1
|
Zhang YY, Hu ZX, Zhang SY, Liu L, Galan MC, Voglmeir J, Ghirardello M. Improved ESI-MS Sensitivity via an Imidazolium Tag (DAPMI-ITag) for Precise Sialic Acid Detection in Human Serum and CMAH-Null Mouse Tissues. Anal Chem 2025. [PMID: 40490447 DOI: 10.1021/acs.analchem.5c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Sialic acids (Sias), consisting primarily of N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), play crucial roles in many biological processes. The detection and quantification of Sias are essential for understanding their roles in health and disease progression. Although numerous techniques have been developed to enhance the specificity and sensitivity of Sias analysis, traditional methods such as derivatization with fluorescent tags coupled with HPLC-MS analysis often suffer from low limits of detection, limiting the quantification of Sias in trace samples. Here, we introduce DAPMI, a novel imidazolium-based ITag for sensitive Sia detection. We demonstrate its utility in the detection and quantification of Sia composition in human serum, and in different tissues from CMAH (cytidine monophosphate-N-acetylneuraminic acid hydroxylase) knockout mice, using ESI-MS analysis and with a limit of detection (LOD) down to the low fmol range. The results showed that both Neu5Ac and Neu5Gc were present in varying proportions in wild-type mice and CMAH heterogeneous mice. Trace amounts of Neu5Gc were also detected in the tissues of CMAH null homogeneous mice (CMAH-/-) and in human blood serum using ESI-ToF-MS, suggesting its presence may be linked to dietary intake of Neu5Gc-containing foods, as Neu5Gc cannot be synthesized endogenously in CMAH-/- mice, and in humans. The DAPMI-ITag and the labeling technology developed in this study significantly improve the sensitivity of Sias detection compared to conventional tags such as o-phenylenediamine (OPD), and provide a new chemical tool for the exploration of Sias' biological roles and their use as biomarkers in different human conditions.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, 450001 Zhengzhou, China
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, U.K
| | - Zi-Xuan Hu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Si-Yu Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, U.K
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, U.K
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Calle Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain
| |
Collapse
|
2
|
Lu J, Guo S, Liu Q, Tursumamat N, Liu S, Wu S, Li H, Wei J. Recent advances in analytical methods and bioinformatic tools for quantitative glycomics. Anal Bioanal Chem 2025; 417:1947-1959. [PMID: 39948299 DOI: 10.1007/s00216-025-05778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/02/2025]
Abstract
The significance of glycans in various biological processes has been widely acknowledged. Quantitative glycomics is emerging as an important addition to clinical biomarker discovery, as it helps uncover disease-associated glycosylation patterns that are valuable for diagnosis, prognosis, and treatment evaluation. Compared to glycoproteomics and other established omics approaches, quantitative glycomics exhibits greater methodological diversity and it encounters various challenges in automation and standardization. Nonetheless, numerous advancements have been made in this field over the past 5 years. Here, we have reviewed recent progress in analytical methods and software to improve mass spectrometry-based quantitative glycomics primarily on N- and O-glycosylation. The discussion is organized into four sections: stable isotopic labeling, isobaric labeling, label-free, and fluorescence labeling strategies, with a particular emphasis on quantitative data interpretation. Novel derivatization methods and advanced techniques have been developed for high-throughput and highly sensitive glycan quantification with high accuracy. However, due to variations in glycan derivatization and difficulties in structural identification, most glycomic quantification methods are tailored to specific applications, and manual inspection is frequently necessary for precise data interpretation. Therefore, further advancements in glycan sample preparation, structural characterization, and automated data interpretation are essential to facilitate comprehensive and accurate quantification across a wide array of glycans.
Collapse
Affiliation(s)
- Jihong Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuhong Guo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiannan Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nafisa Tursumamat
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shengyang Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuye Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Heming Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Juan Wei
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
van Ede JM, Soic D, Pabst M. Decoding Sugars: Mass Spectrometric Advances in the Analysis of the Sugar Alphabet. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39972673 DOI: 10.1002/mas.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Monosaccharides play a central role in metabolic networks and in the biosynthesis of glycomolecules, which perform essential functions across all domains of life. Thus, identifying and quantifying these building blocks is crucial in both research and industry. Routine methods have been established to facilitate the analysis of common monosaccharides. However, despite the presence of common metabolites, most organisms utilize distinct sets of monosaccharides and derivatives. These molecules therefore display a large diversity, potentially numbering in the hundreds or thousands, with many still unknown. This complexity presents significant challenges in the study of glycomolecules, particularly in microbes, including pathogens and those with the potential to serve as novel model organisms. This review discusses mass spectrometric techniques for the isomer-sensitive analysis of monosaccharides, their derivatives, and activated forms. Although mass spectrometry allows for untargeted analysis and sensitive detection in complex matrices, the presence of stereoisomers and extensive modifications necessitates the integration of advanced chromatographic, electrophoretic, ion mobility, or ion spectroscopic methods. Furthermore, stable-isotope incorporation studies are critical in elucidating biosynthetic routes in novel organisms.
Collapse
Affiliation(s)
- Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Dinko Soic
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
4
|
Kurogochi M, Suzuki C, Hanamatsu H, Furukawa JI. Advances in total glycomic analysis including sialylated sub-glycan isomers by SALSA method. BBA ADVANCES 2025; 7:100144. [PMID: 40094062 PMCID: PMC11909462 DOI: 10.1016/j.bbadva.2025.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
All eukaryotic cell surfaces are coated with various types of glycans, which are essential molecules in biological events. In this review, we summarize recent integrated glycomics studies using various biological samples. We introduce an improved sialic acid linkage-specific alkylamidation (SALSA) method for sialylated glycan analysis and an automated glycosphingolipid-glycan preparation system for large-scale glycomic analysis of human plasma/serum. Finally, we explain the importance of integrated glycomics of glycoconjugates through total glycomic analysis of human serum and mouse brain tissue, and discuss prospects for exploring glycans as effective biomarkers of biological phenomena.
Collapse
Affiliation(s)
- Masaki Kurogochi
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
| | - Chiharu Suzuki
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
| | - Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE) Nagoya University Nagoya 464-8601 Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
5
|
Wang S, Ling L, Ding CF. Integrating Chemoselective Labeling and Laser-Cleavable Mass Tagging for Determination of Sialic Acids in Glycoconjugates. Anal Chem 2025; 97:38-42. [PMID: 39749466 DOI: 10.1021/acs.analchem.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Sialic acids are the terminal units of glycans in glycoproteins or glycolipids. The determination of sialic acids in glycoconjugates is crucial since they regulate essential biological functions and have a significant nutritional value. To achieve a specific and high-throughput in situ determination of sialic acids in glycoconjugates, a laser-desorption/ionization mass spectrometry (LDI-MS)-based strategy is reported by integrating chemoselective labeling and laser-cleavable mass tagging. 1-Pyrenebutyric hydrazide (PBH), a commercially available reagent that contains a pyrene moiety and a hydrazide group, has been developed as a novel laser-cleavable mass tag. For chemoselective labeling, an aldehyde group is introduced to the polyhydroxy side chain of sialic acids through mild periodate oxidation and then reacted with PBH, achieving the in situ determination of sialic acids. The quantitative determination of sialic acids in the range of 5-1000 μM (R2 = 0.99984) was achieved using an internal standard method. Thus, a specific, quantitative, and high-throughput method was developed for the in situ determination of sialic acids in glycoconjugates. Finally, this method has been successfully used to quantify the sialic acid content in EBN proteins and glycoprotein biopharmaceuticals, showing its practical application in the quality control of nutritional and therapeutic glycoprotein products. Additionally, the pyrene moiety, when linked to other reactive groups, can also be utilized to analyze other biomolecules, offering a new route for the rational design of mass tags.
Collapse
Affiliation(s)
- Shuyi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Wang Z, Zhang J, Li L. Recent Advances in Labeling-Based Quantitative Glycomics: From High-Throughput Quantification to Structural Elucidation. Proteomics 2025; 25:e202400057. [PMID: 39580675 PMCID: PMC11735667 DOI: 10.1002/pmic.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Glycosylation, a crucial posttranslational modification (PTM), plays important roles in numerous biological processes and is linked to various diseases. Despite its significance, the structural complexity and diversity of glycans present significant challenges for mass spectrometry (MS)-based quantitative analysis. This review aims to provide an in-depth overview of recent advancements in labeling strategies for N-glycomics and O-glycomics, with a specific focus on enhancing the sensitivity, specificity, and throughput of MS analyses. We categorize these advancements into three major areas: (1) the development of isotopic/isobaric labeling techniques that significantly improve multiplexing capacity and throughput for glycan quantification; (2) novel methods that aid in the structural elucidation of complex glycans, particularly sialylated and fucosylated glycans; and (3) labeling techniques that enhance detection ionization efficiency, separation, and sensitivity for matrix-assisted laser desorption/ionization (MALDI)-MS and capillary electrophoresis (CE)-based glycan analysis. In addition, we highlight emerging trends in single-cell glycomics and bioinformatics tools that have the potential to revolutionize glycan quantification. These developments not only expand our understanding of glycan structures and functions but also open new avenues for biomarker discovery and therapeutic applications. Through detailed discussions of methodological advancements, this review underscores the critical role of derivatization methods in advancing glycan identification and quantification.
Collapse
Affiliation(s)
- Zicong Wang
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jingwei Zhang
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lingjun Li
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Lachman Institute for Pharmaceutical DevelopmentSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
7
|
Sun Z, Lih TM, Woo J, Jiao L, Hu Y, Wang Y, Liu H, Zhang H. Improving Glycoproteomic Analysis Workflow by Systematic Evaluation of Glycopeptide Enrichment, Quantification, Mass Spectrometry Approach, and Data Analysis Strategies. Anal Chem 2024; 96:20481-20490. [PMID: 39679613 PMCID: PMC12039365 DOI: 10.1021/acs.analchem.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glycosylation is one of the most prevalent and crucial protein modifications. Quantitative site-specific characterization of glycosylation usually requires sophisticated intact glycopeptide analysis using glycoproteomics. Recent efforts have focused on the interrogation of intact glycopeptide analyses using tandem mass spectrometry. However, a systematic evaluation of the quantitative glycoproteomic workflow is still lacking. This study compared different strategies for glycopeptide enrichment alongside glycopeptide quantitation, as well as mass spectrometry and data analysis strategies, providing a comprehensive assessment of their efficacy. The ZIC-HILIC enrichment method demonstrated superior performance, representing a 26% improvement in identified glycopeptiudes compared to the MAX enrichment method. Quantification using TMT provided high precision and throughput with an average CV of 8%. Through systematic evaluation, this study established that the ZIC-HILIC enrichment method, quantification with TMT, and collision energies of 25, 35, and 45 using tandem mass spectrometry are the optimal workflow for higher-energy collisional dissociation (HCD) fragmentation, significantly enhancing the analysis of intact glycopeptides. Precise energy adjustment is crucial for the identification of certain glycans. Intact glycopeptides were analyzed using different software tools to investigate the identification and quantification of glycopeptides. By applying optimal settings, 5514 unique intact glycopeptides were in luminal and basal patient-derived xenograft (PDX) characterized models, highlighting distinct glycosylation profiles that may influence tumor behavior. This study offers a systematic approach to evaluate glycoproteomic analysis workflow.
Collapse
Affiliation(s)
- Zhenyu Sun
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - T. Mamie Lih
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Jongmin Woo
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Liyuan Jiao
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Yingwei Hu
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Yuefan Wang
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Hongyi Liu
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Hui Zhang
- Department of Pathology, Oncology, Chemical and Biomolecular Engineering, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
8
|
Gimeno A, Ehlers AM, Delgado S, Langenbach JWH, van den Bos LJ, Kruijtzer JAW, Guigas BGA, Boons GJ. Site-Specific Glyco-Tagging of Native Proteins for the Development of Biologicals. J Am Chem Soc 2024; 146:34452-34465. [PMID: 39653378 DOI: 10.1021/jacs.4c11091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Glycosylation is an attractive approach to enhance biological properties of pharmaceutical proteins; however, the precise installation of glycans for structure-function studies remains challenging. Here, we describe a chemoenzymatic methodology for glyco-tagging of proteins by peptidoligase catalyzed modification of the N-terminus of a protein with a synthetic glycopeptide ester having an N-acetyl-glucosamine (GlcNAc) moiety to generate an N-GlcNAc modified protein. The GlcNAc moiety can be elaborated into complex glycans by trans-glycosylation using well-defined sugar oxazolines and mutant forms of endo β-N-acetylglucosaminidases (ENGases). The glyco-tagging methodology makes it possible to modify on-demand therapeutic proteins, including heterologous proteins expressed in E. coli, with diverse glycan structures. As a proof of principle, the N-terminus of interleukin (IL)-18 and interferon (IFN)α-2a was modified by a glycopeptide harboring a complex N-glycan without compromising biological potencies. The glyco-tagging methodology was also used to prepare several glycosylated insulin variants that exhibit reduced oligomerization, aggregation, and fibrillization yet maintained cell signaling properties, which are attractive for the development of insulins with improved shelf-lives. It was found that by employing different peptidoligases, it is possible to modify either the A or both chains of human insulin.
Collapse
Affiliation(s)
- Ana Gimeno
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Anna M Ehlers
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Sandra Delgado
- CIC bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia Spain
| | - Jan-Willem H Langenbach
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | | | - John A W Kruijtzer
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Bruno G A Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, ZA 2333, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
10
|
Li C, Chen Q, Rong J, He H, Lu Y, Liu Y, Wang Z. LC-MS characterization of N/O-glycans of α- and β-subunits of chicken ovomucin separated by SDS-PAGE. Anal Biochem 2024; 694:115625. [PMID: 39038508 DOI: 10.1016/j.ab.2024.115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
As the main active glycoprotein of egg white, the biological functions of chicken ovomucin α- and β-subunit are closely related to the structure of glycans. However, the exact composition and structure of the subunit glycans are still unknown. We obtained highly pure chicken ovomucin α-subunit and β-subunit protein bands by the strategy combined with two-step isoelectric precipitation and SDS-PAGE gel electrophoresis. The ammonia-catalyzed one-pot procedure was then used to release and capture α-and β-subunit protein glycans with 1-phenyl- 3-Methyl-5-pyrazolone (PMP). The N/O-glycans of bis-PMP derivatives were purified and analyzed by LC-MS. More importantly, an effective dual modification was performed to accurately quantify neutral and sialylated O-glycans through methylamidation of sialic acid residues and simultaneously through carbonyl condensation reactions of reducing ends with PMP. We first showed that the α-subunit protein has only N-glycosylation modification, and the β-subunit only O-glycosylation, a total of 22 N-glycans and 20 O-glycans were identified in the α- and β-subunit, respectively. In addition, the complex N-glycan (47 %) and the sialylated O-glycan (77 %) are each major types of the above subunits. Such findings in this study provide a basis for studying the functional and biological activities of chicken ovomucin glycans.
Collapse
Affiliation(s)
- Cheng Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Qinghui Chen
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Jinqiao Rong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Houde He
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
11
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Hanamatsu H, Yokota I, Kurogochi M, Akasaka-Manya K, Miura N, Manya H, Endo T, Nishikaze T, Furukawa JI, Tanaka K. Direct derivatization of sialic acids and mild β-elimination for linkage-specific sialyl O-glycan analysis. Anal Chim Acta 2024; 1318:342945. [PMID: 39067924 DOI: 10.1016/j.aca.2024.342945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND In sharp contrast with analysis of N-glycan that can be prepared by PNGase F, O-glycan analysis remains challenging due to a lack of versatile and simple procedures, especially those mediating cleavage of O-glycans from proteins. Most N-glycans and O-glycans are modified with sialic acids at the non-reducing end and their glycosidic linkages are labile, making it difficult to measure glycans by mass spectrometric analysis. In addition, sialic acid residues present on glycan chains via α2,3-, α2,6-, and α2,8-linkages as structural isomers. RESULTS In this study, we firstly established a direct and linkage-specific derivatization method for sialylated O-glycans on proteins via linkage-specific lactone-opening aminolysis. In this procedure, labile sialylated glycans were not only stabilized, but also allowed distinguishing between sialyl linkages. Furthermore, we revealed that general reductive β-elimination was not useful for O-glycan cleavages with undesirable degradations of resulting methyl amides. Using β-elimination in the presence of pyrazolone (PMP), with low pH despite alkali base concentration, SALSA-derivatized O-glycans could be cleaved with minimal degradations. Cleaved and PMP-labeled O-glycans could be efficiently prepared in an open reaction system at high temperature (evaporative BEP reaction) and detected by simple liquid-phase extraction. Moreover, in the evaporative BEP reaction by changing the alkali solution with LiOH, the lithiated O-glycans could be observed and provided a lot of fragment information reflecting the complex structure of the O-glycans. SIGNIFICANCE Direct sialic acid linkage-specific derivatization of O-glycans on glycoproteins is simple protocol containing in-solution aminolysis-SALSA and acetonitrile precipitation for removal of excess reagents. Evaporative β-elimination with pyrazolone makes possible intact O-linked glycan analysis just by liquid-phase extraction. These analytical methods established by the appropriate combination of direct-SALSA and evaporative β-elimination will facilitate O-glycomic studies in various biological samples.
Collapse
Affiliation(s)
- Hisatoshi Hanamatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Masaki Kurogochi
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, Tokyo, 173-0003, Japan
| | - Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Nobuaki Miura
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, 604-8511, Japan.
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan; Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, 604-8511, Japan
| |
Collapse
|
13
|
Jia Y, Liu Y, Wang Y, Li J, Li G. Sialylation-induced stabilization of dynamic glycoprotein conformations unveiled by time-aligned parallel unfolding and glycan release mass spectrometry. Chem Sci 2024:d4sc03672g. [PMID: 39165727 PMCID: PMC11331314 DOI: 10.1039/d4sc03672g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Sialylation, a critical post-translational modification, regulates glycoprotein structure and function by tuning their molecular heterogeneity. However, characterizing its subtle and dynamic conformational effects at the intact glycoprotein level remains challenging. We introduce a glycoform-resolved unfolding approach based on a high-throughput ion mobility-mass spectrometry (IM-MS) platform. This method integrates high-throughput unfolding with parallel fragmentation, enabling simultaneous analysis of sialylation patterns, stoichiometries, and their impact on conformational stability. Applying this approach to fetuin, we identified distinct sialylation patterns and their differential influence on protein conformation, namely sialylation-induced stabilization during early unfolding and increased flexibility in later unfolding stages. IM-MS-guided molecular dynamics simulations revealed that increased sialylation enhances the initial conformational stability, likely through enhanced electrostatic interactions and hydrogen bonding. These findings highlight the complex interplay between sialylation and protein dynamics and establish glycoform-resolved unfolding IM-MS as a powerful tool for characterizing glycoprotein conformational landscapes.
Collapse
Affiliation(s)
- Yifei Jia
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yichang Liu
- School of Pharmacy, Nantong University Nantong 226001 Jiangsu China
| | - Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jinyu Li
- College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
14
|
Palomino TV, Muddiman DC. Mass spectrometry imaging of N-linked glycans: Fundamentals and recent advances. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21895. [PMID: 38934211 PMCID: PMC11671621 DOI: 10.1002/mas.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
With implications in several medical conditions, N-linked glycosylation is one of the most important posttranslation modifications present in all living organisms. Due to their nontemplate synthesis, glycan structures are extraordinarily complex and require multiple analytical techniques for complete structural elucidation. Mass spectrometry is the most common way to investigate N-linked glycans; however, with techniques such as liquid-chromatography mass spectrometry, there is complete loss of spatial information. Mass spectrometry imaging is a transformative analytical technique that can visualize the spatial distribution of ions within a biological sample and has been shown to be a powerful tool to investigate N-linked glycosylation. This review covers the fundamentals of mass spectrometry imaging and N-linked glycosylation and highlights important findings of recent key studies aimed at expanding and improving the glycomics imaging field.
Collapse
Affiliation(s)
- Tana V. Palomino
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Wang Y, Liu Y, Liu S, Cheng L, Liu X. Recent advances in N-glycan biomarker discovery among human diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1156-1171. [PMID: 38910518 PMCID: PMC11464920 DOI: 10.3724/abbs.2024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
N-glycans play important roles in a variety of biological processes. In recent years, analytical technologies with high resolution and sensitivity have advanced exponentially, enabling analysts to investigate N-glycomic changes in different states. Specific glycan and glycosylation signatures have been identified in multiple diseases, including cancer, autoimmune diseases, nervous system disorders, and metabolic and cardiovascular diseases. These glycans demonstrate comparable or superior indicating capability in disease diagnosis and prognosis over routine biomarkers. Moreover, synchronous glycan alterations concurrent with disease initiation and progression provide novel insights into pathogenetic mechanisms and potential treatment targets. This review elucidates the biological significance of N-glycans, compares the existing glycomic technologies, and delineates the clinical performance of N-glycans across a range of diseases.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Si Liu
- Department of Epidemiology and Health StatisticsSchool of Public HealthFujian Medical UniversityFuzhou350122China
| | - Liming Cheng
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
16
|
Liu C, Otsuka K, Kawai T. Recent advances in microscale separation techniques for glycome analysis. J Sep Sci 2024; 47:e2400170. [PMID: 38863084 DOI: 10.1002/jssc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Research Administration Center, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| |
Collapse
|
17
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
18
|
Dedola S, Ahmadipour S, de Andrade P, Baker AN, Boshra AN, Chessa S, Gibson MI, Hernando PJ, Ivanova IM, Lloyd JE, Marín MJ, Munro-Clark AJ, Pergolizzi G, Richards SJ, Ttofi I, Wagstaff BA, Field RA. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chem Biol 2024; 5:167-188. [PMID: 38456038 PMCID: PMC10915975 DOI: 10.1039/d3cb00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
In structural terms, the sialic acids are a large family of nine carbon sugars based around an alpha-keto acid core. They are widely spread in nature, where they are often found to be involved in molecular recognition processes, including in development, immunology, health and disease. The prominence of sialic acids in infection is a result of their exposure at the non-reducing terminus of glycans in diverse glycolipids and glycoproteins. Herein, we survey representative aspects of sialic acid structure, recognition and exploitation in relation to infectious diseases, their diagnosis and prevention or treatment. Examples covered span influenza virus and Covid-19, Leishmania and Trypanosoma, algal viruses, Campylobacter, Streptococci and Helicobacter, and commensal Ruminococci.
Collapse
Affiliation(s)
- Simone Dedola
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alexander N Baker
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew N Boshra
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Simona Chessa
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew I Gibson
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School Coventry CV4 7AL UK
| | - Pedro J Hernando
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Irina M Ivanova
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Jessica E Lloyd
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK
| | - Alexandra J Munro-Clark
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Sarah-Jane Richards
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Iakovia Ttofi
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
19
|
Park CS, Moon C, Kim M, Kim J, Yang S, Jang L, Jang JY, Jeong CM, Lee HS, Kim DK, Kim HH. Comparison of sialylated and fucosylated N-glycans attached to Asn 6 and Asn 41 with different roles in hyaluronan and proteoglycan link protein 1 (HAPLN1). Int J Biol Macromol 2024; 260:129575. [PMID: 38246450 DOI: 10.1016/j.ijbiomac.2024.129575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Hyaluronan and proteoglycan link protein 1 (HAPLN1) is an extracellular matrix protein stabilizing interactions between hyaluronan and proteoglycan. Although HAPLN1 is being investigated for various biological roles, its N-glycosylation is poorly understood. In this study, the structure of N-glycopeptides of trypsin-treated recombinant human HAPLN1 (rhHAPLN1) expressed from CHO cells were identified by nano-liquid chromatography-tandem mass spectrometry. A total of 66 N-glycopeptides were obtained, including 16 and 12 N-glycans at sites Asn 6 (located in the N-terminal region) and Asn 41 (located in the Ig-like domain, which interacts with proteoglycan), respectively. The quantities (%) of each N-glycan relative to the totals (100 %) at each site were calculated. Tri- and tetra-sialylation (to resist proteolysis and extend half-life) were more abundant at Asn 6, and di- (core- and terminal-) fucosylation (to increase binding affinity and stability) and sialyl-Lewis X/a epitope (a major ligand for E-selectin) were more abundant at Asn 41. These results indicate that N-glycans attached to Asn 6 (protecting HAPLN1) and Asn 41 (supporting molecular interactions) play different roles in HAPLN1. This is the first study of site-specific N-glycosylation in rhHAPLN1, which will be useful for understanding its molecular interactions in the extracellular matrix.
Collapse
Affiliation(s)
- Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Moon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Mirae Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jieun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Subin Yang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Leeseul Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji Yeon Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
20
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
21
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
22
|
Helms A, Brodbelt JS. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024; 13:394. [PMID: 38474358 PMCID: PMC10930906 DOI: 10.3390/cells13050394] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in O-glycoproteomics, a field that lags behind N-glycoproteomics due to several unique challenges associated with the complexity of O-glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of O-glycoproteins.
Collapse
Affiliation(s)
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
23
|
Jiang P, Huang Y, Gutierrez Reyes CD, Zhong J, Mechref Y. Isomeric Separation of α2,3/α2,6-Linked 2-Aminobenzamide (2AB)-Labeled Sialoglycopeptides by C18-LC-MS/MS. Anal Chem 2023; 95:18388-18397. [PMID: 38069741 DOI: 10.1021/acs.analchem.3c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Determination of the relative expression levels of the α2,3/α2,6-sialic acid linkage isomers on glycoproteins is critical to the analysis of various human diseases such as cancer, inflammation, and viral infection. However, it remains a challenge to separate and differentiate site-specific linkage isomers at the glycopeptide level. Some derivatization methods on the carboxyl group of sialic acid have been developed to generate mass differences between linkage isomers. In this study, we utilized chemical derivatization that occurred on the vicinal diol of sialic acid to separate linkage isomers on a reverse-phase column using a relatively short time. 2-Aminobenzamide (2AB) labeling derivatization, including periodate oxidation and reductive amination, took only ∼3 h and achieved high labeling efficiency (>90%). Within a 66 min gradient, the sialic acid linkage isomers of 2AB-labeled glycopeptides from model glycoproteins can be efficiently resolved compared to native glycopeptides. Two different methods, neuraminidase digestion and higher-energy collision dissociation tandem mass spectrometry (HCD-MS2) fragmentation, were utilized to differentiate those isomeric peaks. By calculating the diagnostic oxonium ion ratio of Gal2ABNeuAc and 2ABNeuAc fragments, significant differences in chromatographic retention times and in mass spectral peak abundances were observed between linkage isomers. Their corresponding MS2 PCA plots also helped to elucidate the linkage information. This method was successfully applied to human blood serum. A total of 514 2AB-labeled glycopeptide structures, including 152 sets of isomers, were identified, proving the applicability of this method in linkage-specific structural characterization and relative quantification of sialic acid isomers.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Cristian D Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
24
|
Weigand MR, Moore AM, Hu H, Angel PM, Drake RR, Laskin J. Imaging of N-Linked Glycans in Biological Tissue Sections Using Nanospray Desorption Electrospray Ionization (nano-DESI) Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2481-2490. [PMID: 37779241 DOI: 10.1021/jasms.3c00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
N-linked glycans are complex biomolecules vital to cellular functions that have been linked to a wide range of pathological conditions. Mass spectrometry imaging (MSI) has been used to study the localization of N-linked glycans in cells and tissues. However, their structural diversity presents a challenge for MSI techniques, which stimulates the development of new approaches. In this study, we demonstrate for the first time spatial mapping of N-linked glycans in biological tissues using nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI). Nano-DESI MSI is an ambient ionization technique that has been previously used for imaging of metabolites, lipids, and proteins in biological tissue samples without special sample pretreatment. N-linked glycans are released from glycoproteins using an established enzymatic digestion with peptide N-glycosidase F, and their spatial localization is examined using nano-DESI MSI. We demonstrate imaging of N-linked glycans in formalin-fixed paraffin-embedded human hepatocellular carcinoma and human prostate tissues in both positive and negative ionization modes. We examine the localization of 38 N-linked glycans consisting of high mannose, hybrid fucosylated, and sialyated glycans. We demonstrate that negative mode nano-DESI MSI is well-suited for imaging of underivatized sialylated N-linked glycans. On-tissue MS/MS of different adducts of N-linked glycans proves advantageous for elucidation of the glycan sequence. This study demonstrates the applicability of liquid extraction techniques for spatial mapping of N-linked glycans in biological samples, providing an additional tool for glycobiology research.
Collapse
Affiliation(s)
- Miranda R Weigand
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alyssa M Moore
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Julia Laskin
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Ni X, Murray NB, Archer-Hartmann S, Pepi LE, Helm RF, Azadi P, Hong P. Toward Automatic Inference of Glycan Linkages Using MS n and Machine Learning─Proof of Concept Using Sialic Acid Linkages. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2127-2135. [PMID: 37621000 PMCID: PMC10557947 DOI: 10.1021/jasms.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Glycosidic linkages in oligosaccharides play essential roles in determining their chemical properties and biological activities. MSn has been widely used to infer glycosidic linkages but requires a substantial amount of starting material, which limits its application. In addition, there is a lack of rigorous research on what MSn protocols are proper for characterizing glycosidic linkages. In this work, to deliver high-quality experimental data and analysis results, we propose a machine learning-based framework to establish appropriate MSn protocols and build effective data analysis methods. We demonstrate the proof-of-principle by applying our approach to elucidate sialic acid linkages (α2'-3' and α2'-6') in a set of sialyllactose standards and NIST sialic acid-containing N-glycans as well as identify several protocol configurations for producing high-quality experimental data. Our companion data analysis method achieves nearly 100% accuracy in classifying α2'-3' vs α2'-6' using MS5, MS4, MS3, or even MS2 spectra alone. The ability to determine glycosidic linkages using MS2 or MS3 is significant as it requires substantially less sample, enabling linkage analysis for quantity-limited natural glycans and synthesized materials, as well as shortens the overall experimental time. MS2 is also more amenable than MS3/4/5 to automation when coupled to direct infusion or LC-MS. Additionally, our method can predict the ratio of α2'-3' and α2'-6' in a mixture with 8.6% RMSE (root-mean-square error) across data sets using MS5 spectra. We anticipate that our framework will be generally applicable to analysis of other glycosidic linkages.
Collapse
Affiliation(s)
- Xinyi Ni
- Computer
Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Nathan B. Murray
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | | | - Lauren E. Pepi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Richard F. Helm
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Pengyu Hong
- Computer
Science, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
26
|
Maliepaard JCL, Damen JMA, Boons GJPH, Reiding KR. Glycoproteomics-Compatible MS/MS-Based Quantification of Glycopeptide Isomers. Anal Chem 2023. [PMID: 37319314 DOI: 10.1021/acs.analchem.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycosylation is an essential protein modification occurring on the majority of extracellular human proteins, with mass spectrometry (MS) being an indispensable tool for its analysis, that not only determines glycan compositions, but also the position of the glycan at specific sites via glycoproteomics. However, glycans are complex branching structures with monosaccharides interconnected in a variety of biologically relevant linkages, isomeric properties that are invisible when the readout is mass alone. Here, we developed an LC-MS/MS-based workflow for determining glycopeptide isomer ratios. Making use of isomerically defined glyco(peptide) standards, we observed marked differences in fragmentation behavior between isomer pairs when subjected to collision energy gradients, specifically in terms of the galactosylation/sialylation branching and linkage. These behaviors were developed into component variables that allowed for relative quantification of isomerism within mixtures. Importantly, at least for small peptides, the isomer quantification appeared to be largely independent from the peptide portion of the conjugate, allowing a broad application of the method.
Collapse
Affiliation(s)
- Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| | - Geert-Jan P H Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CG, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| |
Collapse
|
27
|
Wang X, Li W, Li Z, Han T, Rong J, Fan J, Huang L, Lu Y, Wang Z. Human milk whey glycoprotein N-glycans varied greatly among different maternal secretor status. Carbohydr Polym 2023; 310:120728. [PMID: 36925253 DOI: 10.1016/j.carbpol.2023.120728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Human milk glycans are complex carbohydrates, which play a pivotal role in infant health and neonatal development. Maternal secretor status is known to affect free oligosaccharides in milk. Here, the milk N-glycome of secretor (Se+) and nonsecretor (Se-) individuals was qualitatively and quantitatively analyzed by hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometry. The total glycosylation, fucosylation, and sialylation of N-glycans was three times higher in the Se+ group compared to the Se- group (p < 0.001) per equal volume of milk. Importantly, 52 out of 63 N-glycans-including the eight most abundant ones-differed greatly between Se+ and Se- individuals (p < 0.05). Moreover, nine N-glycans (H5N3F1, H6N3, H3N5F1, H5N5F1, H5N5F1S1, H5N4F3S1, H6N4F2S1, H6N5F4S1, and H8N7S1) were >10 times more abundant in Se+ milk than in Se- milk. These findings lay a glycomics-basis for designing personalized nutrition supplements for infants.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenqing Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhenhua Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jinqiao Rong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiangbo Fan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
28
|
Palomino TV, Muddiman DC. Predicting Sialic Acid Content of N-Linked Glycans Using the Isotopic Pattern of Chlorine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37289618 DOI: 10.1021/jasms.3c00100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sialic acids play several roles in both physiological and pathological processes; however, due to their labile nature, they are difficult to analyze using mass spectrometry. Previous work has shown that infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is able to detect intact sialylated N-linked glycans without the use of chemical derivatization. In this work, we describe a new rule that can predict the number of sialic acids on a glycan. Formalin-fixed paraffin-embedded human kidney tissue was prepared using previously established methods and analyzed using IR-MALDESI in negative-ion mode mass spectrometry. Using the experimental isotopic distribution of a detected glycan, we can predict the number of sialic acids on the glycan; #sialic acids is equal to the charge state minus the number of chlorine adducts, or z - #Cl-. This new rule grants confident glycan annotations and compositions beyond accurate mass measurements, thereby further improving the capability of IR-MALDESI to study sialylated N-linked glycans within biological tissues.
Collapse
Affiliation(s)
- Tana V Palomino
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
29
|
Lu X, McDowell CT, Blaschke CRK, Liu L, Grimsley G, Wisniewski L, Gao C, Mehta AS, Haab BB, Angel PM, Drake RR. Bioorthogonal Chemical Labeling Probes Targeting Sialic Acid Isomers for N-Glycan MALDI Imaging Mass Spectrometry of Tissues, Cells, and Biofluids. Anal Chem 2023; 95:7475-7486. [PMID: 37126482 PMCID: PMC10193362 DOI: 10.1021/acs.analchem.2c04882] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.
Collapse
Affiliation(s)
- Xiaowei Lu
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Colin T. McDowell
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Calvin R. K. Blaschke
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Liping Liu
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Grace Grimsley
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Luke Wisniewski
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - ChongFeng Gao
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Anand S. Mehta
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Brian B. Haab
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Peggi M. Angel
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Richard R. Drake
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| |
Collapse
|
30
|
Zheng C, Zhong Q, Song W, Yi K, Kong H, Wang H, Tao Y, Li M, Chen X. Membrane-Fusion-Mediated Multiplex Engineering of Tumor Cell Surface Glycans for Enhanced NK Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206989. [PMID: 36566024 DOI: 10.1002/adma.202206989] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Natural killer (NK) cell therapies show potential for tumor treatment but are immunologically resisted by the overexpressed immunosuppressing tumor cell surface glycans. To reverse this glycan-mediated immunosuppression, the surface NK-inhibitory glycan expressions need to be downregulated and NK-activating glycan levels should be elevated synchronously with optimal efficiency. Here, a core-shell membrane-fusogenic liposome (MFL) is designed to simultaneously achieve the physical modification of NK-activating glycans and biological inhibition of immunosuppressing glycans on the tumor cell surface via a membrane-fusion manner. Loaded into a tumor-microenvironment-triggered-degradable thermosensitive hydrogel, MFLs could be conveniently injected and controllably released into local tumor. Through fusion with tumor cell membrane, the released MFLs could simultaneously deliver sialyltransferase-inhibitor-loaded core into cytoplasm, and anchor NK-activating-glycan-modified shell onto tumor surface. This spatially-differential distribution of core and shell in one cell ensures the effective inhibition of intracellular sialyltransferase to downregulate immunosuppressing sialic acid, and direct presentation of NK-activating Lewis X trisaccharide (LeX) on tumor surface simultaneously. Consequentially, the sialic acid-caused immunosuppression of tumor surface is reprogrammed to be LeX-induced NK activation, resulting in sensitive susceptibility to NK-cell-mediated recognition and lysis for improved tumor elimination. This MFL provides a novel platform for multiplex cell engineering and personalized regulation of intercellular interactions for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
31
|
Park CS, Kang M, Kim A, Moon C, Kim M, Kim J, Yang S, Jang L, Jang JY, Kim HH. Fragmentation stability and retention time-shift obtained by LC-MS/MS to distinguish sialylated N-glycan linkage isomers in therapeutic glycoproteins. J Pharm Anal 2023; 13:305-314. [PMID: 37102108 PMCID: PMC10124117 DOI: 10.1016/j.jpha.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Sialylated N-glycan isomers with α2-3 or α2-6 linkage(s) have distinctive roles in glycoproteins, but are difficult to distinguish. Wild-type (WT) and glycoengineered (mutant) therapeutic glycoproteins, cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4-Ig), were produced in Chinese hamster ovary cell lines; however, their linkage isomers have not been reported. In this study, N-glycans of CTLA4-Igs were released, labeled with procainamide, and analyzed by liquid chromatography-tandem mass spectrometry (MS/MS) to identify and quantify sialylated N-glycan linkage isomers. The linkage isomers were distinguished by comparison of 1) intensity of the N-acetylglucosamine ion to the sialic acid ion (Ln/Nn) using different fragmentation stability in MS/MS spectra and 2) retention time-shift for a selective m/z value in the extracted ion chromatogram. Each isomer was distinctively identified, and each quantity (>0.1%) was obtained relative to the total N-glycans (100%) for all observed ionization states. Twenty sialylated N-glycan isomers with only α2-3 linkage(s) in WT were identified, and each isomer's sum of quantities was 50.4%. Furthermore, 39 sialylated N-glycan isomers (58.8%) in mono- (3 N-glycans; 0.9%), bi- (18; 48.3%), tri- (14; 8.9%), and tetra- (4; 0.7%) antennary structures of mutant were obtained, which comprised mono- (15 N-glycans; 25.4%), di- (15; 28.4%), tri- (8; 4.8%), and tetra- (1; 0.2%) sialylation, respectively, with only α2-3 (10 N-glycans; 4.8%), both α2-3 and α2-6 (14; 18.4%), and only α2-6 (15; 35.6%) linkage(s). These results are consistent with those for α2-3 neuraminidase-treated N-glycans. This study generated a novel plot of Ln/Nn versus retention time to distinguish sialylated N-glycan linkage isomers in glycoprotein.
Collapse
Affiliation(s)
- Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
32
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
33
|
Li Y, Wang H, Xu F, Ling L, Ding CF. Linkage-specific identification and quantification of sialylated glycans by TIMS-TOF MS through conjugation with metal complexes. Talanta 2023; 253:123995. [PMID: 36228553 DOI: 10.1016/j.talanta.2022.123995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Mass spectrometry is an indispensable technology for the characterization of glycans. However, specific identification of isomeric glycans especially sialylated glycan isomers using mass spectrometry alone is challenging, which is why orthogonal techniques are needed. Aiming to achieve simple, rapid, and specific identification of sialyl-linkage isomers, we reported herein a trapped ion mobility spectrometry time of flight mass spectrometry (TIMS-TOF MS) method for linkage-specific identification of sialylated glycans through conjugation with metal complexes. Two pairs of sialyl-linkage isomers including 3'/6'-sialyllactose (3'/6'-SL) and 3'/6'-sialyl-N-acetyllactosamine (3'/6'-SLN) conjugated with the diethylenetriamine (DETA) or 2,2'; 6',2″-terpyridine (Terpy) ligand and transition metal ion (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) were studied by TIMS-TOF MS. The two pairs of sialylated isomers were successfully separated with a metal-ligand system, and relative quantification of sialyl-linkage isomers was demonstrated. In addition, the linkage of the sialic acid moiety can also be distinguished with MS/MS in combination with the metal-ligand system.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huanhuan Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
34
|
Wong TL, Mooney BP, Cavallero GJ, Guan M, Li L, Zaia J, Wan XF. Glycoproteomic Analyses of Influenza A Viruses Using timsTOF Pro MS. J Proteome Res 2023; 22:62-77. [PMID: 36480915 DOI: 10.1021/acs.jproteome.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.
Collapse
Affiliation(s)
- Tin Long Wong
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States
| | - Brian P Mooney
- Department of Biochemistry and Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri65211, United States
| | - Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts02118, United States
| | - Minhui Guan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia30302, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts02118, United States
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri65211, United States
| |
Collapse
|
35
|
Sun Z, Fu B, Wang G, Zhang L, Xu R, Zhang Y, Lu H. High-throughput site-specific N-glycoproteomics reveals glyco-signatures for liver disease diagnosis. Natl Sci Rev 2023; 10:nwac059. [PMID: 36879659 PMCID: PMC9985154 DOI: 10.1093/nsr/nwac059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The glycoproteome has emerged as a prominent target for screening biomarkers, as altered glycosylation is a hallmark of cancer cells. In this work, we incorporated tandem mass tag labeling into quantitative glycoproteomics by developing a chemical labeling-assisted complementary dissociation method for the multiplexed analysis of intact N-glycopeptides. Benefiting from the complementary nature of two different mass spectrometry dissociation methods for identification and multiplex labeling for quantification of intact N-glycopeptides, we conducted the most comprehensive site-specific and subclass-specific N-glycosylation profiling of human serum immunoglobulin G (IgG) to date. By analysing the serum of 90 human patients with varying severities of liver diseases, as well as healthy controls, we identified that the combination of IgG1-H3N5F1 and IgG4-H4N3 can be used for distinguishing between different stages of liver diseases. Finally, we used targeted parallel reaction monitoring to successfully validate the expression changes of glycosylation in liver diseases in a different sample cohort that included 45 serum samples.
Collapse
Affiliation(s)
- Zhenyu Sun
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Guoli Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ruofan Xu
- Eleanor Roosevelt College, University of California San Diego, La Jolla, CA92093, USA
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Liu Y, Huang Y, Zhu R, Farag MA, Capanoglu E, Zhao C. Structural elucidation approaches in carbohydrates: A comprehensive review on techniques and future trends. Food Chem 2023; 400:134118. [DOI: 10.1016/j.foodchem.2022.134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
37
|
Li J, Guo B, Zhang W, Yue S, Huang S, Gao S, Ma J, Cipollo JF, Yang S. Recent advances in demystifying O-glycosylation in health and disease. Proteomics 2022; 22:e2200156. [PMID: 36088641 DOI: 10.1002/pmic.202200156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
O-Glycosylation is one of the most common protein post-translational modifications (PTM) and plays an essential role in the pathophysiology of diseases. However, the complexity of O-glycosylation and the lack of specific enzymes for the processing of O-glycans and their O-glycopeptides make O-glycosylation analysis challenging. Recently, research on O-glycosylation has received attention owing to technological innovation and emerging O-glycoproteases. Several serine/threonine endoproteases have been found to specifically cleave O-glycosylated serine or threonine, allowing for the systematic analysis of O-glycoproteins. In this review, we first assessed the field of protein O-glycosylation over the past decade and used bibliometric analysis to identify keywords and emerging trends. We then summarized recent advances in O-glycosylation, covering several aspects: O-glycan release, site-specific elucidation of intact O-glycopeptides, identification of O-glycosites, characterization of different O-glycoproteases, mass spectrometry (MS) fragmentation methods for site-specific O-glycosylation assignment, and O-glycosylation data analysis. Finally, the role of O-glycosylation in health and disease was discussed.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shan Huang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
38
|
|
39
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Jin W, Lu Y, Li C, Zou M, Chen Q, Nan L, Wei M, Wang C, Huang L, Wang Z. Improved Glycoqueuing Strategy Reveals Novel α2,3-Linked Di-/Tri-Sialylated Oligosaccharide Isomers in Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13996-14004. [PMID: 36278935 DOI: 10.1021/acs.jafc.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sialylated human milk oligosaccharides (SHMOs) possess unique biological activities. Qualitative and quantitative analyses of SHMOs at different lactation stages are limited by interference from neutral oligosaccharides, glycan structural complexity, and low detection sensitivity. Herein, our previously developed glycoqueuing strategy was improved and applied to enable an isomer-specific quantitative comparison of SHMOs between colostrum milk (CM) and mature milk (MM). A total of 49 putative structures were determined, including 1 α2,6-linked and 13 α2,3-linked isomers separated from seven newly discovered SHMO compositions. The content of most oligosaccharides was more than 50% lower in MM than in CM, and α2,3-sialylation was observed in 43.74% of SHMOs from CM and 22.95% of SHMOs from MM. Finally, the fucosylation level of the SHMOs increased from 16.45 to 22.28% with prolonged lactation. These findings provide the basis for further studies on the structure-activity relationship of SHMOs and a blueprint to improve infant formula.
Collapse
Affiliation(s)
- Wanjun Jin
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Life Science, Yuncheng University, Yuncheng 044000, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Cheng Li
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinghui Chen
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Lijing Nan
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Ming Wei
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
41
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
42
|
Derivatization of sialylated glycopeptides plus based sialoglycopeptides enrichment using cation exchange media. Anal Chim Acta 2022; 1233:340492. [DOI: 10.1016/j.aca.2022.340492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022]
|
43
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
44
|
Li M, Zhong X, Feng Y, Li L. Novel Isobaric Tagging Reagent Enabled Multiplex Quantitative Glycoproteomics via Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1874-1882. [PMID: 36095095 PMCID: PMC10160164 DOI: 10.1021/jasms.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein glycosylation, covalent attachment of carbohydrates to polypeptide chains, is a highly important post-translational modification involved in many essential physiological processes. Comprehensive site-specific and quantitative analysis is crucial for revealing the diverse functions and dynamics of glycosylation. To characterize intact glycopeptides, mass spectrometry (MS)-based glycoproteomics employs versatile fragmentation methods, among which electron-transfer/higher-energy collision dissociation (EThcD) has gained great popularity. However, the inherent limitation of EThcD in fragmenting low-charge ions has prevented its widespread applications. Furthermore, there is a need to develop a high-throughput strategy for comparative glycoproteomics with a large cohort of samples. Herein, we developed isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) tags to increase the charge states of glycopeptides, thereby improving the fragmentation efficiency and allowing for in-depth intact glycopeptide analysis, especially for sialoglycopeptides. Moreover, the unique reporter ions of DiLeuEN-labeled glycopeptides generated in tandem MS spectra enable relative quantification of up to four samples in a single analysis, which represents a new high-throughput method for quantitative glycoproteomics.
Collapse
|
45
|
Manz C, Mancera-Arteu M, Zappe A, Hanozin E, Polewski L, Giménez E, Sanz-Nebot V, Pagel K. Determination of Sialic Acid Isomers from Released N-Glycans Using Ion Mobility Spectrometry. Anal Chem 2022; 94:13323-13331. [PMID: 36121379 PMCID: PMC9535620 DOI: 10.1021/acs.analchem.2c00783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Complex carbohydrates are ubiquitous in nature and represent one of the major classes of biopolymers. They can exhibit highly diverse structures with multiple branched sites as well as a complex regio- and stereochemistry. A common way to analytically address this complexity is liquid chromatography (LC) in combination with mass spectrometry (MS). However, MS-based detection often does not provide sufficient information to distinguish glycan isomers. Ion mobility-mass spectrometry (IM-MS)─a technique that separates ions based on their size, charge, and shape─has recently shown great potential to solve this problem by identifying characteristic isomeric glycan features such as the sialylation and fucosylation pattern. However, while both LC-MS and IM-MS have clearly proven their individual capabilities for glycan analysis, attempts to combine both methods into a consistent workflow are lacking. Here, we close this gap and combine hydrophilic interaction liquid chromatography (HILIC) with IM-MS to analyze the glycan structures released from human alpha-1-acid glycoprotein (hAGP). HILIC separates the crude mixture of highly sialylated multi-antennary glycans, MS provides information on glycan composition, and IMS is used to distinguish and quantify α2,6- and α2,3-linked sialic acid isomers based on characteristic fragments. Further, the technique can support the assignment of antenna fucosylation. This feature mapping can confidently assign glycan isomers with multiple sialic acids within one LC-IM-MS run and is fully compatible with existing workflows for N-glycan analysis.
Collapse
Affiliation(s)
- Christian Manz
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstr. 23A, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Montserrat Mancera-Arteu
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Andreas Zappe
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstr. 23A, 14195 Berlin, Germany
| | - Emeline Hanozin
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstr. 23A, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Lukasz Polewski
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstr. 23A, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Estela Giménez
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Kevin Pagel
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstr. 23A, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
46
|
Guan B, Zhang Z, Chai Y, Amantai X, Chen X, Cao X, Yue X. N-glycosylation of milk proteins: A review spanning 2010–2022. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Wang Q, Wang T, Wu WW, Lin CY, Yang S, Yang G, Jankowska E, Hu Y, Shen RF, Betenbaugh MJ, Cipollo JF. Comprehensive N- and O-Glycoproteomic Analysis of Multiple Chinese Hamster Ovary Host Cell Lines. J Proteome Res 2022; 21:2341-2355. [PMID: 36129246 DOI: 10.1021/acs.jproteome.2c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Chang-Yi Lin
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ewa Jankowska
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
48
|
Li J, Zhang J, Xu M, Yang Z, Yue S, Zhou W, Gui C, Zhang H, Li S, Wang PG, Yang S. Advances in glycopeptide enrichment methods for the analysis of protein glycosylation over the past decade. J Sep Sci 2022; 45:3169-3186. [PMID: 35816156 DOI: 10.1002/jssc.202200292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Advances in bioanalytical technology have accelerated the analysis of complex protein glycosylation, which is beneficial to understanding glycosylation in drug discovery and disease diagnosis. Due to its biological uniqueness in the course of disease occurrence and development, disease-specific glycosylation requires quantitative characterization of protein glycosylation. We provide a comprehensive review of recent advances in glycosylation analysis, including workflows for glycoprotein digestion, glycopeptide separation and enrichment, and mass-spectrometry sequencing. We specifically focus on different strategies for glycopeptide enrichment through physical interaction, chemical oxidation, or metabolic labeling of intact glycopeptides. The recent advances and challenges of O-glycosylation analysis are presented, and the development of improved enrichment methods combining different proteases to analyze O-glycosylation is also proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jie Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeren Yang
- AstraZeneca, Medimmune Ct, Frederick, MD, 21703, USA
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH, 45237, USA
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Haiyang Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu, 210033, China
| | - Perry G Wang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.,Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
49
|
Zhang H, Shi X, Liu Y, Wang B, Xu M, Welham NV, Li L. On-tissue amidation of sialic acid with aniline for sensitive imaging of sialylated N-glycans from FFPE tissue sections via MALDI mass spectrometry. Anal Bioanal Chem 2022; 414:5263-5274. [PMID: 35072748 PMCID: PMC9381140 DOI: 10.1007/s00216-022-03894-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 01/06/2023]
Abstract
Spatial visualization of glycans within clinical tissue samples is critical for discovery of disease-relevant glycan dysregulations. Herein, we develop an on-tissue derivatization strategy for sensitive spatial visualization of N-glycans from formalin-fixed paraffin-embedded (FFPE) tissue sections, based on amidation of sialic acid residues with aniline. The sialylated N-glycans were stabilized and given enhanced signal intensity owing to selective capping of a phenyl group to the sialic acid residue after aniline labeling. Proof-of-concept experiments, including determinations of sialylglycopeptide and N-glycans enzymatically released from glycoproteins, were performed. Further, mass spectrometry (MS) imaging of N-glycans on human laryngeal cancer FFPE tissue sections was conducted via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), based on our strategy for on-tissue amidation of sialylated N-glycans. We obtained higher sialylated N-glycan coverages for both the glycoproteins and cancer tissue samples, demonstrating that the detection sensitivity for sialylated N-glycans is notably improved by amidation derivatization. We also characterized N-glycan heterogeneity across the human laryngeal cancer tissue section, showing N-glycan dysregulation in the tumor region.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
50
|
Gao Z, He Y, He Q, Wei W, Luo Y, Ma Z, Chen W, Chu F, Zhang S, Liu Y, Pan Y. Multidimensional identification of disaccharide isomers based on non-covalent complexes and tandem mass spectrometry. Talanta 2022; 249:123674. [PMID: 35717753 DOI: 10.1016/j.talanta.2022.123674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Glycans are the most abundant organic polymers in nature. They are essential to living organisms and regulate a wide range of biological functions. However, mass spectrometry-based identification of glycan isomers remains challenging due to the complexity of their structures including their complex compositions, linkages, and anomeric configurations. In this study, two novel complex ions, the mononuclear copper-bound dimeric ions [(Cu2+)(A)(L-His)-H]+ and the mononuclear copper-bound quaternary ions [(Cu2+)(A)(L-Ser)3-H]+ (where A denotes a disaccharide, and L-Ser/His denotes l-serine/histidine), were designed for the collision-induced dissociation-based identification and relative quantification of 14 disaccharide isomers. When the unique fragmentation patterns of the above two types of complex ions were mapped into a three-dimensional vector, all the isomers were completely distinguished. Of note, the established method is able to identify mixtures of linkage isomers only using tandem mass spectrometry based on linkage-specific fragment ions of histidine-based complex ions. Finally, the method was successfully applied to the identification and relative quantification of two disaccharide isomers (lactose and sucrose) in dairy beverages. In conclusion, the established method is sensitive to subtle structural differences in disaccharide isomers and has the potential to be used for the differentiation of various glycans.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuwen He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuanqing Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Zihan Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shuheng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| |
Collapse
|