1
|
Derobertmasure A, Toh LS, Wotring VE, Williams PM, Morbidelli L, Stingl JC, Vinken M, Ramadan R, Chhun S, Boutouyrie P. Pharmacological countermeasures for long-duration space missions: addressing cardiovascular challenges and advancing space-adapted healthcare. Eur J Pharm Sci 2025; 209:107063. [PMID: 40064402 DOI: 10.1016/j.ejps.2025.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Future long-duration crewed space missions beyond Low Earth Orbit (LEO) will bring new healthcare challenges for astronauts for which pharmacological countermeasures (pharmacological countermeasures) are crucial. This paper highlights current pharmacological countermeasures challenges described in the ESA SciSpacE Roadmap, with a focus on the cardiovascular system as a model to demonstrate the potential implication of the challenges and recommendations. New pharmacological approaches and procedures need to be adapted to spaceflight (spaceflight) conditions, including ethical and reglementary considerations. Potential strategies include combining pharmacological biomarkers such as pharmacogenomics with therapeutic drug monitoring, advancing microsampling techniques, and implementing a pharmacovigilance system to gain deep insights into pharmacokinetics/pharmacodynamics (PK/PD) spaceflight alteration on drug exposure. Emerging therapeutic approaches (such as long-term regimens) or manufacturing drugs in the space environment, can address specific issues related to drug storage and stability. The integration of biobanks and innovative technologies like organoids and organ-on-a-chip, artificial intelligence (AI), including machine learning will further enhance PK modelling leading to personalized treatments. These innovative pharmaceutical tools will also enable reciprocal game-changing healthcare developments to be made on Earth as well as in space and are essential to ensure space explorers receive safe effective pharmaceutical care.
Collapse
Affiliation(s)
- Audrey Derobertmasure
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France
| | - Li Shean Toh
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Virginia E Wotring
- International Space University, 1 rue Jean-Dominique Cassini, Parc d'Innovation, 6700 Illkirch-Graffenstaden, France
| | - Philip M Williams
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Wendlingweg 2, 52064, Aachen, Germany
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raghda Ramadan
- Interdisciplinary Biosciences Group, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephanie Chhun
- Faculty of Medicine, Paris Cité University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253; AP-HP, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Pierre Boutouyrie
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France.
| |
Collapse
|
2
|
Guan Y, Liu X, Yang Z, Zhu X, Liu M, Du M, Pan X, Wang Y. PCSK9 Promotes LDLR Degradation by Preventing SNX17-Mediated LDLR Recycling. Circulation 2025; 151:1512-1526. [PMID: 40071387 DOI: 10.1161/circulationaha.124.072336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/18/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Low-density lipoprotein (LDL) is internalized into cells mainly through LDLR (LDL receptor)-mediated endocytosis. In an acidic endosome, LDLR is released from LDL and recycles back to the cell surface, whereas LDL is left in the endosome and degraded in the lysosome. Circulating PCSK9 (proprotein convertase subtilisin/kexin 9) binds with LDLR and is internalized into the endosome, similar to LDL. In an acidic endosome, LDLR fails to disassociate from PCSK9, and both proteins are degraded in the lysosome. PCSK9 inhibitors are widely used for treating hypercholesterolemia. However, how PCSK9 diverts LDLR to the lysosome for degradation remains elusive. Some patients are resistant to PCSK9 inhibitors, for unknown reasons. METHODS Both in vitro and in vivo approaches were used to investigate the molecular and cellular mechanisms of PCSK9-mediated LDLR degradation. LDLR containing FH sequence variations was expressed in Ldlr knockout mice and knockout HuH7 cells to evaluate their response to PCSK9 and PCSK9 inhibitors. RESULTS Acidic pH induces a conformational change in LDLR extracellular domain and promotes its interaction with SNX17 (sorting nexin 17) through the intracellular domain. Knocking down SNX17 abolishes LDLR recycling and causes accelerated degradation in the lysosome. PCSK9 prevents the acidic pH-induced conformational change in LDLR and blocks its interaction with SNX17. Knocking down SNX17 abolishes PCSK9-mediated LDLR degradation. Any FH sequence variations that disrupt LDLR recycling are unresponsive to PCSK9 or PCSK9 inhibitors, even though they can internalize LDL. CONCLUSIONS PCSK9 promotes LDLR degradation by preventing SNX17-mediated LDLR recycling. Patients with sequence variations in FH leading to defects in LDLR recycling are resistant to PCSK9 inhibitors. Genetic diagnosis and alternative drugs independent of LDLR will be needed for treatment of these patients.
Collapse
Affiliation(s)
- YangYang Guan
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences (Y.G., X.L., X.Z., M.L., M.D., Y.W.), Wuhan University, China
| | - Xiaomin Liu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences (Y.G., X.L., X.Z., M.L., M.D., Y.W.), Wuhan University, China
| | - Zetian Yang
- Cardiovascular Surgery Department, Zhongnan Hospital (Z.Y.), Wuhan University, China
| | - Xinyu Zhu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences (Y.G., X.L., X.Z., M.L., M.D., Y.W.), Wuhan University, China
- Research Institute of Zhejiang University-Taizhou, China (X.Z.)
| | - Min Liu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences (Y.G., X.L., X.Z., M.L., M.D., Y.W.), Wuhan University, China
| | - Mingkun Du
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences (Y.G., X.L., X.Z., M.L., M.D., Y.W.), Wuhan University, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China (X.P.)
| | - Yan Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences (Y.G., X.L., X.Z., M.L., M.D., Y.W.), Wuhan University, China
| |
Collapse
|
3
|
Zhang Q, Ma S, Kang X, Liu Y, Ma F, Yu F, Luo X, Li G, Hao Y, Zhang H, Liu B, Jiang Y. A dual-targeting bio-liposomes nanodrug repair endothelial cell dysfunction and restore macrophage cholesterol flow homeostasis to treat early atherosclerosis. J Nanobiotechnology 2025; 23:365. [PMID: 40394654 PMCID: PMC12090647 DOI: 10.1186/s12951-025-03436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Hyperhomocysteinemia (HHy) can lead to vascular endothelial cell dysfunction, progressive inflammation and lipid metabolism disorder, which finally result in the onset and development of atherosclerosis, a major contributor to cardiovascular diseases. Given the complexity of pathological process, treatments based on a single target often showed limited therapeutic efficacy against AS. Thus, developing nanodrug for enhanced multi-targets therapy is promising. In this study, we constructed a dual-targeting nanodrug (HA-ML@ES NPs) co-loaded with Shikonin (SKN) and Evolocumab (Evol). In vitro results showed that HA-ML@ES NPs could simultaneously target dysfunctional endothelial cell and inflammatory macrophage through the interaction between HA and CD44. In vivo assay indicated that HA-ML@ES NPs with long circulation and plaque accumulation efficiently attenuate endothelial cell dysfunction by inhibiting glycolysis and restore cholesterol flow homeostasis in macrophage by reprogramming macrophage phenotype, which finally attenuated the development of atherosclerosis. Collectively, these results present a highly promising dual-cell therapeutic approach based on HA-ML@ES NPs for the management of early atherosclerosis.
Collapse
Grants
- 2023AAC005035 The Natural Science Foundation of Ningxia Hui Autonomous Region
- XJKF240301, XJKF240304, XJKF230125 and XJKF240326 Open Competition Mechanism to Select the Best Candidates for Key Research Projects of Ningxia Medical University
- XJKF240301, XJKF240304, XJKF230125 and XJKF240326 Open Competition Mechanism to Select the Best Candidates for Key Research Projects of Ningxia Medical University
- XJKF240301, XJKF240304, XJKF230125 and XJKF240326 Open Competition Mechanism to Select the Best Candidates for Key Research Projects of Ningxia Medical University
- XJKF240301, XJKF240304, XJKF230125 and XJKF240326 Open Competition Mechanism to Select the Best Candidates for Key Research Projects of Ningxia Medical University
- 2023BEG02074, 2022BFH02013, 2022BEG02054 Key Projects of the Key R&D Program of the Ning Xia Hui Autonomous Region
- U21A20343 National Natural Science Foundation of China
- 2024ZD0531200 Noncommunicable Chronic Diseases-National Science and Technology Major Project
- Key Projects of the Key R&D Program of the Ning Xia Hui Autonomous Region
Collapse
Affiliation(s)
- Qi Zhang
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shengchao Ma
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Xue Kang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yi Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Fei Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Feifei Yu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaolan Luo
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Zhang
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Hospital, Changsha, 410008, China.
| | - Bin Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Zhang L, Wang X, Chen XW. The biogenesis and transport of triglyceride-rich lipoproteins. Trends Endocrinol Metab 2025; 36:262-277. [PMID: 39164120 DOI: 10.1016/j.tem.2024.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Triglyceride-rich lipoproteins (TRLs) play essential roles in human health and disease by transporting bulk lipids into the circulation. This review summarizes the fundamental mechanisms and diverse factors governing lipoprotein production, secretion, and regulation. Emphasizing the broader implications for human health, we outline the intricate landscape of lipoprotein research and highlight the potential coordination between the biogenesis and transport of TRLs in physiology, particularly the unexpected coupling of metabolic enzymes and transport machineries. Challenges and opportunities in lipoprotein biology with respect to inherited diseases and viral infections are also discussed. Further characterization of the biogenesis and transport of TRLs will advance both basic research in lipid biology and translational medicine for metabolic diseases.
Collapse
Affiliation(s)
- Linqi Zhang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China; Peking University (PKU)-Tsinghua University (THU) Joint Center for Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
5
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
6
|
Charati H, Hamta A. Mendelian randomization reveals plasminogen as a common therapeutic target for myocardial infarction and atrial fibrillation. J Cardiovasc Thorac Res 2024; 16:249-257. [PMID: 40027362 PMCID: PMC11866770 DOI: 10.34172/jcvtr.33269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/02/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction Plasma proteins play essential roles in myocardial infarction (MI) and atrial fibrillation (AF); however, it remains unknown whether the two disorders share causal plasma proteins. Methods The present study utilizes cis-protein quantitative trait loci (cis-pQTLs) for 4,719 plasma proteins to assess their causality on MI and AF. Results Two-sample Mendelian randomization (MR) identifies 21 and 9 plasma proteins for MI and AF, respectively (FDR P<0.05), with plasminogen (PLG) being a commonly protective factor against both diseases. Multi-trait MR suggests that PLG is also protective against coronary atherosclerosis. PheWAS analysis identifies associations of six cis-pQTLs with both MI and AF, i.e., rs11751347 (PLG), rs11591147 (PCSK9), rs77347777 (ITIH4), rs936228 (ULK3), rs2261033 (AIF1V), and rs2711897 (BDH2). Furthermore, interactions exist among the causal plasma proteins, with PLG directly interacting with multiple others. Drug-gene databases suggest that PLG activators, such as Urokinase, Reteplase, Streptokinase, Alteplase, Anistreplase, Tenecteplase, Desmoteplase, and Defibrotide sodium may serve as common therapeutic drugs for MI and AF. Conclusion Our study provides a causal inference of human plasma proteins in MI and AF. Several of the identified proteins and single nucleotide polymorphisms (sNPs) exert pleiotropic effects on other cardiometabolic phenotypes, indicating their crucial roles in the pathology of cardiovascular disease (CVD). Our study provides new insights into the shared causality and drugs for MI and AF.
Collapse
Affiliation(s)
- Hadi Charati
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Ahmad Hamta
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
7
|
Aman A, Slob EAW, Ward J, Sattar N, Strawbridge RJ. Investigating the association of the effect of genetically proxied PCSK9i with mood disorders using cis-pQTLs: A drug-target Mendelian randomization study. PLoS One 2024; 19:e0310396. [PMID: 39325747 PMCID: PMC11426468 DOI: 10.1371/journal.pone.0310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
PCSK9-inhibitors (PCSK9i) are new drugs recently approved to lower LDL-cholesterol levels. However, due to the lack of long-term clinical data, the potential adverse effects of long-term use are still unknown. The PCSK9 genetic locus has been recently implicated in mood disorders and hence we wanted to assess if the effect of PCSK9i that block the PCSK9 protein can lead to an increase in the incidence of mood disorders. We used genetically-reduced PCSK9 protein levels (pQTLs) in plasma, serum, cerebrospinal fluid as a proxy for the effect of PCSK9i. We performed Mendelian randomization analyses using PCSK9 levels as exposure and mood disorder traits major depressive disorder, mood instability, and neuroticism score as outcomes. We find no association of PCSK9 levels with mood disorder traits in serum, plasma, and cerebrospinal fluid. We can conclude that genetically proxied on-target effect of pharmacological PCSK9 inhibition is unlikely to contribute to mood disorders.
Collapse
Affiliation(s)
- Alisha Aman
- The Graduate School, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Eric A W Slob
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus University Rotterdam Institute for Behaviour and Biology, Erasmus School of Economics, Rotterdam, The Netherlands
| | - Joey Ward
- School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rona J Strawbridge
- School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Sun KY, Bai X, Chen S, Bao S, Zhang C, Kapoor M, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke AE, Ganel L, Hawes A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Di Gioia A, Rajagopal VM, Lopez A, Varela JR, Alegre-Díaz J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton JD, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalogue of protein-coding variation in 983,578 individuals. Nature 2024; 631:583-592. [PMID: 38768635 PMCID: PMC11254753 DOI: 10.1038/s41586-024-07556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liron Ganel
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Jesús Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Pablo Kuri-Morales
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Jason Torres
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
9
|
Csiszar A, Tarantini S, Yabluchanskiy A, Ungvari Z. PCSK9: an emerging player in cardiometabolic aging and its potential as a therapeutic target and biomarker. GeroScience 2024; 46:257-263. [PMID: 38105401 PMCID: PMC10828320 DOI: 10.1007/s11357-023-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), renowned for its pivotal role in low-density lipoprotein (LDL) regulation, has emerged as a compelling regulator of cardiometabolic aging. Beyond its well-established involvement in cholesterol metabolism, PCSK9's multifaceted influence on the aging processes of the cardiovascular and metabolic systems is garnering increasing attention. This review delves into the evolving landscape of PCSK9 in the context of cardiometabolic aging, offering fresh insights into its potential implications. Drawing inspiration from pioneering research conducted by the Pacher laboratory (Arif et al., Geroscience, 2023, PMID: 37726433), we delve into the intricate interplay of PCSK9 within the aging heart and liver, shedding light on its newfound significance. Recent studies underscore PCSK9's pivotal role in liver aging, suggesting intriguing connections between hepatic aging, lipid metabolism, and cardiovascular health. Additionally, we explore the therapeutic potential of PCSK9 as both a target and a biomarker, within the context of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- OUHSC-SE International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- OUHSC-SE International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- OUHSC-SE International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Wang Z, Yuan H, Yang L, Ma L, Zhang Y, Deng J, Li X, Xiao W, Li Z, Qiu J, Ouyang H, Pang D. Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant. Int J Biol Macromol 2023; 253:127418. [PMID: 37848112 DOI: 10.1016/j.ijbiomac.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Adenine base editors, enabling targeted A-to-G conversion in genomic DNA, have enormous potential in therapeutic applications. However, the currently used adenine base editors are limited by wide editing windows and off-target effects in genetic therapy. Here, we report human e18 protein, a RING type E3 ubiquitin ligase variant, fusing with adenine base editors can significantly improve the preciseness and narrow the editing windows compared with ABEmax and ABE8e by diminishing the abundance of base editor protein. As a proof of concept, ABEmax-e18 and ABE8e-e18 dramatically decrease Cas9-dependent and Cas9-independent off-target effects than traditional adenine base editors. Moreover, we utilized ABEmax-e18 to establish syndactyly mouse models and achieve accurate base conversion at human PCSK9 locus in HepG2 cells which exhibited its potential in genetic therapy. Furthermore, a truncated version of base editors-RING (ABEmax-RING or AncBE4max-RING), which fusing the 63 amino acids of e18 protein RING domain to the C terminal of ABEmax or AncBE4max, exhibited similar effect compared to ABEmax-e18 or AncBE4max-e18.In summary, the e18 or RING protein fused with base editors strengthens the precise toolbox in gene modification and maybe works well with various base editing tools with a more applicable to precise genetic therapies in the future.
Collapse
Affiliation(s)
- Ziru Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China.
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xueyuan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenyu Xiao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jiazhang Qiu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China.
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China.
| |
Collapse
|
12
|
Wang L, Wang S, Song C, Yu Y, Jiang Y, Wang Y, Li X. Bibliometric analysis of residual cardiovascular risk: trends and frontiers. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:132. [PMID: 38017531 PMCID: PMC10683255 DOI: 10.1186/s41043-023-00478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The presence of residual cardiovascular risk is an important cause of cardiovascular events. Despite the significant advances in our understanding of residual cardiovascular risk, a comprehensive analysis through bibliometrics has not been performed to date. Our objective is to conduct bibliometric studies to analyze and visualize the current research hotspots and trends related to residual cardiovascular risk. This will aid in understanding the future directions of both basic and clinical research in this area. METHODS The literature was obtained from the Web of Science Core Collection database. The literature search date was September 28, 2022. Bibliometric indicators were analyzed using CiteSpace, VOSviewer, Bibliometrix (an R package), and Microsoft Excel. RESULT A total of 1167 papers were included, and the number of publications is increasing rapidly in recent years. The United States and Harvard Medical School are the leading country and institution, respectively, in the study of residual cardiovascular risk. Ridker PM and Boden WE are outstanding investigators in this field. According to our research results, the New England Journal of Medicine is the most influential journal in the field of residual cardiovascular risk, whereas Atherosclerosis boasts the highest number of publications on this topic. Analysis of keywords and landmark literature identified current research hotspots including complications of residual cardiovascular risk, risk factors, and pharmacological prevention strategies. CONCLUSION In recent times, global attention toward residual cardiovascular risk has significantly increased. Current research is focused on comprehensive lipid-lowering, residual inflammation risk, and dual-pathway inhibition strategies. Future efforts should emphasize strengthening international communication and cooperation to promote the comprehensive evaluation and management of residual cardiovascular risk.
Collapse
Affiliation(s)
- Lin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sutong Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chaoyuan Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Zibo Central Hospital, Zibo, China
| | - Yiding Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuehua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
13
|
Ungvari Z. PCSK9 Inhibition: A Novel Approach to Attenuate Cardiovascular and Liver Aging. JACC Basic Transl Sci 2023; 8:1354-1356. [PMID: 38094681 PMCID: PMC10714159 DOI: 10.1016/j.jacbts.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Affiliation(s)
- Zoltan Ungvari
- Address for correspondence: Dr Zoltan Ungvari, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma 73104, USA.
| |
Collapse
|
14
|
Donahue TC, Ou C, Yang Q, Flinko R, Zhang X, Zong G, Lewis GK, Wang LX. Synthetic Site-Specific Antibody-Ligand Conjugates Promote Asialoglycoprotein Receptor-Mediated Degradation of Extracellular Human PCSK9. ACS Chem Biol 2023; 18:1611-1623. [PMID: 37368876 PMCID: PMC10530246 DOI: 10.1021/acschembio.3c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Targeted degradation using cell-specific lysosome targeting receptors is emerging as a new therapeutic strategy for the elimination of disease-associated proteins. The liver-specific human asialoglycoprotein receptor (ASGPR) is a particularly attractive lysosome targeting receptor leveraged for targeted protein degradation (TPD). However, the efficiency of different glycan ligands for ASGPR-mediated lysosomal delivery remains to be further characterized. In this study, we applied a chemoenzymatic Fc glycan remodeling method to construct an array of site-specific antibody-ligand conjugates carrying natural bi- and tri-antennary N-glycans as well as synthetic tri-GalNAc ligands. Alirocumab, an anti-PCSK9 (proprotein convertase subtilisin/kexin type 9) antibody, and cetuximab (an anti-EGFR antibody) were chosen to demonstrate the ASGPR-mediated degradation of extracellular and membrane-associated proteins, respectively. It was found that the nature of the glycan ligands and the length of the spacer in the conjugates are critical for the receptor binding and the receptor-mediated degradation of PCSK9, which blocks low-density lipoprotein receptor (LDLR) function and adversely affects clearance of low-density lipoprotein cholesterol. Interestingly, the antibody-tri-GalNAc conjugates showed a clear hook effect for its binding to ASGPR, while antibody conjugates carrying the natural N-glycans did not. Both the antibody-tri-antennary N-glycan conjugate and the antibody-tri-GalNAc conjugate could significantly decrease extracellular PCSK9, as shown in the cell-based assays. However, the tri-GalNAc conjugate showed a clear hook effect in the receptor-mediated degradation of PCSK9, while the antibody conjugate carrying the natural N-glycans did not. The cetuximab-tri-GalNAc conjugates also showed a similar hook effect on degradation of the membrane-associated protein, epidermal growth factor receptor (EGFR). These results suggest that the two types of ligands may involve a distinct mode of interactions in the receptor binding and target-degradation processes. Interestingly, the alirocumab-tri-GalNAc conjugate was also found to upregulate LDLR levels in comparison with the antibody alone. This study showcases the potential of the targeted degradation strategy against PCSK9 for reducing low-density lipoprotein cholesterol, a risk factor for heart disease and stroke.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Rikhi R, Shapiro MD. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition: The Big Step Forward in Lipid Control. Eur Cardiol 2023; 18:e45. [PMID: 37456766 PMCID: PMC10345936 DOI: 10.15420/ecr.2023.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 07/18/2023] Open
Abstract
The breakthrough discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) 20 years ago revolutionised the current understanding of cholesterol homeostasis. Genetic studies have shown that gain-of-function mutations in PCSK9 lead to elevated LDL cholesterol and increased risk of atherosclerotic cardiovascular disease, while loss-of-function mutations in PCSK9 result in lifelong low levels of circulating LDL cholesterol and dramatic reduction in atherosclerotic cardiovascular disease. Therapies inhibiting PCSK9 lead to a higher density of LDL receptor on the surface of hepatocytes, resulting in greater ability to clear circulating LDL. Thus far, randomised controlled trials have shown that subcutaneous fully human monoclonal antibodies targeting PCSK9, evolocumab and alirocumab, and PCSK9 silencing with inclisiran result in drastic reductions in LDL cholesterol. Additionally, several novel strategies to target PCSK9 are in development, including oral antibody, gene silencing, DNA base editing and vaccine therapies. This review highlights the efficacy, safety and clinical use of these various approaches in PCSK9 inhibition.
Collapse
Affiliation(s)
- Rishi Rikhi
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, NC, US
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, NC, US
| |
Collapse
|
16
|
Li J, Yang M, Cao D, Zhang L, Zong C, Li P. Ultrasensitive Homogeneous Detection of PCSK9 and Efficacy Monitoring of the PCSK9 Inhibitor Based on Proximity Hybridization-Dependent Chemiluminescence Imaging Immunoassay. Anal Chem 2023; 95:5428-5435. [PMID: 36812301 DOI: 10.1021/acs.analchem.3c00121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Accurate quantification of proprotein convertase subtilisin/kexin type 9 (PCSK9) in serum before and after the medication is helpful in grasping the evolution of PCSK9-related disease and evaluating the efficacy of PCSK9 inhibitors. Conventional approaches for PCSK9 quantification suffered from complicated operations and low sensitivity. By integrating stimuli-responsive mesoporous silica nanoparticles, dual-recognition proximity hybridization, and T7 exonuclease-assisted recycling amplification, a novel homogeneous chemiluminescence (CL) imaging approach was proposed for ultrasensitive and convenient immunoassay of PCSK9. Owing to the intelligent design and signal amplification property, the whole assay was conducted without separation and rinsing, significantly simplifying the procedure and eliminating the errors associated with the professional operation; meanwhile, it showed linear ranges over 5 orders of magnitude and detection limit as low as 0.7 pg mL-1. Parallel testing was allowed due to the imaging readout, which brought a maximum throughput of 26 tests h-1. The proposed CL approach was applied to analyze PCSK9 from hyperlipidemia mice before and after the intervention of the PCSK9 inhibitor. Serum PCSK9 levels in the model group and the intervention group could be distinguished efficiently. The results were reliable compared to commercial immunoassay results and histopathologic findings. Thus, it could facilitate the monitoring of the serum PCSK9 level and the lipid-lowering effect of the PCSK9 inhibitor, showing promising potential in bioanalysis and pharmaceuticals.
Collapse
Affiliation(s)
- Jialing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Muqiu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dan Cao
- Nanjing Poclight Biotechnology Co., Ltd., Nanjing 210032, P. R. China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Liang K, Dai JY. Progress of potential drugs targeted in lipid metabolism research. Front Pharmacol 2022; 13:1067652. [PMID: 36588702 PMCID: PMC9800514 DOI: 10.3389/fphar.2022.1067652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Lipids are a class of complex hydrophobic molecules derived from fatty acids that not only form the structural basis of biological membranes but also regulate metabolism and maintain energy balance. The role of lipids in obesity and other metabolic diseases has recently received much attention, making lipid metabolism one of the attractive research areas. Several metabolic diseases are linked to lipid metabolism, including diabetes, obesity, and atherosclerosis. Additionally, lipid metabolism contributes to the rapid growth of cancer cells as abnormal lipid synthesis or uptake enhances the growth of cancer cells. This review introduces the potential drug targets in lipid metabolism and summarizes the important potential drug targets with recent research progress on the corresponding small molecule inhibitor drugs. The significance of this review is to provide a reference for the clinical treatment of metabolic diseases related to lipid metabolism and the treatment of tumors, hoping to deepen the understanding of lipid metabolism and health.
Collapse
Affiliation(s)
- Kai Liang
- School of Life Science, Peking University, Beijing, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China,Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China,*Correspondence: Kai Liang, ; Jian-Ye Dai,
| |
Collapse
|
18
|
PCSK9 pathway-noncoding RNAs crosstalk: Emerging opportunities for novel therapeutic approaches in inflammatory atherosclerosis. Int Immunopharmacol 2022; 113:109318. [DOI: 10.1016/j.intimp.2022.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
19
|
Iskandar S, Bowers AA. mRNA Display Reaches for the Clinic with New PCSK9 Inhibitor. ACS Med Chem Lett 2022; 13:1379-1383. [PMID: 36105330 PMCID: PMC9465826 DOI: 10.1021/acsmedchemlett.2c00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Merck & Co. recently reported one of the first mRNA display-derived clinical candidates in a bioavailable inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9). Herein, we discuss the chemical and pharmacological challenges surmounted in bringing this compound to trials and the current outlook for mRNA display-based therapeutic development.
Collapse
Affiliation(s)
- Sabrina
E. Iskandar
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A. Bowers
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, The University
of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Newer and Emerging LDL-C Lowering Agents and Implications for ASCVD Residual Risk. J Clin Med 2022; 11:jcm11154611. [PMID: 35956226 PMCID: PMC9369522 DOI: 10.3390/jcm11154611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple lines of evidence demonstrate that low-density lipoprotein-cholesterol causes atherosclerotic cardiovascular disease. Thus, targeting and lowering low-density lipoprotein-cholesterol is the principal strategy to reduce cardiovascular disease risk in primary and secondary prevention. Statin therapy is the foundation of lipid-lowering treatment, but adherence rates are low, and many individuals do not attain target low-density lipoprotein-cholesterol values. Additionally, most statin-treated patients are still at considerable atherosclerotic cardiovascular disease risk, emphasizing the need for more aggressive low-density lipoprotein-cholesterol-lowering therapies. The purpose of this review is to discuss new and emerging approaches to further lower low-density lipoprotein-cholesterol, including inhibition of ATP-citrate lyase, proprotein convertase subtilisin-kexin type 9, angiopoietin-related protein 3, and cholesteryl ester transfer protein.
Collapse
|
21
|
Jia X, Al Rifai M, Saeed A, Ballantyne CM, Virani SS. PCSK9 Inhibitors in the Management of Cardiovascular Risk: A Practical Guidance. Vasc Health Risk Manag 2022; 18:555-566. [PMID: 35898405 PMCID: PMC9309324 DOI: 10.2147/vhrm.s275739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/13/2022] [Indexed: 01/19/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are potent medications in the toolkit for treatment of atherosclerotic cardiovascular disease. These agents have been well studied in clinical trials supporting their efficacy in dramatically reducing low-density lipoprotein cholesterol (LDL-C) and impact on cardiovascular outcomes. Since the approval of commercial use for PCSK9 inhibitors in 2015, we have also gained significant experience in the use of these therapeutics in the real-world setting. In this article, we review current guideline recommendations, clinical trial evidence on efficacy and safety as well as data on cost-effectiveness, prescription and adherence. We focus primarily on the monoclonal antibody class of PCSK9 inhibitors in this review while also touching on other types of therapeutics that are under development.
Collapse
Affiliation(s)
- Xiaoming Jia
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mahmoud Al Rifai
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Anum Saeed
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Salim S Virani
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|
22
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 501] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
23
|
Wen XQ, Huang K, Li J, Wu LX, Gao B. Elevated plasma proprotein convertase subtilisin/kexin type-9 is associated with poor prognosis of acute myocardial infarction in hypertension patients. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Whether serum proprotein convertase subtilisin/kexin type 9 (PCSK9) affects the prognosis of patients after the percutaneous coronary intervention (PCI) in hypertension patients remains unknown. A total of 2350 acute myocardial infarction (AMI) subjects with hypertension after PCI were enrolled. Subjects were under 30-months follow-up and divided into the major cardiovascular adverse event (MACE) Group and the non-MACE Group. Cox regression analysis were performed for the risk factors of occurrence of MACE. The relationship between the level of PCSK9 and Gensin score was analyzed by Pearson correlation. Two hundred and thirty-two patients were divided to the MACE Group. Age over 55 (hazard ratio (HR) = 2.52; p = 0.032), smoking (HR = 1.02; p < 0.001), diabetes mellitus (HR = 1.35; p < 0.001) and PCSK9 levels over 1011.3 ng/mL (HR = 1.05; ptdf < 0.001) were risk factors of occurrence of MACE. Baseline levels of PCSK9 was significantly related with Gensini score in ST segment elevation myocardial infarction (STEMI) patients ( r = 0.51), all patients ( r = 0.37) and non-STEMI patients ( r = 0.34, p < 0.001). A high baseline PCSK9 level was the risk factor of poor prognosis of AMI patients with hypertension after PCI. PCSK9 levels were associated with the Gensini score in STEMI patients. Trial registration: This trial was registered at clinicaltrials.gov as NCT04100434.
Collapse
Affiliation(s)
- Xiao-Qin Wen
- Department of Cardiology, Tianjin Hospital, Tianjin, PR China
| | - Kui Huang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Jie Li
- Department of Cardiology, Tianjin Hospital, Tianjin, PR China
| | - Li-Xue Wu
- Department of Emergency and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Bo Gao
- Department of Cardiology, Tianjin Hospital, Tianjin, PR China
| |
Collapse
|