous studies after the literature review reveals that arrhythmia of BaCl2-induced i.p. mice is compatible with the induction of other routes. CONCLUSIONS This study brings an alternative experimental model to investigate antiarrhythmic theories and provides a promising approach to discovering new interventions for acute arrhythmias.
Collapse
Affiliation(s)
- Mengting Zeng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Liyue Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Xiaohui Zheng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Lebin Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
- LEADTEK Research, Inc., New Taipei City 235603, Taiwan
| |
Collapse
|
24
|
Breivogel CS, Brenseke BM, Eldeeb K, Nichols K, Jonas A, Mistry AH, Barbalato L, Luibil N, Howlett AC, Leone-Kabler S, Hilgers RPH, Pulgar VM. Effects of Δ 9-Tetrahydrocannabinol and the Aminoalkylindole K2/Spice Constituent JWH-073 on Cardiac Tissue and Mesenteric Vascular Reactivity. Cannabis Cannabinoid Res 2024; 9:e1056-e1062. [PMID: 37010379 PMCID: PMC11386992 DOI: 10.1089/can.2022.0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Background: Although use of Cannabis sativa is not associated with serious adverse effects, recreational use of aminoalkylindole (AAI) cannabinoid receptor agonists found in K2/Spice herbal blends has been reported to cause adverse cardiovascular events, including angina, arrhythmia, changes in blood pressure, ischemic stroke, and myocardial infarction. Δ9-Tetrahydrocannabinol (Δ9-THC) is the primary CB1 agonist found in cannabis and JWH-073 is one of the AAI CB1 agonists found in K2/Spice brands sold to the public. Methods: This study used in vitro, in vivo, and ex vivo approaches to investigate potential differences on cardiac tissue and vascular effects betweenJWH-073 and Δ9-THC. Male C57BL/6 mice were treated with JWH-073 or Δ9-THC and cardiac injury was assessed by histology. Effects of JWH-073 and Δ9-THC on H9C2 cell viability and ex vivo mesenteric vascular reactivity were also determined. Results: JWH-073 or Δ9-THC induced typical cannabinoid effects of antinociception and hypothermia but did not promote death of cardiac myocytes. No differences in cell viability were observed in cultured H9C2 cardiac myocytes after 24 h of treatment. In isolated mesenteric arteries from drug-naive animals, JWH-073 produced significantly greater maximal relaxation (96%±2% vs. 73%±5%, p<0.05) and significantly greater inhibition of phenylephrine-mediated maximal contraction (Control 174%±11%KMAX) compared with Δ9-THC (50%±17% vs. 119%±16%KMAX, p<0.05). Discussion: These findings suggest that neither cannabinoid at the concentrations/dose studied caused cardiac cell death, but JWH-073 has the potential for greater vascular adverse events than Δ9-THC through an increased vasodilatory effect.
Collapse
Affiliation(s)
- Chris S Breivogel
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Bonnie M Brenseke
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Khalil Eldeeb
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
- Al Azhar Damietta Faculty of Medicine, New Damietta, Egypt
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katlyn Nichols
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Amreen Jonas
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Artik H Mistry
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Laura Barbalato
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Nicholas Luibil
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rob P H Hilgers
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Victor M Pulgar
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Biomedical Research Infrastructure Center, Winston-Salem State University, Winston-Salem, North Carolina, USA
| |
Collapse
|
25
|
Bauer J, Vlcek J, Pauly V, Hesse N, Xia R, Mo L, Chivukula AS, Villgrater H, Dressler M, Hildebrand B, Wolf E, Rizas KD, Bauer A, Kääb S, Tomsits P, Schüttler D, Clauss S. Biomarker Periodic Repolarization Dynamics Indicates Enhanced Risk for Arrhythmias and Sudden Cardiac Death in Myocardial Infarction in Pigs. J Am Heart Assoc 2024; 13:e032405. [PMID: 38639363 PMCID: PMC11179938 DOI: 10.1161/jaha.123.032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Julia Vlcek
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Valerie Pauly
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Nora Hesse
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Ruibing Xia
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Li Mo
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Aparna Sharma Chivukula
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Hannes Villgrater
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Marie Dressler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Bianca Hildebrand
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Konstantinos D. Rizas
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
| | - Axel Bauer
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- University Hospital for Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kääb
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Philipp Tomsits
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Dominik Schüttler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Sebastian Clauss
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| |
Collapse
|
26
|
Zhang Z, Vlcek J, Pauly V, Hesse N, Bauer J, Chataut KR, Maderspacher F, Volz LS, Buchberger K, Xia R, Hildebrand B, Kääb S, Schüttler D, Tomsits P, Clauss S. Atrial fibrosis heterogeneity is a risk for atrial fibrillation in pigs with ischaemic heart failure. Eur J Clin Invest 2024; 54:e14137. [PMID: 38012826 DOI: 10.1111/eci.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia and is associated with considerable morbidity and mortality. Ischaemic heart failure (IHF) remains one of the most common causes of AF in clinical practice. However, ischaemia-mediated mechanisms leading to AF are still incompletely understood, and thus, current treatment approaches are limited. To improve our understanding of the pathophysiology, we studied a porcine IHF model. METHODS In pigs, IHF was induced by balloon occlusion of the left anterior descending artery for 90 min. After 30 days of reperfusion, invasive haemodynamic measurements and electrophysiological studies were performed. Masson trichrome and immunofluorescence staining were conducted to assess interstitial fibrosis and myofibroblast activation in different heart regions. RESULTS After 30 days of reperfusion, heart failure with significantly reduced ejection fraction (left anterior obique 30°, 34.78 ± 3.29% [IHF] vs. 62.03 ± 2.36% [control], p < .001; anterior-posterior 0°, 29.16 ± 3.61% vs. 59.54 ± 1.09%, p < .01) was observed. These pigs showed a significantly higher susceptibility to AF (33.90% [IHF] vs. 12.98% [control], p < .05). Histological assessment revealed aggravated fibrosis in atrial appendages but not in atrial free walls in IHF pigs (11.13 ± 1.44% vs. 5.99 ± .86%, p < .01 [LAA], 8.28 ± .56% vs. 6.01 ± .35%, p < .01 [RAA]), which was paralleled by enhanced myofibroblast activation (12.09 ± .65% vs. 9.00 ± .94%, p < .05 [LAA], 14.37 ± .60% vs. 10.30 ± 1.41%, p < .05 [RAA]). Correlation analysis indicated that not fibrosis per se but its cross-regional heterogeneous distribution across the left atrium was associated with AF susceptibility (r = .6344, p < .01). CONCLUSION Our results suggest that left atrial cross-regional fibrosis difference rather than overall fibrosis level is associated with IHF-related AF susceptibility, presumably by establishing local conduction disturbances and heterogeneity.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Julia Vlcek
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Nora Hesse
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Julia Bauer
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Kavi Raj Chataut
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Maderspacher
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lina Sophie Volz
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Buchberger
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ruibing Xia
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Bianca Hildebrand
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, Campus Grosshadern, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| |
Collapse
|
27
|
Freeman M, Huethorst E, Boland E, Dunne M, Burton F, Denning C, Myles R, Smith G. A novel method for the percutaneous induction of myocardial infarction by occlusion of small coronary arteries in the rabbit. Am J Physiol Heart Circ Physiol 2024; 326:H735-H751. [PMID: 38180449 PMCID: PMC11221806 DOI: 10.1152/ajpheart.00657.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Arrhythmic sudden cardiac death (SCD) is an important cause of mortality following myocardial infarction (MI). The rabbit has similar cardiac electrophysiology to humans and is therefore an important small animal model to study post-MI arrhythmias. The established approach of surgical coronary ligation results in thoracic adhesions that impede epicardial electrophysiological studies. Adhesions are absent following a percutaneously induced MI, which is also associated with reduced surgical morbidity and so represents a clear refinement of the approach. Percutaneous procedures have previously been described in large rabbits (3.5-5.5 kg). Here, we describe a novel method of percutaneous MI induction in smaller rabbits (2.5-3.5 kg) that are readily available commercially. New Zealand White rabbits (n = 51 males, 3.1 ± 0.3 kg) were anesthetized using isoflurane (1.5-3%) and underwent either a percutaneous MI procedure involving microcatheter tip deployment (≤1.5 Fr, 5 mm), coronary ligation surgery, or a sham procedure. Electrocardiography (ECG) recordings were used to confirm ST-segment elevation indicating coronary occlusion. Blood samples (1 and 24 h) were taken for cardiac troponin I (cTnI) levels. Ejection fraction (EF) was measured at 6-8 wk. Rabbits were then euthanized (Euthatal) and hearts were processed for magnetic resonance imaging and histology. Mortality rates were similar in both groups. Scar volume, cTnI, and EF were similar between both MI groups and significantly different from their respective sham controls. Thus, percutaneous coronary occlusion by microcatheter tip deployment is feasible in rabbits (2.5-3.5 kg) and produces an MI with similar characteristics to surgical ligation with lower procedural trauma and without epicardial adhesions.NEW & NOTEWORTHY Surgical coronary ligation is the standard technique to induce myocardial infarction (MI) in rabbits but is associated with procedural trauma and the generation of thoracic adhesions. Percutaneous coronary occlusion avoids these shortcomings and is established in pigs but has only been applicable to large rabbits because of a mismatch between the equipment used and target vessel size. Here, we describe a new scalable approach to percutaneous MI induction that is safe and effective in 2.5-3.5-kg rabbits.
Collapse
Affiliation(s)
- Michael Freeman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Eline Huethorst
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael Dunne
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francis Burton
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Myles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
28
|
Ferrand MC, Giordano G, Mougenot N, Laporte PL, Vignier N, Leclerc A, Algalarrondo V, Extramiana F, Charpentier F, Neyroud N. Intracardiac electrophysiology to characterize susceptibility to ventricular arrhythmias in murine models. Front Physiol 2024; 15:1326663. [PMID: 38322613 PMCID: PMC10846502 DOI: 10.3389/fphys.2024.1326663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction: Sudden cardiac death (SCD) and ventricular fibrillation are rare but severe complications of many cardiovascular diseases and represent a major health issue worldwide. Although the primary causes are often acute or chronic coronary diseases, genetic conditions, such as inherited channelopathies or non-ischemic cardiomyopathies are leading causes of SCD among the young. However, relevant experimental models to study the underlying mechanisms of arrhythmias and develop new therapies are still needed. The number of genetically engineered mouse models with cardiac phenotype is growing, making electrophysiological studies in mice essential tools to study arrhythmogenicity and arrhythmia mechanisms and to test novel treatments. Recently, intracardiac catheterization via the jugular vein was described to induce and record ventricular arrhythmias in living anesthetized mice. Several strategies have been reported, developed in healthy wild-type animals and based on aggressive right ventricular stimulation. Methods: Here, we report a protocol based on programmed electrical stimulation (PES) performed in clinical practice in patients with cardiac rhythm disorders, adapted to two transgenic mice models of arrhythmia - Brugada syndrome and cardiolaminopathy. Results: We show that this progressive protocol, based on a limited number of right ventricular extrastimuli, enables to reveal different rhythmic phenotypes between control and diseased mice. In this study, we provide detailed information on PES in mice, including catheter positioning, stimulation protocols, intracardiac and surface ECG interpretation and we reveal a higher susceptibility of two mouse lines to experience triggered ventricular arrhythmias, when compared to control mice. Discussion: Overall, this technique allows to characterize arrhythmias and provides results in phenotyping 2 arrhythmogenic-disease murine models.
Collapse
Affiliation(s)
- Marine C. Ferrand
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France
| | - Gauthier Giordano
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France
- Competence Center for Hereditary or Rare Heart Diseases, Centre Hospitalier Régional Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | | | - Pierre-Léo Laporte
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France
- Reference Center for Inherited Arrhythmic Syndromes, Hôpital Bichat, APHP, Université de Paris Cité, Paris, France
| | - Nicolas Vignier
- Sorbonne Université, Inserm, UMRS-974, Center of Research in Myology, Institute of Myology, Paris, France
| | - Arnaud Leclerc
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France
| | - Vincent Algalarrondo
- Reference Center for Inherited Arrhythmic Syndromes, Hôpital Bichat, APHP, Université de Paris Cité, Paris, France
| | - Fabrice Extramiana
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France
- Reference Center for Inherited Arrhythmic Syndromes, Hôpital Bichat, APHP, Université de Paris Cité, Paris, France
| | | | - Nathalie Neyroud
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France
| |
Collapse
|
29
|
Galbas MC, Straky HC, Meissner F, Reuter J, Schimmel M, Grundmann S, Czerny M, Bothe W. Cardiac dimensions and hemodynamics in healthy juvenile Landrace swine. Cardiovasc Ultrasound 2024; 22:3. [PMID: 38229189 DOI: 10.1186/s12947-023-00321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Swine are frequently used as animal model for cardiovascular research, especially in terms of representativity of human anatomy and physiology. Reference values for the most common species used in research are important for planning and execution of animal testing. Transesophageal echocardiography is the gold standard for intraoperative imaging, but can be technically challenging in swine. Its predecessor, epicardial echocardiography (EE), is a simple and fast intraoperative imaging technique, which allows comprehensive and goal-directed assessment. However, there are few echocardiographic studies describing echocardiographic parameters in juvenile swine, none of them using EE. Therefore, in this study, we provide a comprehensive dataset on multiple geometric and functional echocardiographic parameters, as well as basic hemodynamic parameters in swine using EE. METHODS The data collection was performed during animal testing in ten female swine (German Landrace, 104.4 ± 13.0 kg) before left ventricular assist device implantation. Hemodynamic data was recorded continuously, before and during EE. The herein described echocardiographic measurements were acquired according to a standardized protocol, encompassing apical, left ventricular short axis and long axis as well as epiaortic windows. In total, 50 echocardiographic parameters and 10 hemodynamic parameters were assessed. RESULTS Epicardial echocardiography was successfully performed in all animals, with a median screening time of 14 min (interquartile range 11-18 min). Referring to left ventricular function, ejection fraction was 51.6 ± 5.9% and 51.2 ± 6.2% using the Teichholz and Simpson methods, respectively. Calculated ventricular mass was 301.1 ± 64.0 g, as the left ventricular end-systolic and end-diastolic diameters were 35.3 ± 2.5 mm and 48.2 ± 3.5 mm, respectively. The mean heart rate was 103 ± 28 bpm, mean arterial pressure was 101 ± 20 mmHg and mean flow at the common carotid artery was 627 ± 203 mL/min. CONCLUSION Epicardial echocardiography allows comprehensive assessment of most common echocardiographic parameters. Compared to humans, there are important differences in swine with respect to ventricular mass, size and wall thickness, especially in the right heart. Most hemodynamic parameters were comparable between swine and humans. This data supports study planning, animal and device selection, reinforcing the three R principles in animal research.
Collapse
Affiliation(s)
- Michelle Costa Galbas
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Hendrik Cornelius Straky
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Florian Meissner
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Johanna Reuter
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Marius Schimmel
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Sebastian Grundmann
- Department of Cardiology and Angiology, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
30
|
Dickfeld T, Kagan C, Amara R, Hong-Zohlman S, Ananthram M, Hong CC, Sorkin J, See V, Shorofsky S, Griffith B, Mohiuddin M. Baseline 12-Lead Electrocardiographic Characteristics in Genetically Modified Porcine Cardiac Xenotransplant. Circulation 2024; 149:164-166. [PMID: 38190447 DOI: 10.1161/circulationaha.123.064017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Timm Dickfeld
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Calvin Kagan
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Richard Amara
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Susie Hong-Zohlman
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Manjula Ananthram
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing (C.C.H.)
| | - John Sorkin
- Department of Medicine (J.S.), University of Maryland, Baltimore
| | - Vincent See
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Stephen Shorofsky
- Division of Cardiology (T.D., C.K., R.A., S.H.-Z., M.A., V.S., S.S.), University of Maryland, Baltimore
| | - Bart Griffith
- Division of Cardiac Surgery (B.G., M.M.), University of Maryland, Baltimore
| | - Muhammad Mohiuddin
- Division of Cardiac Surgery (B.G., M.M.), University of Maryland, Baltimore
| |
Collapse
|
31
|
Bravo-San Pedro JM, Aranda F, Buqué A, Galluzzi L. Preface. Methods Cell Biol 2024; 185:xvii-xxiv. [PMID: 38556455 DOI: 10.1016/s0091-679x(24)00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States
| |
Collapse
|
32
|
Galbas MC, Meissner F, Asmussen A, Straky HC, Schimmel M, Reuter J, Grundmann S, Czerny M, Bothe W. A systematic methodology for epicardial and epiaortic echocardiography in swine research models. Health Sci Rep 2024; 7:e1777. [PMID: 38186934 PMCID: PMC10767764 DOI: 10.1002/hsr2.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Perioperative echocardiography is of paramount importance during cardiac surgery. Nonetheless, in the experimental large-animal setting, it might be challenging obtaining optimal imaging when using conventional imaging acquisition techniques, such as transthoracic and transesophageal screenings. Open-chest surgery allows epicardial echocardiographic assessment with direct contact between probe and heart, thus providing superior quality. Standard protocols regarding the use of epicardial ultrasound in swine for research purposes are lacking. Methods Epicardial echocardiography was performed in 10 female German Landrace pigs undergoing cardiac surgery. A structured and comprehensive protocol for epicardial echocardiography was elaborated including apical, ventricular long and short axis, as well as epiaortic planes. All experiments were approved by the local board for animal welfare and conducted in accordance with the German animal protection law (TierSchG) and the ARRIVE guidelines. Conclusions Systematic protocols using epicardial echocardiography may serve as an additional tool to assess cardiac dimensions and function in experimental scenarios with swine models.
Collapse
Affiliation(s)
- Michelle C. Galbas
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Florian Meissner
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Alexander Asmussen
- Department of Cardiology and Angiology I, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Hendrik C. Straky
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Marius Schimmel
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Johanna Reuter
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sebastian Grundmann
- Department of Cardiology and Angiology I, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
33
|
Boukens BJ, Verkerk AO, Bezzina CR. Knock-in swine model reveals new arrhythmia mechanism in Timothy syndrome. NATURE CARDIOVASCULAR RESEARCH 2024; 3:18-20. [PMID: 39195890 DOI: 10.1038/s44161-023-00408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Bastiaan J Boukens
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Nyman M, Stølen TO, Johnsen AB, Garten K, Burton FL, Smith GL, Loennechen JP. A comprehensive protocol combining in vivo and ex vivo electrophysiological experiments in an arrhythmogenic animal model. Am J Physiol Heart Circ Physiol 2024; 326:H203-H215. [PMID: 37975708 PMCID: PMC11213483 DOI: 10.1152/ajpheart.00358.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Ventricular arrhythmias contribute significantly to cardiovascular mortality, with coronary artery disease as the predominant underlying cause. Understanding the mechanisms of arrhythmogenesis is essential to identify proarrhythmic factors and develop novel approaches for antiarrhythmic prophylaxis and treatment. Animal models are vital in basic research on cardiac arrhythmias, encompassing molecular, cellular, ex vivo whole heart, and in vivo models. Most studies use either in vivo protocols lacking important information on clinical relevance or exclusively ex vivo protocols, thereby missing the opportunity to explore underlying mechanisms. Consequently, interpretation may be difficult due to dissimilarities in animal models, interventions, and individual properties across animals. Moreover, proarrhythmic effects observed in vivo are often not replicated in corresponding ex vivo preparations during mechanistic studies. We have established a protocol to perform both an in vivo and ex vivo electrophysiological characterization in an arrhythmogenic rat model with heart failure following myocardial infarction. The same animal is followed throughout the experiment. In vivo methods involve intracardiac programmed electrical stimulation and external defibrillation to terminate sustained ventricular arrhythmia. Ex vivo methods conducted on the Langendorff-perfused heart include an electrophysiological study with optical mapping of regional action potentials, conduction velocities, and dispersion of electrophysiological properties. By exploring the retention of the in vivo proarrhythmic phenotype ex vivo, we aim to examine whether the subsequent ex vivo detailed measurements are relevant to in vivo pathological behavior. This protocol can enhance greater understanding of cardiac arrhythmias by providing a standardized, yet adaptable model for evaluating arrhythmogenicity or antiarrhythmic interventions in cardiac diseases.NEW & NOTEWORTHY Rodent models are widely used in arrhythmia research. However, most studies do not standardize clinically relevant in vivo and ex vivo techniques to support their conclusions. Here, we present a comprehensive electrophysiological protocol in an arrhythmogenic rat model, connecting in vivo and ex vivo programmed electrical stimulation with optical mapping. By establishing this protocol, we aim to facilitate the adoption of a standardized model for investigating arrhythmias, enhancing research rigor and comparability in this field.
Collapse
Affiliation(s)
- Mathias Nyman
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
| | - Tomas O Stølen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Berit Johnsen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karin Garten
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francis L Burton
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Jan Pål Loennechen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
35
|
Bravo-San Pedro JM, Aranda F, Buqué A, Galluzzi L. Animal models of disease: Achievements and challenges. Methods Cell Biol 2024; 188:xv-xxi. [PMID: 38880531 DOI: 10.1016/s0091-679x(24)00164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
36
|
Loen V, Van Weperen VYH, Beekman HDM, Van Bavel JJA, Meijborg VMF, Van der Waal JG, Coronel R, van der Heyden MAG, Vos MA. High-rate pacing suppresses Torsade de Pointes arrhythmias and reduces spatial dispersion of repolarization in the chronic AV-block dog model. Front Physiol 2023; 14:1330230. [PMID: 38179141 PMCID: PMC10765543 DOI: 10.3389/fphys.2023.1330230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Background: An electrical storm of Torsade de Pointes arrhythmias (TdP) can be reproducibly induced in the anesthetized chronic AV-block (CAVB) dog by infusion of the IKr-blocker dofetilide. Earlier studies showed that these arrhythmias 1) arise from locations with high spatial dispersion in repolarization (SDR) and 2) can be suppressed by high-rate pacing. We examined whether suppression of TdP by high-rate pacing is established through a decrease in SDR in the CAVB dog. Methods: Dofetilide (25 μg/kg in 5 min) was administered to 5 anesthetized CAVB dogs to induce TdP arrhythmias. During the experiments, animals were continuously paced from the right ventricular apex at 50 beats/minute (RVA50). Upon TdP occurrence and conversion, RVA pacing was consecutively set to 100, 80 and 60 beats/minute for 2 min, referred to as pacing blocks. To determine the additional anti-arrhythmic effects of HRP over defibrillation alone, the number of arrhythmic events and SDR at RVA100 were compared to data from three previously conducted experiments, in which dogs underwent the same experimental protocol but were paced at RVA60 upon TdP occurrence (RVA60retro). In all experiments, recordings included surface electrocardiogram and mapping by 56 intramural needles, each recording four electrograms, evenly inserted into the ventricular walls and septum. For each pacing block, the number of ectopic beats (EB), and TdP severity were scored. SDR was quantified as the average difference in repolarization time within four squared needles (SDRcubic). Results: In 4 out of 5 animals, pacing at RVA100 suppressed TdP occurrence. One dog could not be converted by defibrillation after the initial TdP. Compared to RVA50, pacing at RVA100, but not RVA80 and RVA60, significantly reduced the TdP score (78 ± 33 vs. 0 ± 0, p < 0.05 and vs. 12.5 ± 25 and 25 ± 50, both p > 0.05). The reduction in TdP score was reflected by a significant decrease in SDRcubic (125 ± 46 ms before TdP vs. 49 ± 18 ms during RVA100, p < 0.05), and SDR was smaller than in the RVA60retro animals (101 ± 52 ms, p < 0.05 vs. RVA100). Conclusion: In CAVB dogs, high-rate pacing effectively suppresses TdP, which, at least in part, results from a spatial homogenization of cardiac repolarization, as reflected by a decrease in SDR.
Collapse
Affiliation(s)
- Vera Loen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Joanne J. A. Van Bavel
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Veronique M. F. Meijborg
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Jeanne G. Van der Waal
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Marc A. Vos
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
37
|
Porta-Sánchez A, Mazzanti A, Tarifa C, Kukavica D, Trancuccio A, Mohsin M, Zanfrini E, Perota A, Duchi R, Hernandez-Lopez K, Jáuregui-Abularach ME, Pergola V, Fernandez E, Bongianino R, Tavazzani E, Gambelli P, Memmi M, Scacchi S, Pavarino LF, Franzone PC, Lentini G, Filgueiras-Rama D, Galli C, Santiago DJ, Priori SG. Unexpected impairment of INa underpins reentrant arrhythmias in a knock-in swine model of Timothy syndrome. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1291-1309. [PMID: 38665938 PMCID: PMC11041658 DOI: 10.1038/s44161-023-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/15/2023] [Indexed: 04/28/2024]
Abstract
Timothy syndrome 1 (TS1) is a multi-organ form of long QT syndrome associated with life-threatening cardiac arrhythmias, the organ-level dynamics of which remain unclear. In this study, we developed and characterized a novel porcine model of TS1 carrying the causative p.Gly406Arg mutation in CACNA1C, known to impair CaV1.2 channel inactivation. Our model fully recapitulated the human disease with prolonged QT interval and arrhythmic mortality. Electroanatomical mapping revealed the presence of a functional substrate vulnerable to reentry, stemming from an unforeseen constitutional slowing of cardiac activation. This signature substrate of TS1 was reliably identified using the reentry vulnerability index, which, we further demonstrate, can be used as a benchmark for assessing treatment efficacy, as shown by testing of multiple clinical and preclinical anti-arrhythmic compounds. Notably, in vitro experiments showed that TS1 cardiomyocytes display Ca2+ overload and decreased peak INa current, providing a rationale for the arrhythmogenic slowing of impulse propagation in vivo.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Mazzanti
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carmen Tarifa
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Deni Kukavica
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Trancuccio
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Muhammad Mohsin
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | | | | | - Kevin Hernandez-Lopez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Valerio Pergola
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Eugenio Fernandez
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rossana Bongianino
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Elisa Tavazzani
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrick Gambelli
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mirella Memmi
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milan, Milano, Italy
| | | | - Piero Colli Franzone
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- AVANTEA, Cremona, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Department of Mathematics, University of Milan, Milano, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
- Department of Pharmacology, University of Bari, Bari, Italy
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Demetrio Julián Santiago
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Silvia G. Priori
- Novel Arrhythmogenic Mechanism Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Kyriakopoulou E, Versteeg D, de Ruiter H, Perini I, Seibertz F, Döring Y, Zentilin L, Tsui H, van Kampen SJ, Tiburcy M, Meyer T, Voigt N, Tintelen VJP, Zimmermann WH, Giacca M, van Rooij E. Therapeutic efficacy of AAV-mediated restoration of PKP2 in arrhythmogenic cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1262-1276. [PMID: 38665939 PMCID: PMC11041734 DOI: 10.1038/s44161-023-00378-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 04/28/2024]
Abstract
Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9-PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Danielle Versteeg
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Ilaria Perini
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hoyee Tsui
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | | | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | | | - Wolfram H. Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| | - Eva van Rooij
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
39
|
Yang X, Li L, Zeng C, Wang WE. The characteristics of proliferative cardiomyocytes in mammals. J Mol Cell Cardiol 2023; 185:50-64. [PMID: 37918322 DOI: 10.1016/j.yjmcc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Better understanding of the mechanisms regulating the proliferation of pre-existing cardiomyocyte (CM) should lead to better options for regenerating injured myocardium. The absence of a perfect research model to definitively identify newly formed mammalian CMs is lacking. However, methodologies are being developed to identify and enrich proliferative CMs. These methods take advantages of the different proliferative states of CMs during postnatal development, before and after injury in the neonatal heart. New approaches use CMs labeled in lineage tracing animals or single cell technique-based CM clusters. This review aims to provide a timely update on the characteristics of the proliferative CMs, including their structural, functional, genetic, epigenetic and metabolic characteristics versus non-proliferative CMs. A better understanding of the characteristics of proliferative CMs should lead to the mechanisms for inducing endogenous CMs to self-renew, which is a promising therapeutic strategy to treat cardiac diseases that cause CM death in humans.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
40
|
Loen V, Smoczynska A, Aranda Hernandez A, Scheerder COS, van der Linde BHR, Beekman HDM, Cervera-Barea A, Boink GJJ, Sluijter JPG, van der Heyden MAG, Meine M, Vos MA. Automatic measurement of short-term variability of repolarization to indicate ventricular arrhythmias in a porcine model of cardiac ischaemia. Europace 2023; 25:euad341. [PMID: 37949832 PMCID: PMC10661665 DOI: 10.1093/europace/euad341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
AIMS An automated method for determination of short-term variability (STV) of repolarization on intracardiac electrograms (STV-ARIauto) has previously been developed for arrhythmic risk monitoring by cardiac implantable devices, and has proved effective in predicting ventricular arrhythmias (VA) and guiding preventive high-rate pacing (HRP) in a canine model. Current study aimed to assess (i) STV-ARIauto in relation to VA occurrence and secondarily (ii-a) to confirm the predictive capacity of STV from the QT interval and (ii-b) explore the effect of HRP on arrhythmic outcomes in a porcine model of acute myocardial infarction (MI). METHODS AND RESULTS Myocardial infarction was induced in 15 pigs. In 7/15 pigs, STV-QT was assessed at baseline, occlusion, 1 min before VA, and just before VA. Eight of the 15 pigs were additionally monitored with an electrogram catheter in the right ventricle, underwent echocardiography at baseline and reperfusion, and were randomized to paced or control group. Paced group received atrial pacing at 20 beats per min faster than sinus rhythm 1 min after occlusion. Short-term variability increased prior to VA in both STV modalities. The percentage change in STV from baseline to successive timepoints correlated well between STV-QT and STV-ARIauto. High-rate pacing did not improve arrhythmic outcomes and was accompanied by a stronger decrease in ejection fraction. CONCLUSION STV-ARIauto values increase before VA onset, alike STV-QT in a porcine model of MI, indicating imminent arrhythmias. This highlights the potential of automatic monitoring of arrhythmic risk by cardiac devices through STV-ARIauto and subsequently initiates preventive strategies. Continuous HRP during onset of acute MI did not improve arrhythmic outcomes.
Collapse
Affiliation(s)
- Vera Loen
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Agnieszka Smoczynska
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Coert O S Scheerder
- CRM EMEA Medical Science, Medtronic Bakken Research Center, Maastricht, The Netherlands
| | - Britt H R van der Linde
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Henriëtte D M Beekman
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Aina Cervera-Barea
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
41
|
Hadova K, Kmecova J, Ochodnicka‐Mackovicova K, Kralova E, Doka G, Bies Pivackova L, Vavrinec P, Stankovicova T, Krenek P, Klimas J. Rapid changes of mRNA expressions of cardiac ion channels affected by Torsadogenic drugs influence susceptibility of rat hearts to arrhythmias induced by Beta-Adrenergic stimulation. Pharmacol Res Perspect 2023; 11:e01134. [PMID: 37715323 PMCID: PMC10504435 DOI: 10.1002/prp2.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
Drug-induced long QT syndrome (LQTS) and Torsades de Pointes (TdP) are serious concerns in drug development. Although rats are a useful scientific tool, their hearts, unlike larger species, usually do not respond to torsadogenic drugs. Consequently, their resistance to drug-induced arrhythmias is poorly understood. Here, we challenged rats with rapid delayed rectifier current (Ikr)-inhibiting antibiotic clarithromycin (CLA), loop diuretic furosemide (FUR) or their combination (CLA + FUR), and examined functional and molecular abnormalities after stimulation with isoproterenol. Clarithromycin and furosemide were administered orally at 12-h intervals for 7 days. To evaluate electrical instability, electrocardiography (ECG) was recorded either in vivo or ex vivo using the Langendorff-perfused heart method under basal conditions and subsequently under beta-adrenergic stimulation. Gene expression was measured using real-time quantitative PCR in left ventricular tissue. Indeed, FUR and CLA + FUR rats exhibited hypokalemia. CLA and CLA + FUR treatment resulted in drug-induced LQTS and even an episode of TdP in one CLA + FUR rat. The combined treatment dysregulated gene expression of several ion channels subunits, including KCNQ1, calcium channels and Na+/K + -ATPase subunits, while both monotherapies had no impact. The rat with recorded TdP exhibited differences in the expression of ion channel genes compared to the rest of rats within the CLA + FUR group. The ECG changes were not detected in isolated perfused hearts. Hence, we report rapid orchestration of ion channel reprogramming of hearts with QT prolongation induced by simultaneous administration of clarithromycin and furosemide in rats, which may account for their ability to avoid arrhythmias triggered by beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Jana Kmecova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
- State Institute for Drug ControlBratislavaSlovakia
| | | | - Eva Kralova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Tatiana Stankovicova
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovakia
| |
Collapse
|
42
|
Haugsten Hansen M, Sadredini M, Hasic A, Eriksen M, Stokke MK. Myocardial oxidative stress is increased in early reperfusion, but systemic antioxidative therapy does not prevent ischemia-reperfusion arrhythmias in pigs. Front Cardiovasc Med 2023; 10:1223496. [PMID: 37823177 PMCID: PMC10562584 DOI: 10.3389/fcvm.2023.1223496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Background Arrhythmias in the early phase of reperfusion after myocardial infarction (MI) are common, and can lead to hemodynamic instability or even cardiac arrest. Reactive oxygen species (ROS) are thought to play a key role in the underlying mechanisms, but evidence from large animal models is scarce, and effects of systemic antioxidative treatment remain contentious. Methods MI was induced in 7 male and 7 female pigs (Norwegian landrace, 35-40 kg) by clamping of the left anterior descending artery (LAD) during open thorax surgery. Ischemia was maintained for 90 min, before observation for 1 h after reperfusion. Pigs were randomized 1:1 in an operator-blinded fashion to receive either i.v. N-acetylcysteine (NAC) from 70 min of ischemia and onwards, or 0.9% NaCl as a control. Blood samples and tissue biopsies were collected at baseline, 60 min of ischemia, and 5 and 60 min of reperfusion. ECG and invasive blood pressure were monitored throughout. Results The protocol was completed in 11 pigs. Oxidative stress, as indicated by immunoblotting for Malondialdehyde in myocardial biopsies, was increased at 5 min of reperfusion compared to baseline, but not at 60 min of reperfusion, and not reduced with NAC. We found no significant differences in circulating biomarkers of myocardial necrosis, nor in the incidence of idioventricular rhythm (IVR), non-sustained ventricular tachycardia (NSVT), ventricular tachycardia (VT) or ventricular fibrillation (VF) between NAC-treated and control pigs during reperfusion. Conclusion Myocardial oxidation was increased early after reperfusion in a porcine model of MI, but systemic antioxidative treatment did not protect against reperfusion arrhythmias.
Collapse
Affiliation(s)
- Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Morten Eriksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
43
|
Verkerk AO, Wilders R. The Action Potential Clamp Technique as a Tool for Risk Stratification of Sinus Bradycardia Due to Loss-of-Function Mutations in HCN4: An In Silico Exploration Based on In Vitro and In Vivo Data. Biomedicines 2023; 11:2447. [PMID: 37760888 PMCID: PMC10525944 DOI: 10.3390/biomedicines11092447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
These days, in vitro functional analysis of gene variants is becoming increasingly important for risk stratification of cardiac ion channelopathies. So far, such risk stratification has been applied to SCN5A, KCNQ1, and KCNH2 gene variants associated with Brugada syndrome and long QT syndrome types 1 and 2, respectively, but risk stratification of HCN4 gene variants related to sick sinus syndrome has not yet been performed. HCN4 is the gene responsible for the hyperpolarization-activated 'funny' current If, which is an important modulator of the spontaneous diastolic depolarization underlying the sinus node pacemaker activity. In the present study, we carried out a risk classification assay on those loss-of-function mutations in HCN4 for which in vivo as well as in vitro data have been published. We used the in vitro data to compute the charge carried by If (Qf) during the diastolic depolarization phase of a prerecorded human sinus node action potential waveform and assessed the extent to which this Qf predicts (1) the beating rate of the comprehensive Fabbri-Severi model of a human sinus node cell with mutation-induced changes in If and (2) the heart rate observed in patients carrying the associated mutation in HCN4. The beating rate of the model cell showed a very strong correlation with Qf from the simulated action potential clamp experiments (R2 = 0.95 under vagal tone). The clinically observed minimum or resting heart rates showed a strong correlation with Qf (R2 = 0.73 and R2 = 0.71, respectively). While a translational perspective remains to be seen, we conclude that action potential clamp on transfected cells, without the need for further voltage clamp experiments and data analysis to determine individual biophysical parameters of If, is a promising tool for risk stratification of sinus bradycardia due to loss-of-function mutations in HCN4. In combination with an If blocker, this tool may also prove useful when applied to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from mutation carriers and non-carriers.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
44
|
Zhao YT, Liu YR, Yan YF, Tang ZS, Duan JA, Yang H, Song ZX, You XL, Wang MG. Fushenmu treatment ameliorates RyR2 with related metabolites in a zebrafish model of barium chloride induced arrhythmia. Chin Med 2023; 18:103. [PMID: 37598173 PMCID: PMC10439546 DOI: 10.1186/s13020-023-00812-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported. METHODS Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions. RESULTS In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. CONCLUSION In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.
Collapse
Affiliation(s)
- Yan-Ting Zhao
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Yan-Ru Liu
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China.
| | - Ya-Feng Yan
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Zhi-Shu Tang
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China.
- China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Beijing, 100700, People's Republic of China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Hui Yang
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Zhong-Xing Song
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Xue-Lian You
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Ming-Geng Wang
- Shandong Buchang Pharmaceutical Co. Ltd, Heze, 250000, Shandong, People's Republic of China
| |
Collapse
|
45
|
Moazami N, Stern JM, Khalil K, Kim JI, Narula N, Mangiola M, Weldon EP, Kagermazova L, James L, Lawson N, Piper GL, Sommer PM, Reyentovich A, Bamira D, Saraon T, Kadosh BS, DiVita M, Goldberg RI, Hussain ST, Chan J, Ngai J, Jan T, Ali NM, Tatapudi VS, Segev DL, Bisen S, Jaffe IS, Piegari B, Kowalski H, Kokkinaki M, Monahan J, Sorrells L, Burdorf L, Boeke JD, Pass H, Goparaju C, Keating B, Ayares D, Lorber M, Griesemer A, Mehta SA, Smith DE, Montgomery RA. Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat Med 2023; 29:1989-1997. [PMID: 37488288 DOI: 10.1038/s41591-023-02471-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Genetically modified xenografts are one of the most promising solutions to the discrepancy between the numbers of available human organs for transplantation and potential recipients. To date, a porcine heart has been implanted into only one human recipient. Here, using 10-gene-edited pigs, we transplanted porcine hearts into two brain-dead human recipients and monitored xenograft function, hemodynamics and systemic responses over the course of 66 hours. Although both xenografts demonstrated excellent cardiac function immediately after transplantation and continued to function for the duration of the study, cardiac function declined postoperatively in one case, attributed to a size mismatch between the donor pig and the recipient. For both hearts, we confirmed transgene expression and found no evidence of cellular or antibody-mediated rejection, as assessed using histology, flow cytometry and a cytotoxic crossmatch assay. Moreover, we found no evidence of zoonotic transmission from the donor pigs to the human recipients. While substantial additional work will be needed to advance this technology to human trials, these results indicate that pig-to-human heart xenotransplantation can be performed successfully without hyperacute rejection or zoonosis.
Collapse
Affiliation(s)
- Nader Moazami
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA.
| | - Jeffrey M Stern
- New York University Langone Transplant Institute, New York, NY, USA
| | - Karen Khalil
- New York University Langone Transplant Institute, New York, NY, USA
| | - Jacqueline I Kim
- New York University Langone Transplant Institute, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University Langone Health, New York, NY, USA
| | - Massimo Mangiola
- New York University Langone Transplant Institute, New York, NY, USA
| | - Elaina P Weldon
- New York University Langone Transplant Institute, New York, NY, USA
| | - Larisa Kagermazova
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Les James
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Nikki Lawson
- New York University Langone Transplant Institute, New York, NY, USA
| | - Greta L Piper
- Department of Surgery, New York University Langone Health, New York, NY, USA
| | - Philip M Sommer
- Department of Anesthesiology, New York University Langone Health, New York, NY, USA
| | - Alex Reyentovich
- Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Daniel Bamira
- Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Tajinderpal Saraon
- Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Bernard S Kadosh
- Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Michael DiVita
- Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Randal I Goldberg
- Division of Cardiology, New York University Langone Health, New York, NY, USA
| | - Syed T Hussain
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Justin Chan
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Jennie Ngai
- Department of Anesthesiology, New York University Langone Health, New York, NY, USA
| | - Thomas Jan
- Department of Anesthesiology, New York University Langone Health, New York, NY, USA
| | - Nicole M Ali
- New York University Langone Transplant Institute, New York, NY, USA
| | | | - Dorry L Segev
- Department of Surgery, New York University Langone Health, New York, NY, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Shivani Bisen
- New York University Grossman School of Medicine, New York University, New York, NY, USA
| | - Ian S Jaffe
- New York University Grossman School of Medicine, New York University, New York, NY, USA
| | - Benjamin Piegari
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Haley Kowalski
- New York University Grossman School of Medicine, New York University, New York, NY, USA
| | | | | | | | | | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | - Brendan Keating
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Marc Lorber
- United Therapeutics Corporation, Silver Spring, MD, USA
| | - Adam Griesemer
- New York University Langone Transplant Institute, New York, NY, USA
| | - Sapna A Mehta
- New York University Langone Transplant Institute, New York, NY, USA
| | - Deane E Smith
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY, USA
| | | |
Collapse
|
46
|
McGilvray MM, Yates TAE, Pauls L, Kelly MO, Razo N, McElligott S, Foster GJ, Zheng J, Zoller JK, Zemlin C, Damiano RJ. An experimental model of chronic severe mitral regurgitation. JTCVS Tech 2023; 20:58-70. [PMID: 37555041 PMCID: PMC10405169 DOI: 10.1016/j.xjtc.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 08/10/2023] Open
Abstract
Objective To develop a minimally invasive, reproducible model of chronic severe mitral regurgitation (MR) that replicates the clinical phenotype of left atrial (LA) and left ventricular dilation and susceptibility to atrial fibrillation. Methods Under transesophageal echocardiographic guidance, chordae tendinae were avulsed using endovascular forceps until the ratio of regurgitant jet area to LA area was ≥70%. Animals survived for an average of 8.6 ± 1.6 months (standard deviation) and imaged with monthly transthoracic echocardiography (TTE). Animals underwent baseline and preterminal magnetic resonance imaging. Terminal studies included TTE, transesophageal echocardiography, and rapid atrial pacing to test inducibility of atrial tachyarrhythmias. Results Eight dogs underwent creation of severe MR and interval monitoring. Two were excluded-one died from acute heart failure, and the other had resolution of MR. Six dogs underwent the full experimental protocol; only one required medical management of clinical heart failure. MR remained severe over time, with a mean terminal regurgitant jet area to LA area of 71 ± 14% (standard deviation) and regurgitant fraction of 52 ± 11%. Mean LA volume increased over 130% (TTE: 163 ± 147%, P = .039; magnetic resonance imaging: 132 ± 54%, P = .011). Mean left ventricular end-diastolic volume increased by 38 ± 21% (P = .008). Inducible atrial tachyarrhythmias were seen in 4 of 6 animals at terminal surgery, and none at baseline. Conclusions Within the 6 dogs that successfully completed the full experimental protocol, this model replicated the clinical phenotype of severe MR, which led to marked structural and electrophysiologic cardiac remodeling. This model allowed for precise measurements at repeated time points and will facilitate future studies to elucidate the mechanisms of atrial and ventricular remodeling secondary to MR and the pathophysiology of valvular atrial fibrillation.
Collapse
Affiliation(s)
- Martha M.O. McGilvray
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St Louis, Mo
| | - Tari-Ann E. Yates
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St Louis, Mo
| | - Lynn Pauls
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Mo
| | - Meghan O. Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St Louis, Mo
| | - Nicholas Razo
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Mo
| | - Stacie McElligott
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St Louis, Mo
| | - Glenn J. Foster
- Center for Clinical Imaging and Research, Washington University School of Medicine, St Louis, Mo
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo
| | - Jonathan K. Zoller
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Mo
| | - Christian Zemlin
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Mo
| | - Ralph J. Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St Louis, Mo
| |
Collapse
|
47
|
Lee S, Khrestian C, Laurita D, Juzbasich D, Wallick D, Waldo A. Validation of a new species for studying postoperative atrial fibrillation: Swine sterile pericarditis model. Pacing Clin Electrophysiol 2023; 46:1003-1009. [PMID: 37377345 PMCID: PMC11718713 DOI: 10.1111/pace.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The canine sterile pericarditis model associated with atrial inflammation is an experimental counterpart of postoperative atrial fibrillation (POAF). However, the use of canines for research is restricted by ethics committees in many countries, and social acceptance is declining. OBJECTIVE To validate the feasibility of the swine sterile pericarditis model as an experimental counterpart to study POAF. METHODS Seven domestic pigs (35-60 kg) underwent initial pericarditis surgery. On two or more postoperative days in the closed-chest state, we performed electrophysiological measurements of pacing threshold and atrial effective refractory period (AERP) while pacing from the right atrial appendage (RAA) and the posterior left atrium (PLA). The inducibility of POAF (>5 min) by burst pacing was determined in both the conscious and anesthetized closed-chest state. These data were compared to previously published canine sterile pericarditis data for validation. RESULTS The pacing threshold increased from day 1 to day 3 (2 ± 0.1 to 3.3 ± 0.6 mA in the RAA, 2.5 ± 0.1 to 4.8 ± 0.2 mA in the PLA). Also, the AERP increased from day 1 to day 3 (118 ± 8 to 157 ± 16 ms in the RAA; 98 ± 4 to 124 ± 2 ms in the PLA, both p < .05). Induction of sustained POAF occurred in 43% (POAF CL range 74-124 ms). All electrophysiologic data from the swine model were consistent with the canine model with respect to (1) the range of both pacing threshold and AERP; (2) the progressive increase in threshold and AERP over time; (3) a 40%-50% incidence of POAF. CONCLUSION A newly developed swine sterile pericarditis model demonstrated electrophysiologic properties consistent with the canine model and patients after open heart surgery.
Collapse
Affiliation(s)
- Seungyup Lee
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Celeen Khrestian
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel Laurita
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dragan Juzbasich
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Don Wallick
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Albert Waldo
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
48
|
de Vries NM, Zepeda-Echavarria A, van de Leur RR, Loen V, Vos MA, Boonstra MJ, Wildbergh TX, Jaspers JE, van der Zee R, Slump CH, Doevendans PA, van Es R. Detection of Ischemic ST-Segment Changes Using a Novel Handheld ECG Device in a Porcine Model. JACC. ADVANCES 2023; 2:100410. [PMID: 38939006 PMCID: PMC11198505 DOI: 10.1016/j.jacadv.2023.100410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2024]
Abstract
Background Portable, smartphone-sized electrocardiography (ECG) has the potential to reduce time to treatment for patients suffering acute cardiac ischemia, thereby lowering the morbidity and mortality. In the UMC Utrecht, a portable, smartphone-sized, multi-lead precordial ECG recording device (miniECG 1.0, UMC Utrecht) was developed. Objectives The purpose of this study was to investigate the ability of the miniECG to capture ischemic ECG changes in a porcine coronary occlusion model. Methods In 8 animals, antero-septal myocardial infarction was induced by 75-minute occlusion of the left anterior descending artery, after the first or second diagonal. MiniECG and 12-lead ECG recordings were acquired simultaneously before, during and after coronary artery occlusion and ST-segment deviation was evaluated. Results During the complete occlusion and reperfusion period, miniECG showed large ST-segment deviation in comparison to 12-lead ECG. MiniECG ST-segment deviation was observed within 1 minute for most animals. The miniECG was positive for ischemia (ie, ST-segment deviation ≥1 mm) for 99.7% (Q1-Q3: 99.6%-99.9%) of the occlusion time, while the 12-lead was only positive for 79.8% (Q1-Q3: 81.1%-98.7%) of the time (P = 0.018). ST-segment deviation reached maxima of 10.5 mm [95% CI: 6.5-14.5 mm] vs 5.0 mm [95% CI: 2.0-8.0 mm] for the miniECG vs 12-lead ECG, respectively. Conclusions MiniECG ST-segment deviation was observed early and was of large magnitude during 75 minutes of porcine transmural antero-septal infarction. The miniECG was positive for ischemia for the complete occlusion period. These findings demonstrate the potential of the miniECG in the detection of cardiac ischemia. Although clinical research is required, data suggests that the miniECG is a promising tool for the detection of cardiac ischemia.
Collapse
Affiliation(s)
- Nynke M. de Vries
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Alejandra Zepeda-Echavarria
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rutger R. van de Leur
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Vera Loen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marc A. Vos
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Machteld J. Boonstra
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Joris E.N. Jaspers
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rien van der Zee
- Stichting Cardiovasculaire Biologie, Delft, the Netherlands
- HeartEye B.V., Delft, the Netherlands
| | | | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- HeartEye B.V., Delft, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - René van Es
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
49
|
Keefe JA, Hulsurkar MM, Reilly S, Wehrens XHT. Mouse models of spontaneous atrial fibrillation. Mamm Genome 2023; 34:298-311. [PMID: 36173465 PMCID: PMC10898345 DOI: 10.1007/s00335-022-09964-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults, with a prevalence increasing with age. Current clinical management of AF is focused on tertiary prevention (i.e., treating the symptoms and sequelae) rather than addressing the underlying molecular pathophysiology. Robust animal models of AF, particularly those that do not require supraphysiologic stimuli to induce AF (i.e., showing spontaneous AF), enable studies that can uncover the underlying mechanisms of AF. Several mouse models of AF have been described to exhibit spontaneous AF, but pathophysiologic drivers of AF differ among models. Here, we describe relevant AF mechanisms and provide an overview of large and small animal models of AF. We then provide an in-depth review of the spontaneous mouse models of AF, highlighting the relevant AF mechanisms for each model.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Clasen L, Angendohr S, Becher S, Bartsch B, Enkel S, Meyer C, Kelm M, Makimoto H, Klöcker N. Cardiac ischemia and reperfusion in mice: a comprehensive hemodynamic, electrocardiographic and electrophysiological characterization. Sci Rep 2023; 13:5693. [PMID: 37029160 PMCID: PMC10082073 DOI: 10.1038/s41598-023-32346-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
Malignant ventricular arrhythmias (VA) after acute myocardial infarction remain a major threat. Aim of this study was to characterize the electrophysiological and autonomic sequelae of cardiac ischemia and reperfusion (I/R) in mice during the first week post incident. Left ventricular function was serially assessed using transthoracic echocardiography. VA were quantified by telemetric electrocardiogram (ECG) recordings and electrophysiological studies on the 2nd and 7th day after I/R. Cardiac autonomic function was evaluated by heart rate variability (HRV) and heart rate turbulence (HRT). Infarct size was quantified by planimetric measures. I/R caused significant myocardial scarring and diminished left ventricular ejection fraction. The ECG intervals QRS, QT, QTc, and JTc were prolonged in I/R mice. Both spontaneous VA scored higher and the inducibility of VA was raised in I/R mice. An analysis of HRV and HRT indicated a relative reduction in parasympathetic activity and disturbed baroreflex sensitivity up to 7 days after I/R. In summary, during the first week after I/R, the murine heart reflects essential features of the human heart after myocardial infarction, including a greater vulnerability for VA and a decreased parasympathetic tone accompanied by decelerated depolarization and repolarization parameters.
Collapse
Affiliation(s)
- Lukas Clasen
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology, Rhythmology and Angiology, Josephs-Hospital Warendorf, Academic Teaching Hospital, University of Münster, Warendorf, Germany
| | - Stephan Angendohr
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Becher
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Benedikt Bartsch
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Stephan Enkel
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Meyer
- Division of Cardiology, Angiology, Intensive Care Medicine, EVK Düsseldorf, cNEP, Cardiac Neuro- and Electrophysiology Research Consortium, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hisaki Makimoto
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|