1
|
Cho H, Lee G, Kim D, Kim D, Kim B, Choi Y, Lee JO, Kim GT. New Dynamic Fingerprint in Derivative-Based Phase Space: Rapid Gas Sensing in Seconds. ACS Sens 2025; 10:2840-2849. [PMID: 40195886 DOI: 10.1021/acssensors.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Many studies have focused on smart electronic noses combining machine learning and gas sensor arrays, but feature extraction for training has generally relied on dimensionality reduction techniques based on raw time-series data. These methods do not reflect the principles of sensor responses, limiting their applicability in diverse gas environments. In this study, we propose a new phase space, expressed through the first and second derivatives of dynamic response signals, to effectively characterize the nonlinear responses between gas sensors and gases. Sensing data transformed into a phase space showed unique patterns depending on the type and concentration of gases, and these were investigated for alkanes with various chain lengths (CH4, C3H8, C4H10). By applying these patterns as a preprocessing method, CNN-based gas identification machine learning achieved a high classification accuracy of 99.1% and a low concentration prediction error of 2.23 ppm using only a single sensor. Additionally, the algorithm was trained and validated across various regions of the phase space, identifying the minimum time and region required for simultaneous gas classification and concentration prediction. This study presents a novel strategy for the fast and accurate identification of gases within seconds and is expected to have significant scalability in diverse gas environments.
Collapse
Affiliation(s)
- Hyeran Cho
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Doyoon Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - DongHyeon Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - BeomJun Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - YunJae Choi
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Gyu-Tae Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Vogt‐Lowell K, Chacko D, Yang K, Carsten J, Liu J, Housley M, Li F. Molten-Salt-Mediated Chemical Looping Oxidative Dehydrogenation of Ethane with In-Situ Carbon Capture and Utilization. CHEMSUSCHEM 2025; 18:e202401473. [PMID: 39462199 PMCID: PMC11912109 DOI: 10.1002/cssc.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
The molten-salt-mediated oxidative dehydrogenation (MM-ODH) of ethane (C2H6) via a chemical looping scheme represents an effective carbon capture and utilization (CCU) method for the valorization of ethane-rich shale gas and concurrent mitigation of carbon dioxide (CO2) emissions. Here, stepwise experimentation with Li2CO3-Na2CO3-K2CO3 (LNK) ternary salts (i) assessed how each component of the LNK mixture impacted ethane MM-ODH performance and (ii) explored physicochemical and thermodynamic mechanisms behind melt-induced changes to ethylene (C2H4) and carbon monoxide (CO) yields. Of fifteen screened LNK compositions, nine exhibited ethylene yields greater than 50 % at 800 °C while maintaining C2H4 selectivities of 85 % or higher. LNK salts rich in Li2CO3 content yielded more ethylene and CO on average than their counterparts, and net CO2 capture per cycle reached a maximum of ~75 %. Extended MM-ODH cycling also demonstrated long-term stability of a high-performing LNK medium. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations suggested that the molten salt does not directly activate C2H6. Meanwhile, an empirical model informed by experimental data and reaction thermodynamics adequately predicted overall MM-ODH performance from LNK composition and provided insights into the system's primary drivers.
Collapse
Affiliation(s)
- Kyle Vogt‐Lowell
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Dennis Chacko
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Kunran Yang
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Jace Carsten
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Junchen Liu
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Matthew Housley
- School of EngineeringNewcastle UniversityMerz CourtNewcastle upon TyneNE1 7RUUnited Kingdom
| | - Fanxing Li
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| |
Collapse
|
3
|
Xia S, Zhao K, Gao Y, Fan Y, Wang C, Yu T, Wang H, Zhang J, Wang Z, Zhu X, Zhao Z, Zheng A. Co-Feeding CO 2 for Methylfuran Aromatization over Bifunctional Zeolite-Supported ZnMoO 4. Angew Chem Int Ed Engl 2025; 64:e202420779. [PMID: 39526860 DOI: 10.1002/anie.202420779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Aromatization of biofuran offers promising approaches for sustainable biochemical production. However, this process is often hampered by low yields and severe coking on traditional zeolite catalysts. Herein, we report co-feeding CO2 for 2-methylfuran (MF) aromatization (CCMA) over bifunctional ZSM-5 supported ZnMoO4. This bifunctional catalyst can achieve both MF and CO2 conversions of >97 %, generating >85 % carbon yield of target arenes and CO with negligible alkenes (0.05 %). Meanwhile, coke formation is remarkably suppressed from 22.3 % to 8.6 %. ZnMoO4/ZSM-5 is capable of selectively manipulating the reaction intermediates and pathways of the CCMA reactions, favoring the cyclopentenones- and alkenes-based dehydro-aromatization rather than the benzofurans-based pathway. This finding challenges the prevailing understanding that MF aromatization follows a hydrocarbon pool mechanism. Moreover, the abundant surface oxygen vacancies of ZnMoO4 facilitate the adsorption of CO2 and its subsequent reaction with coke. These insights into reaction mechanism and catalyst design for co-conversion of CO2 and biofuran can offer guidelines for process intensification in biomass utilization with a carbon-negative manner.
Collapse
Affiliation(s)
- Shengpeng Xia
- CAS Key Laboratory of Renewable Energy and Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, PR China
| | - Kun Zhao
- CAS Key Laboratory of Renewable Energy and Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, PR China
| | - Yunfei Gao
- Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuyang Fan
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching, 85747, Germany
| | - Chenyang Wang
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan, 523803, PR China
| | - Tongpo Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, PR China
| | - Hong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, PR China
| | - Jinyang Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, PR China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, PR China
| | - Xing Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Zengli Zhao
- CAS Key Laboratory of Renewable Energy and Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, PR China
| | - Anqing Zheng
- CAS Key Laboratory of Renewable Energy and Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, PR China
| |
Collapse
|
4
|
Bai R, Zhao ZH, Liu M, Ma W, Lin J, An S, He J, Liu Z, Zhang L, Mei H, Zhang J. Strong Electron-Withdrawing Effect Activates Metal-Free Carboxylate Anion into Efficient Active Sites for Electrocatalytic Acetylene Semihydrogenation. J Am Chem Soc 2025; 147:6880-6885. [PMID: 39951618 DOI: 10.1021/jacs.4c17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
The exploration of novel and high-performance organo-electrocatalysts with well-defined active sites is vital for understanding catalytic mechanisms and replacing metal-based catalysts, but remains a formidable challenge. Here, we report metal-free trifluoroacetate as a new organo-electrocatalyst, where the strong electron-withdrawing trifluoromethyl (-CF3) group intrinsically transforms the neighboring carboxylate anions (-COO-) into highly efficient active sites for electrocatalytic acetylene semihydrogenation. The electrophilic acetylene molecule bonds to the negatively charged O- sites of the carboxylate anion via the σ-configuration. Benefiting from precise molecular engineering of electron-withdrawing groups, the ethylene partial current density presents a volcano relationship with the total natural charge of the -COO- anions. In 1 M KOH aqueous solution, trifluoroacetate delivers an ethylene partial current density of 260 mA/cm2 with an ethylene Faradaic efficiency of 96.8% at -0.9 V versus the reversible hydrogen electrode (RHE) under a pure acetylene atmosphere, outperforming metal-based electrocatalysts. This work presents a new type of high-activity organo-electrocatalysts with -COO- anions as active center and promises its application in electrocatalysis.
Collapse
Affiliation(s)
- Rui Bai
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhi-Hao Zhao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Mingxuan Liu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxiu Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jin Lin
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Siying An
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jiaxin He
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhenpeng Liu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Lei Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Hui Mei
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
5
|
Wang J, Wang F, Li L, Zhao W, Wang S, Ma Z, Kong Y, Shuang Y, Xia W, Jian J, Guo P, Wang H. Synergistic effect of scattered rare metals on Pt/CeO 2 for propane oxidative dehydrogenation with CO 2. RSC Adv 2025; 15:2319-2328. [PMID: 39867326 PMCID: PMC11756350 DOI: 10.1039/d4ra08481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
The oxidative dehydrogenation of propane with CO2 (CO2-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO2) catalysts exhibit remarkable reactivity toward propane and CO2 due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO2-based catalysts may substantially impede the selective activation of C-H bonds during the CO2-ODP process. Here, we report that the scattered rare metal oxide (SRO x , SR = Ga, In) overlayer on Pt/CeO2 exhibits extraordinary activity and selectivity for the CO2-ODP reaction. With the assistance of Pt, the SRO x -Pt/CeO2 could achieve a propane conversion of 38.13% and a CO2 conversion of 67.72%. More importantly, the selectivity of the product propene has increased from 33.28% to 88.24%, a level that is even comparable to the outstanding performance of currently reported PtSn/CeO2 catalysts. A mechanistic study reveals that the strong affinity of the overlayer SRO x to the propane reduces the barrier of C-H bond activation and balances the C-H cleavage rates and the C-O bond groups, accounting for the excellent selective CO2-ODP performance of SRO x -Pt/CeO2 catalysts. The SRO x -modified Pt/CeO2 strategy offers a novel approach to modulating CO2-ODP, thereby facilitating the highly selective preparation of propene.
Collapse
Affiliation(s)
- Jiulong Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Fang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Longyang Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Weihao Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Shiyuan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Zelin Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Yan Kong
- Ministry of Education Engineering Research Center of Water Resource Comprehensive Uti-lization in Cold and Arid Regions, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Yazhou Shuang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Weiwei Xia
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Jie Jian
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Pengfei Guo
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
| |
Collapse
|
6
|
Sun J, Lian G, Chen Z, Zou Z, Wang L. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS NANO 2024; 18:34572-34595. [PMID: 39652059 DOI: 10.1021/acsnano.4c13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Photothermal catalysis is an emerging field with significant potential for sustainable chemical production processes. The merger of single-atom catalysts (SACs) and photothermal catalysis has garnered widespread attention for its ability to achieve precise bond activation and superior catalytic performance. This review provides a comprehensive overview of the recent progress of SACs in photothermal catalysis, focusing on their underlying mechanisms and applications. The dynamic structural evolution of SACs during photothermal processes is highlighted, and the current advancements and future perspectives in the design, screening, and scaling up of SACs for photothermal processes are discussed. This review aims to provide insights into their continued development in this rapidly evolving field.
Collapse
Affiliation(s)
- Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
7
|
Liu Y, Xue W, Liu X, Wei F, Lin X, Lu XF, Lin W, Hou Y, Zhang G, Wang S. Ultrafine Pt Nanoparticles on Defective Tungsten Oxide for Photocatalytic Ethylene Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402004. [PMID: 38686672 DOI: 10.1002/smll.202402004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weichao Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fen Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiahui Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
8
|
Liu H, Sun S, Li D, Lei Y. Catalyst development for O 2-assisted oxidative dehydrogenation of propane to propylene. Chem Commun (Camb) 2024; 60:7535-7554. [PMID: 38949820 DOI: 10.1039/d4cc01948b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
O2-Assisted oxidative dehydrogenation of propane (O2-ODHP) could convert abundant shale gas into propylene as an important chemical raw material, meaning O2-ODHP has practical significance. Thermodynamically, high temperature is beneficial for O2-ODHP; however, high reaction temperature always causes the overoxidation of propylene, leading to a decline in its selectivity. In this regard, it is crucial to achieve low temperatures while maintaining high efficiency and selectivity during O2-ODHP. The use of catalytic technology provides more opportunities for achieving high-efficiency O2-ODHP under mild conditions. Up to now, many kinds of catalytic systems have been elaborately designed, including transition metal oxide catalysts (such as vanadium-based catalysts, molybdenum-based catalysts, etc.), transition metal-based catalysts (such as Pt nanoclusters), rare earth metal oxide catalysts (especially CeO2 related catalysts), and non-metallic catalysts (BN, other B-containing catalysts, and C-based catalysts). In this review, we have summarized the development progress of mainstream catalysts in O2-ODHP, aiming at providing a clear picture to the catalysis community and advancing this research field further.
Collapse
Affiliation(s)
- Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Shaoyuan Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Yiming Lei
- Departament de Química (Unitat de Química Inorgànica), Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193, Barcelona, Spain.
| |
Collapse
|
9
|
Chen F, Li L, Cheng C, Yu Y, Zhao BH, Zhang B. Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer. Nat Commun 2024; 15:5914. [PMID: 39003284 PMCID: PMC11246534 DOI: 10.1038/s41467-024-50335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Electrocatalytic semihydrogenation of acetylene (C2H2) provides a facile and petroleum-independent strategy for ethylene (C2H4) production. However, the reliance on the preseparation and concentration of raw coal-derived C2H2 hinders its economic potential. Here, a concave surface is predicted to be beneficial for enriching C2H2 and optimizing its mass transfer kinetics, thus leading to a high partial pressure of C2H2 around active sites for the direct conversion of raw coal-derived C2H2. Then, a porous concave carbon-supported Cu nanoparticle (Cu-PCC) electrode is designed to enrich the C2H2 gas around the Cu sites. As a result, the as-prepared electrode enables a 91.7% C2H4 Faradaic efficiency and a 56.31% C2H2 single-pass conversion under a simulated raw coal-derived C2H2 atmosphere (~15%) at a partial current density of 0.42 A cm-2, greatly outperforming its counterpart without concave surface supports. The strengthened intermolecular π conjugation caused by the increased C2H2 coverage is revealed to result in the delocalization of π electrons in C2H2, consequently promoting C2H2 activation, suppressing hydrogen evolution competition and enhancing C2H4 selectivity.
Collapse
Affiliation(s)
- Fanpeng Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Li Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bo-Hang Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
10
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
11
|
Randazzo A, Venturi S, Tassi F. Soil processes modify the composition of volatile organic compounds (VOCs) from CO 2- and CH 4-dominated geogenic and landfill gases: A comprehensive study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171483. [PMID: 38458441 DOI: 10.1016/j.scitotenv.2024.171483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Degradation mechanisms affecting non-methane volatile organic compounds (VOCs) during gas uprising from different hypogenic sources to the surface were investigated through extensive sampling surveys in areas encompassing a high enthalpy hydrothermal system associated with active volcanism, a CH4-rich sedimentary basin and a municipal waste landfill. For a comprehensive framework, published data from medium-to-high enthalpy hydrothermal systems were also included. The investigated systems were characterised by peculiar VOC suites that reflected the conditions of the genetic environments in which temperature, contents of organic matter, and gas fugacity had a major role. Differences in VOC patterns between source (gas vents and landfill gas) and soil gases indicated VOC transformations in soil. Processes acting in soil preferentially degraded high-molecular weight alkanes with respect to the low-molecular weight ones. Alkenes and cyclics roughly behaved like alkanes. Thiophenes were degraded to a larger extent with respect to alkylated benzenes, which were more reactive than benzene. Furan appeared less degraded than its alkylated homologues. Dimethylsulfoxide was generally favoured with respect to dimethylsulfide. Limonene and camphene were relatively unstable under aerobic conditions, while α-pinene was recalcitrant. O-bearing organic compounds (i.e., aldehydes, esters, ketones, alcohols, organic acids and phenol) acted as intermediate products of the ongoing VOC degradations in soil. No evidence for the degradation of halogenated compounds and benzothiazole was observed. This study pointed out how soil degradation processes reduce hypogenic VOC emissions and the important role played by physicochemical and biological parameters on the effective VOC attenuation capacity of the soil.
Collapse
Affiliation(s)
- A Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy.
| | - S Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| | - F Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
12
|
Chen M, Liu H, Wang Y, Zhong Z, Zeng Y, Jin Y, Ye D, Chen L. Cobalt catalyzed ethane dehydrogenation to ethylene with CO 2: Relationships between cobalt species and reaction pathways. J Colloid Interface Sci 2024; 660:124-135. [PMID: 38241861 DOI: 10.1016/j.jcis.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
TiO2, ZrO2 and a series of TiO2-ZrO2 (TxZ1, x means the atomic ratio of Ti/Zr = 10, 5, 1, 0.2 and 0.1) composite oxide supports were prepared through co-precipitation, and then 3 wt% Co was loaded through wetness impregnation methods. The obtained 3 wt% Co/TiO2 (3CT), 3 wt% Co/ZrO2 (3CZ) and 3 wt% Co/TxZ1 (3CTxZ1) catalysts were evaluated for the oxidative ethane dehydrogenation reaction with CO2 (CO2-ODHE) as a soft oxidant. 3CT1Z1 catalyst exhibits excellent catalytic properties, with C2H4 yield, C2H6 conversion and CO2 conversion about 24.5 %, 33.8 % and 18.0 % at 650 °C, respectively. X-Ray Diffraction (XRD), in-situ Raman, UV-vis diffuse reflectance spectra (UV-vis DRS), H2 temperature-programmed reduction (H2-TPR), Electron paramagnetic resonance (EPR) and quasi in-situ X-ray Photoelectron Spectroscopy (XPS) have been utilized to thoroughly characterize the investigated catalysts. The results revealed that 3CT1Z1 produced TiZrO4 solid solution with more metal defect sites and oxygen vacancies (Ov), promoting the formation of Co2+-TiZrO4 structure. Furthermore, the presence of Ov and Ti3+can facilitate the high dispersion and stabilization of Co2+, as well as suppressing the severe reduction of Co2+, leading to superior ethane oxidative dehydrogenation activity. Besides, less Co0 is beneficial to ODHE reaction, because of its promotion effects for reverse water gas shift reaction; however, more Co0 results in dry reforming reaction (DRE). This work will shed new lights for the design and preparation of highly efficient catalysts for ethylene production.
Collapse
Affiliation(s)
- Ming Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyong Zhong
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Zeng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuxin Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
13
|
Zhou W, Felvey N, Guo J, Hoffman AS, Bare SR, Kulkarni AR, Runnebaum RC, Kronawitter CX. Reduction of Cofed Carbon Dioxide Modifies the Local Coordination Environment of Zeolite-Supported, Atomically Dispersed Chromium to Promote Ethane Dehydrogenation. J Am Chem Soc 2024; 146:10060-10072. [PMID: 38551239 PMCID: PMC11009955 DOI: 10.1021/jacs.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
The reduction of CO2 is known to promote increased alkene yields from alkane dehydrogenations when the reactions are cocatalyzed. The mechanism of this promotion is not understood in the context of catalyst active-site environments because CO2 is amphoteric, and even general aspects of the chemistry, including the significance of competing side reactions, differ significantly across catalysts. Atomically dispersed chromium cations stabilized in highly siliceous MFI zeolite are shown here to enable the study of the role of parallel CO2 reduction during ethylene-selective ethane dehydrogenation. Based on infrared spectroscopy and X-ray absorption spectroscopy data interpreted through calculations using density functional theory (DFT), the synthesized catalyst contains atomically dispersed Cr cations stabilized by silanol nests in micropores. Reactor studies show that cofeeding CO2 increases stable ethylene-selective ethane dehydrogenation rates over a wide range of partial pressures. Operando X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra indicate that during reaction at 650 °C the Cr cations maintain a nominal 2+ charge and a total Cr-O coordination number of approximately 2. However, CO2 reduction induces a change, correlated with the CO2 partial pressure, in the population of two distinct Cr-O scattering paths. This indicates that the promotional effect of parallel CO2 reduction can be attributed to a subtle change in Cr-O bond lengths in the local coordination environment of the active site. These insights are made possible by simultaneously fitting multiple EXAFS spectra recorded in different reaction conditions; this novel procedure is expected to be generally applicable for interpreting operando catalysis EXAFS data.
Collapse
Affiliation(s)
- Wenqi Zhou
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Noah Felvey
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jiawei Guo
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Adam S. Hoffman
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ambarish R. Kulkarni
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C. Runnebaum
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
- Department
of Viticulture & Enology, University
of California, Davis, California 95616, United States
| | - Coleman X. Kronawitter
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
14
|
Liu H, Liu K, Zhu H, Guo W, Li Y. Explainable machine-learning predictions for catalysts in CO 2-assisted propane oxidative dehydrogenation. RSC Adv 2024; 14:7276-7282. [PMID: 38433939 PMCID: PMC10905517 DOI: 10.1039/d4ra00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Propylene is an important raw material in the chemical industry that needs new routes for its production to meet the demand. The CO2-assisted oxidative dehydrogenation of propane (CO2-ODHP) represents an ideal way to produce propylene and uses the greenhouse gas CO2. The design of catalysts with high efficiency is crucial in CO2-ODHP research. Data-driven machine learning is currently of great interest and gaining popularity in the heterogeneous catalysis field for guiding catalyst development. In this study, the reaction results of CO2-ODHP reported in the literature are combined and analyzed with varied machine learning algorithms such as artificial neural network (ANN), k-nearest neighbors (KNN), support vector regression (SVR) and random forest regression (RF)and were used to predict the propylene space-time yield. Specifically, the RF method serves as a superior performing algorithm for propane conversion and propylene selectivity prediction, and SHapley Additive exPlanations (SHAP) based on the Shapley value performs fine model interpretation. Reaction conditions and chemical components show different impacts on catalytic performance. The work provides a valuable perspective for the machine learning in light alkane conversion, and helps us to design catalyst by catalytic performance hidden in the data of literatures.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 PR China
- National Engineering Research Center for Petroleum Refining Technology and Catalyst, Research Institute of Petroleum Progressing Co., Ltd., SINOPEC Beijing 100083 China
| | - Kangyu Liu
- National Engineering Research Center for Petroleum Refining Technology and Catalyst, Research Institute of Petroleum Progressing Co., Ltd., SINOPEC Beijing 100083 China
| | - Hairuo Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 PR China
| | - Weiqing Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 PR China
| | - Yuming Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 PR China
| |
Collapse
|
15
|
Lv XH, Huang H, Cui LT, Zhou ZY, Wu W, Wang YC, Sun SG. Hydrogen Spillover Accelerates Electrocatalytic Semi-hydrogenation of Acetylene in Membrane Electrode Assembly Reactor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8668-8678. [PMID: 38344994 DOI: 10.1021/acsami.3c15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm-2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Xue-Hui Lv
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Ting Cui
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Zhi-You Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Wenkun Wu
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu-Cheng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
16
|
Yang J, Wang L, Wan J, El Gabaly F, Fernandes Cauduro AL, Mills BE, Chen JL, Hsu LC, Lee D, Zhao X, Zheng H, Salmeron M, Wang C, Dong Z, Lin H, Somorjai GA, Rosner F, Breunig H, Prendergast D, Jiang DE, Singh S, Su J. Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO 2 to ethylene and CO. Nat Commun 2024; 15:911. [PMID: 38291043 PMCID: PMC10828418 DOI: 10.1038/s41467-024-44918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Developing atomically synergistic bifunctional catalysts relies on the creation of colocalized active atoms to facilitate distinct elementary steps in catalytic cycles. Herein, we show that the atomically-synergistic binuclear-site catalyst (ABC) consisting of [Formula: see text]-O-Cr6+ on zeolite SSZ-13 displays unique catalytic properties for iso-stoichiometric co-conversion of ethane and CO2. Ethylene selectivity and utilization of converted CO2 can reach 100 % and 99.0% under 500 °C at ethane conversion of 9.6%, respectively. In-situ/ex-situ spectroscopic studies and DFT calculations reveal atomic synergies between acidic Zn and redox Cr sites. [Formula: see text] ([Formula: see text]) sites facilitate β-C-H bond cleavage in ethane and the formation of Zn-Hδ- hydride, thereby the enhanced basicity promotes CO2 adsorption/activation and prevents ethane C-C bond scission. The redox Cr site accelerates CO2 dissociation by replenishing lattice oxygen and facilitates H2O formation/desorption. This study presents the advantages of the ABC concept, paving the way for the rational design of novel advanced catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lu Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Jiawei Wan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park, Hsinchu, Taiwan
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Daewon Lee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Caiqi Wang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Zhun Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hongfei Lin
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Gabor A Somorjai
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Fabian Rosner
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hanna Breunig
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Seema Singh
- Sandia National Laboratories, Livermore, CA, US.
| | - Ji Su
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
17
|
Li F, Lai Y, Zeng Y, Chen X, Wang T, Yang X, Guo Q. Photocatalytic ethane conversion on rutile TiO 2(110): identifying the role of the ethyl radical. Chem Sci 2023; 15:307-316. [PMID: 38131087 PMCID: PMC10732131 DOI: 10.1039/d3sc05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Oxidative dehydrogenation of ethane (C2H6, ODHE) is a promising approach to producing ethene (C2H4) in the chemical industry. However, the ODHE needs to be operated at a high temperature, and realizing the ODHE under mild conditions is still a big challenge. Herein, using photocatalytic ODHE to obtain C2H4 has been achieved successfully on a model rutile(R)-TiO2(110) surface with high selectivity. Initially, the C2H6 reacts with hole trapped OTi- centers to produce ethyl radicals , which can be precisely detected by a sensitive TOF method, and then the majority of the radicals spontaneously dehydrogenate into C2H4 without another photo-generated hole. In addition, parts of the radicals rebound with diversified surface sites to produce C2 products via migration along the surface. The mechanistic model built in this work not only advances our knowledge of the C-H bond activation and low temperature C2H6 conversion, but also provides new opportunities for realizing the ODHE with high C2H4 efficiency under mild conditions.
Collapse
Affiliation(s)
- Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xueming Yang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 PR China
- Hefei National Laboratory Hefei 230088 PR China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| |
Collapse
|
18
|
Yuan Y, Zhao Z, Lobo RF, Xu B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207756. [PMID: 36897033 PMCID: PMC10161086 DOI: 10.1002/advs.202207756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Metal-exchanged zeolites are well-known propane dehydrogenation (PDH) catalysts; however, the structure of the active species remains unresolved. In this review, existing PDH catalysts are first surveyed, and then the current understanding of metal-exchanged zeolite catalysts is described in detail. The case of Ga/H-ZSM-5 is employed to showcase that advances in the understanding of structure-activity relations are often accompanied by technological or conceptional breakthroughs. The understanding of Ga speciation at PDH conditions has evolved owing to the advent of in situ/operando characterizations and to the realization that the local coordination environment of Ga species afforded by the zeolite support has a decisive impact on the active site structure. In situ/operando quantitative characterization of catalysts, rigorous determination of intrinsic reaction rates, and predictive computational modeling are all significant in identifying the most active structure in these complex systems. The reaction mechanism could be both intricately related to and nearly independent of the details of the assumed active structure, as in the two main proposed PDH mechanisms on Ga/H-ZSM-5, that is, the carbenium mechanism and the alkyl mechanism. Perspectives on potential approaches to further elucidate the active structure of metal-exchanged zeolite catalysts and reaction mechanisms are discussed in the final section.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Zhaoqi Zhao
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Raul F. Lobo
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
19
|
Lee MG, Li XY, Ozden A, Wicks J, Ou P, Li Y, Dorakhan R, Lee J, Park HK, Yang JW, Chen B, Abed J, dos Reis R, Lee G, Huang JE, Peng T, Chin YH, Sinton D, Sargent EH. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat Catal 2023. [DOI: 10.1038/s41929-023-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
20
|
Orlyk S, Kyriienko P, Kapran A, Chedryk V, Balakin D, Gurgul J, Zimowska M, Millot Y, Dzwigaj S. CO2-Assisted Dehydrogenation of Propane to Propene over Zn-BEA Zeolites: Impact of Acid–Base Characteristics on Catalytic Performance. Catalysts 2023. [DOI: 10.3390/catal13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Research results about the influence of BEA zeolite preliminary dealumination on the acid–base characteristics and catalytic performance of 1% Zn-BEA compositions in propane dehydrogenation with CO2 are presented. The catalyst samples, prepared through a two-step post-synthesis procedure involving partial or complete dealumination of the BEA specimen followed by the introduction of Zn2+ cations into the T-positions of the zeolite framework, were characterized using XRD, XPS, MAS NMR, SEM/EDS, low-temperature N2 ad/desorption, C3H8/C3H6 (CO2, NH3)-TPD, TPO-O2, and FTIR-Py techniques. Full dealumination resulted in the development of a mesoporous structure and specific surface area (BET) with a twofold decrease in the total acidity and basicity of Zn-BEA, and the formation of Lewis acid sites and basic sites of predominantly medium strength, as well as the removal of Brønsted acid sites from the surface. In the presence of the ZnSiBEA catalyst, which had the lowest total acidity and basicity, the obtained selectivity of 86–94% and yield of 30–33% for propene (at 923 K) exceeded the values for ZnAlSiBEA and ZnAlBEA. The results of propane dehydrogenation with/without carbon dioxide showed the advantages of producing the target olefin in the presence of CO2 using Zn-BEA catalysts.
Collapse
|
21
|
Xing F, Furukawa S. Metallic Catalysts for Oxidative Dehydrogenation of Propane Using CO 2. Chemistry 2023; 29:e202202173. [PMID: 36184570 DOI: 10.1002/chem.202202173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/23/2022]
Abstract
The oxidative dehydrogenation of propane using CO2 (CO2 -ODP) is a promising technique for realizing high-yield propylene production and CO2 usage. Developing a highly efficient catalyst for CO2 -ODP is essential and beneficial to the chemical industry and for realizing net-zero emissions. Many studies have investigated metal oxide-based catalysts, revealing that rapid deactivation and low selectivity remain limiting factors for their industrial applications. In recent years, metallic nanoparticle catalysts have become increasingly attractive due to their unique properties. Therefore, we summarize the performance of metal-based catalysts in CO2 -ODP reactions by considering catalyst design concepts, different mechanisms in the reaction process, and the role of CO2 .
Collapse
Affiliation(s)
- Feilong Xing
- Institute for Catalysis, Hokkaido University N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University N-21, W-10, Sapporo, 001-0021, Japan.,Department of Research Promotion, Japan Science and Technology Agency Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
22
|
Xu G, Cai C, Zhao W, Liu Y, Wang T. Rational design of catalysts with earth‐abundant elements. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gaomou Xu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Cheng Cai
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yonghua Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| |
Collapse
|
23
|
Dou J, Funderburg J, Yang K, Liu J, Chacko D, Zhang K, Harvey AP, Haribal VP, Zhou SJ, Li F. Ce xZr 1–xO 2-Supported CrO x Catalysts for CO 2-Assisted Oxidative Dehydrogenation of Propane─Probing the Active Sites and Strategies for Enhanced Stability. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Dou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Joey Funderburg
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kunran Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Junchen Liu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Dennis Chacko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kui Zhang
- School of Engineering, Newcastle University, Tyne NE1 7RU, U.K
| | - Adam P. Harvey
- School of Engineering, Newcastle University, Tyne NE1 7RU, U.K
| | - Vasudev P. Haribal
- Susteon Inc., 5001 Weston Pkwy, Cary, North Carolina 27513, United States
| | - S. James. Zhou
- Susteon Inc., 5001 Weston Pkwy, Cary, North Carolina 27513, United States
| | - Fanxing Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
24
|
Lawson S, Baamran K, Newport K, Garcia E, Jacobs G, Rezaei F, Rownaghi AA. Adsorption-Enhanced Bifunctional Catalysts for In Situ CO 2 Capture and Utilization in Propylene Production: A Proof-Of-Concept Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shane Lawson
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Khaled Baamran
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Kyle Newport
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Elijah Garcia
- Department of Chemical Engineering and Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas78249-0669, United States
| | - Gary Jacobs
- Department of Chemical Engineering and Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas78249-0669, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri65409-1230, United States
| | - Ali A. Rownaghi
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio44115, United States
| |
Collapse
|
25
|
Sun Z, Shao B, Zhang Y, Gao Z, Wang M, Liu H, Hu J. Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO||Ni Co. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Liu L, Li H, Zhou H, Chu S, Liu L, Feng Z, Qin X, Qi J, Hou J, Wu Q, Li H, Liu X, Chen L, Xiao J, Wang L, Xiao FS. Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Shang X, Liu G, Su X, Huang Y, Zhang T. Preferential Synthesis of Toluene and Xylene from CO 2 Hydrogenation in the Presence of Benzene through an Enhanced Coupling Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guodong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
| | - Xiong Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
28
|
B/N co-doped carbon supported molybdenum carbide catalysts with oxygen vacancies for facile synthesis of flavones through oxidative dehydrogenation. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Yao R, Pinals J, Dorakhan R, Herrera JE, Zhang M, Deshlahra P, Chin YHC. Cobalt-Molybdenum Oxides for Effective Coupling of Ethane Activation and Carbon Dioxide Reduction Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Yao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Key Laboratory of Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
- Postdoctoral Programme Office, Guosen Securities Co., Ltd., Shenzhen 518001, China
| | - Jayson Pinals
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Roham Dorakhan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - José E. Herrera
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Minhua Zhang
- Key Laboratory of Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ya-Huei Cathy Chin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
30
|
Balogun ML, Gambo Y, Adamu S, Ba‐Shammakh MS, Hossain MM. Kinetic modeling of oxidative dehydrogenation of Propane with CO
2
over MoO
x
/La
2
O
3
‐Al
2
O
3
in a Fluidized Bed. AIChE J 2022. [DOI: 10.1002/aic.17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Majid L. Balogun
- Department of Chemical Engineering King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Yahya Gambo
- Department of Chemical Engineering King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Sagir Adamu
- Department of Chemical Engineering King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
- Center for Refining & Advanced Chemicals (IRC‐RAC) King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Mohammed S. Ba‐Shammakh
- Department of Chemical Engineering King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Mohammad M. Hossain
- Department of Chemical Engineering King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
- Center for Refining & Advanced Chemicals (IRC‐RAC) King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
- Center for Hydrogen & Energy Storage (IRC‐HES) King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| |
Collapse
|
31
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
32
|
Li D, Kong L, Fan X, Xie Z, Xiao X, Zhao Z. Porous Ni−Al−O Fabricated by a Facile Hydrothermal Method: Improved Catalytic Performance for the Oxidative Dehydrogenation of Ethane to Produce Ethylene. ChemistrySelect 2022. [DOI: 10.1002/slct.202201473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Li
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Lian Kong
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zean Xie
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| |
Collapse
|
33
|
Tsiotsias AI, Ehrhardt B, Rudolph B, Nodari L, Kim S, Jung W, Charisiou ND, Goula MA, Mascotto S. Bimetallic Exsolved Heterostructures of Controlled Composition with Tunable Catalytic Properties. ACS NANO 2022; 16:8904-8916. [PMID: 35709497 DOI: 10.1021/acsnano.1c11111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we show how the composition of bimetallic Fe-Ni exsolution can be controlled by the nature and concentration of oxygen vacancies in the parental matrix and how this is used to modify the performance of CO2-assisted ethane conversion. Mesoporous A-site-deficient La0.4Sr0.6-αTi0.6Fe0.35Ni0.05O3±δ (0 ≤ α ≤ 0.2) perovskites with substantial specific surface area (>40 m2/g) enabled fast exsolution kinetics (T < 500 °C, t < 1 h) of bimetallic Fe-Ni nanoparticles of increasing size (3-10 nm). Through the application of a multitechnique approach we found that the A-site deficiency determined the concentration of oxygen vacancies associated with iron, which controlled the Fe reduction. Instead of homogeneous bimetallic nanoparticles, the increasing Fe fraction from 37 to 57% led to the emergence of bimodal Fe/Ni3Fe systems. Catalytic tests showed superior stability of our catalysts with respect to commercial Ni/Al2O3. Ethane reforming was found to be the favored pathway, but an increase in selectivity toward ethane dehydrogenation occurred for the systems with a low metallic Fe fraction. The chance to control the reduction and growth processes of bimetallic exsolution offers interesting prospects for the design of advanced catalysts based on bimodal nanoparticle heterostructures.
Collapse
Affiliation(s)
- Anastasios I Tsiotsias
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Benedikt Ehrhardt
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Benjamin Rudolph
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Luca Nodari
- Department of Chemical Science, University of Padua, Via F. Marzolo, 1, 35122 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council. C.so Stati Uniti 4, 35127 Padova, Italy
| | - Seunghyun Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nikolaos D Charisiou
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Maria A Goula
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Simone Mascotto
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
34
|
Gashoul Daresibi F, Khodadadi AA, Mortazavi Y, Huotari S, Ritala M. Highly dispersed atomic layer deposited CrOx on SiO2 catalyst with enhanced yield of propylene for CO2 –mediated oxidative dehydrogenation of propane. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Wang J, Liu M, Li J, Wang C, Zhang X, Zheng Y, Li X, Xu L, Guo X, Song C, Zhu X. Elucidating the Active-Phase Evolution of Fe-Based Catalysts during Isobutane Dehydrogenation with and without CO 2 in Feed Gas. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiapei Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Min Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junjie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Chuanfu Wang
- National Institute of Clean-and-low-carbon Energy (NICE), Beijing 102211, P. R. China
| | - Xinbao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yingbin Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Longya Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- EMS Energy Institute, Department of Energy & Mineral Engineering and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Xiangxue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
36
|
Effect of Acid–Base Characteristics of Zeolite Catalysts on Oxidative Dehydrogenation of Propane with Carbon Dioxide. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Shan YL, Sun HL, Zhao SL, Tang PL, Zhao WT, Ding JW, Yu WL, Li LN, Feng X, Chen D. Effects of Support and CO 2 on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Ling Shan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huai-Lu Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Lei Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Long Tang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Ting Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun-Wei Ding
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Long Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 201204, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
38
|
Wang ZY, He ZH, Li LY, Yang SY, He MX, Sun YC, Wang K, Chen JG, Liu ZT. Research progress of CO 2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts. RARE METALS 2022; 41:2129-2152. [PMID: 35291268 PMCID: PMC8913863 DOI: 10.1007/s12598-021-01959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
CO2-assisted oxidative dehydrogenation of propane (CO2-ODHP) is an attractive strategy to offset the demand gap of propylene due to its potentiality of reducing CO2 emissions, especially under the demands of peaking CO2 emissions and carbon neutrality. The introduction of CO2 as a soft oxidant into the reaction not only averts the over-oxidation of products, but also maintains the high oxidation state of the redox-active sites. Furthermore, the presence of CO2 increases the conversion of propane by coupling the dehydrogenation of propane (DHP) with the reverse water gas reaction (RWGS) and inhibits the coking formation to prolong the lifetime of catalysts via the reverse Boudouard reaction. An effective catalyst should selectively activate the C-H bond but suppress the C-C cleavage. However, to prepare such a catalyst remains challenging. Chromium-based catalysts are always applied in industrial application of DHP; however, their toxic properties are harmful to the environment. In this aspect, exploring environment-friendly and sustainable catalytic systems with Cr-free is an important issue. In this review, we outline the development of the CO2-ODHP especially in the last ten years, including the structural information, catalytic performances, and mechanisms of chromium-free metal-based catalyst systems, and the role of CO2 in the reaction. We also present perspectives for future progress in the CO2-ODHP.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Zhen-Hong He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Long-Yao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| | - Shao-Yan Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| | - Meng-Xin He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Yong-Chang Sun
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Kuan Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Jian-Gang Chen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| | - Zhao-Tie Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
39
|
Kumar S, Lyalin A, Huang Z, Taketsugu T. Catalytic Oxidative Dehydrogenation of Light Alkanes over Oxygen Functionalized Hexagonal Boron Nitride. ChemistrySelect 2022. [DOI: 10.1002/slct.202103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sonu Kumar
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| | - Andrey Lyalin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
- Center for Green Research on Energy and Environmental Materials National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
| | - Zhenguo Huang
- School of Civil & Environmental Engineering University of Technology Sydney Ultimo New South Wales 2007 Australia
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
40
|
Bikbaeva V, Perez O, Nesterenko N, Valtchev V. Ethane oxidative dehydrogenation with CO 2 on thiogallates. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01630c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CO2-assisted oxidative dehydrogenation of ethane (ODH-CO2) attracts a lot of research interest since it combines greenhouse gas utilization with the production of valuable chemicals.
Collapse
Affiliation(s)
- Vera Bikbaeva
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France
| | - Olivier Perez
- Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN, Université de Caen, CNRS, 6 Boulevard du Marechal Juin, 14050 Caen, France
| | - Nikolay Nesterenko
- TotalEnergies One Tech Belgium, Zone Industrielle C, 7181 Seneffe, Belgium
| | - Valentin Valtchev
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France
| |
Collapse
|
41
|
Zhou Y, Chai Y, Li X, Wu Z, Lin J, Han Y, Li L, Qi H, Gu Y, Kang L, Wang X. Defect-Rich TiO 2 In Situ Evolved from MXene for the Enhanced Oxidative Dehydrogenation of Ethane to Ethylene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yicong Chai
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zihao Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yujia Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Kang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Lawson S, Baamran K, Newport K, Rezaei F, Rownaghi A. Screening of Adsorbent/Catalyst Composite Monoliths for Carbon Capture-Utilization and Ethylene Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55198-55207. [PMID: 34757709 DOI: 10.1021/acsami.1c17668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combining CO2 adsorption and utilization in oxidative dehydrogenation of ethane (ODHE) into a single bed is an exciting way of converting a harmful greenhouse gas into marketable commodity chemicals while reducing energy requirements from two-bed processes. However, novel materials should be developed for this purpose because most adsorbents are incapable of capturing CO2 at the temperatures required for ODHE reactions. Some progress has been made in this area; however, previously reported dual-functional materials (DFMs) have always been powdered-state composites and no efforts have been made toward forming these materials into practical contactors. In this study, we report the first-generation of structured DFM adsorbent/catalyst monoliths for combined CO2 capture and ODHE utilization. Specifically, we formulated M-CaO/ZSM-5 monoliths (M = In, Ce, Cr, or Mo oxides) by 3D-printing inks with CaCO3 (CaO precursor), insoluble metal oxides, and ZSM-5. The physiochemical properties of the monoliths were vigorously characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, elemental mapping, pyridine Fourier transform infrared spectroscopy (Py-FTIR), H2-temperature-programmed reduction (H2-TPR), and NH3-temperature-programmed desorption (NH3-TPD). Their performances for combined CO2 adsorption at 600 °C and ODHE reaction at 700 °C under 25 mL/min of 7% C2H6 were then investigated. The combined adsorption/catalysis experiments revealed the best performance in Cr-CaO/ZSM-5, which achieved 56% CO2 conversion, 91.2% C2H4 selectivity, and 33.8% C2H4 yield. This exceptional performance, which was improved from powdered-state DFMs, was attributed to the high acidity and numerous oxidation states of the Cr2O3 dopant which were verified by NH3-TPD and H2-TPR. Overall, this study reports the first-ever proof-of-concept for 3D-printed DFM adsorbent/catalyst materials and furthers the area of CO2 capture and ODHE utilization by providing a simple pathway to structure these composites.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Khaled Baamran
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
43
|
Kalair AR, Seyedmahmoudian M, Stojcevski A, Abas N, Khan N. Waste to energy conversion for a sustainable future. Heliyon 2021; 7:e08155. [PMID: 34729426 PMCID: PMC8545696 DOI: 10.1016/j.heliyon.2021.e08155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
Air pollution, climate change, and plastic waste are three contemporary global concerns. Air pollutants affect the lungs, green gases trap heat radiation, and plastic waste contaminates the marine food chain. Two-thirds of climate change and air pollution drivers are emitted in the process of burning fossil fuels. Pollutants settle in months, green gases take centuries, and plastics take thousands of years. The most polluted regions on the planet are also the ones that are greatly affected by climate change. Air pollutants grow in most climate-change affected areas, contributing to the greenhouse effect. Smog affects local and regional transboundary countries. The biggest greenhouse gas (GHG) emitters may not be the worst-hit victims because wind and water flow distribute green gases and plastic waste worldwide. The major polluters are often rich and developed countries, and the worst affected countries are the underdeveloped poor communities. Technologically advanced countries may help the developing countries in research into removing particulate matter, green gases, and plastic waste. Intergovernmental Panel on Climate Change (IPCC) and Paris Accord have emphasized on immeasurable efforts to encourage the conversion of pollution, green gases, and plastic waste into energy. Conversion of CO2 into petrol, GHG gases into chemicals, biowaste into biofuels, plastic waste into building bricks, and concrete waste into construction materials fosters a circular economy. This work reviews existing waste to power, energy, and value-added product conversion technologies.
Collapse
Affiliation(s)
- Ali Raza Kalair
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University, Australia
| | - Mehdi Seyedmahmoudian
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University, Australia
| | - Alex Stojcevski
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University, Australia
| | - Naeem Abas
- Department of Electrical Engineering, University of Gujrat, Hafiz Hayat Campus, Pakistan
| | - Nasrullah Khan
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| |
Collapse
|
44
|
Rogg S, Hess C. CO2 as a soft oxidant for propane oxidative dehydrogenation: A mechanistic study using operando UV Raman spectroscopy. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Wu L, Fu Z, Ren Z, Wei J, Gao X, Tan L, Tang Y. Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment. ChemCatChem 2021. [DOI: 10.1002/cctc.202100752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lizhi Wu
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Zhiyuan Fu
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Zhuangzhuang Ren
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Jinhe Wei
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Xinhua Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University 750021 Yinchuan P. R. China
| | - Li Tan
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Yu Tang
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| |
Collapse
|
46
|
Marquart W, Claeys M, Fischer N. Conversion of CO 2 and small alkanes to platform chemicals over Mo 2C-based catalysts. Faraday Discuss 2021; 230:68-86. [PMID: 34259682 DOI: 10.1039/d0fd00138d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The performance of Mo2C-based catalysts in CO2 assisted oxidative dehydrogenation (CO2-ODH) of ethane was evaluated. Mo2C on SiO2 was synthesized via three different techniques: wet impregnation (WI), hybrid nanocrystal technique (HNC) and sol-gel method (SG) and exposed to the same carburization conditions. In terms of characteristic properties, the allotrope composition was the most affected, with the SG sample containing MoOxCy and the WI and HNC samples containing β-Mo2C. The two different allotropes were suggested to follow different reaction pathways, leading to small differences in the catalytic performance. However, overall, all three catalysts showed a decrease in activity (below 6%) and an increase in C2H4 selectivity (from 60 to 80 C%) with time on stream (TOS). The deactivation mechanism was suggested to be mainly due to oxidation of the carbide to MoOx and carbon deposition. Mo2C was also supported on various metal oxide materials via the wet impregnation technique. Mo2C supported on Al2O3 and ZrO2 increased initial activity (about 8% C2H6 conversion) but a faster deactivation with TOS was observed. Mo2C/Ga2O3 favoured the direct dehydrogenation reaction achieving high C2H4 selectivities (above 80 C%), but deactivation with TOS due to carbon deposition was significant. Mo2C supported on CeO2 and TiO2 had lower activity (about 3% C2H6 conversion). Oxidation to MoO2 and carbon deposition is again suggested to be the main deactivation mechanism. H2 co-feeding, on Mo2C/SiO2 and Mo2C/ZrO2, increased the stability of the catalysts but C2H4 yield was affected (from 5 to 2%). At 17 vol% H2 co-feeding, Mo2C/ZrO2 showed promising catalyst stability over a 20 h period, paralleled by a stable C2H4 yield.
Collapse
Affiliation(s)
- Wijnand Marquart
- Catalysis Institute, DST-NRF Centre of Excellence in Catalysis c*change, Department of Chemical Engineering, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Michael Claeys
- Catalysis Institute, DST-NRF Centre of Excellence in Catalysis c*change, Department of Chemical Engineering, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Nico Fischer
- Catalysis Institute, DST-NRF Centre of Excellence in Catalysis c*change, Department of Chemical Engineering, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
47
|
Numan M, Eom E, Li A, Mazur M, Cha HW, Ham HC, Jo C, Park SE. Oxidative Dehydrogenation of Ethane with CO 2 as a Soft Oxidant over a PtCe Bimetallic Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Numan
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Eunji Eom
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ang Li
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavoca 8, 128 43 Prague, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavoca 8, 128 43 Prague, Czech Republic
| | - Hwa Woong Cha
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Changbum Jo
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sang-Eon Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
48
|
Chen G, Liang T, Yoo P, Fadaeerayeni S, Sarnello E, Li T, Liao P, Xiang Y. Catalytic Light Alkanes Conversion through Anaerobic Ammodehydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Genwei Chen
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Tingyu Liang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Pilsun Yoo
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Siavash Fadaeerayeni
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Peilin Liao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yizhi Xiang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|
49
|
Li Y, Li L, Sun W, Chen C, Luo S, Shen J, Jiang C, Jing F. Porous Silica Coated Ceria as a Switch in Tandem Oxidative Dehydrogenation and Dry Reforming of Ethane with CO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingchun Li
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Linyi Li
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Wenjing Sun
- China-America Cancer Research Institute Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Guangdong Medical University No.1 Xincheng Blvd Songshan Lake National High-tech Industrial Development Zone 523808 Dongguan P. R. China
| | - Congmei Chen
- Shenzhen Cloud Computing Center National Supercomputing Center in Shenzhen 1068(west) Xueyuan Avenue 518055 Shenzhen P. R. China
| | - Shizhong Luo
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Jun Shen
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Chengfa Jiang
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Fangli Jing
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| |
Collapse
|
50
|
Guo M, Feng K, Wang Y, Yan B. Unveiling the Role of Active Oxygen Species in Oxidative Dehydrogenation of Ethane with CO
2
over NiFe/CeO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Man Guo
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Kai Feng
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Yaning Wang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Binhang Yan
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|